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Detecting Subtle Sequence 
Signals: A Gibbs Sampling 

Strategy for Multiple Alignment 
Charles E. Lawrence, Stephen F. Altschul, Mark S. Boguski, 

Jun S. Liu, Andrew F. Neuwald, John C. Wootton 
A wealth of protein and DNA sequence data is being generated by genome projects and 
other sequencing efforts. A crucial barrier to deciphering these sequences and under- 
standing the relations among them is the difficulty of detecting subtle local residue patterns 
common to multiple sequences. Such patterns frequently reflect similar molecular struc- 
tures and biological properties. A mathematical definition of this "local multiple alignment" 
problem suitable for full computer automation has been used to develop a new and 
sensitive algorithm, based on the statistical method of iterative sampling. This algorithm 
finds an optimized local alignment model for N sequences in Nlinear time, requiring only 
seconds on current workstations, and allows the simultaneous detection and optimization 
of multiple patterns and pattern repeats. The method is illustrated as applied to helix- 
turn-helix proteins, lipocalins, and prenyltransferases. 

Patterns shared by multiple protein or 
nucleic acid sequences shed light on molec- 
ular structure, function, and evolution. 
The recognition of such pattems generally 
relies upon aligning many sequences, a 
complex, multifaceted research process 
whose difficulty has long been appreciated. 
This problem may be divided into "global 
multiple alignment" (1, 2), whose goal is to 
align complete sequences, and "local mul- 
tiple alignment" (2-1 l ) ,  whose aim is to 
locate, relatively short patterns shared by 
otherwise dissimilar sequences. We report a 
new algorithm for local multiple alignment 
that assumes no prior information on the 
pattems or their locations within the se- 
auences: it determines .these locations from 
drily thk information intrinsic to the se- 
quences themselves. We focus on subtle 
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amino acid sequence pattems that may vary 
greatly among different proteins. 

Much research on the alignment of such 
patterns uses additional information to sup- 
plement algorithmic analyses of the actual 
sequences, including data on three-dimen- 
sional structure, chemical interactions of 
residues, effects of mutations, and interpre- 
tation of sequence database search results. 
However, such research, which has led to 
many discoveries of sequence relations and 
structure and function predictions [see (12) 
for a recent example], is -l&orious and 
requires frequent input of expert -k_nowl- 
edge. These approaches are becoming in- 
creasingly overwhelmed by the quantity of 
sequence data. 

A number of automated local multiple 
alignment algorithms have been developed 
(2-1 1 ) , and some have proved valuable as 
part of integrated software workbenches. 
Unfortunately, rigorous algorithms for find- 
ing optimal solutions have been so compu- 
tationally expensive as to limit their appli- 
cability to a very small number of se- 
quences, and heuristic approaches have 
gained speed by sacrificing sensitivity to 
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highly variable patterns. 
Our method is both fast and sensitive 

and generally finds an optimized local align- 
ment model for N sequences in N-linear 
time. This advantage is achieved by incor- 
porating some recent developments in sta- 
tistics and by using a formulation of the 
problem that models well the underlying 
biology but avoids the explicit treatment of 
gaps. We illustrate the application of this 
method with a diverse set of difficult but 
well understood test cases. 

Problem and methods. Our problem is 
to locate and describe a pattern thought to 
be contained within a set of biopolymer 
sequences. The model we use has three 
fundamental characteristics. First, we seek 
a relatively small number of sequence ele- 
ments or patterns, each consisting of one 
ungapped segment from each of the input 
sequences. Second, a single pattern is de- 
scribed by a probabilistic model of residue 
frequencies at each position. Third, the 
location of the pattern within the se- 
quences is described by a set of probabilis- 
tically inferred position variables. These 
features are derived from well established 
principles of protein structure and knowl- 
edge of the sources of sequence pattern 
variation (1 3). These principles are valid in 
general for globular protein families, al- 
though a few interesting counterexamples 
are known. 

First, homologous proteins or protein 
domains typically are characterized by a 
core of common secondary structure ele- 
ments separated by intervening loops (1 3). 
Gaps in sequence alignments stem primarily 
from variations in loop length, and loops 
that participate in active sites are con- 
strained to maintain their geometry, and 
thus frequently retain their length as well. 
Common sequence patterns therefore can 
generally be described by a relatively small 
number of ungapped elements. 

Second, physicochemical constraints in- 
fluence which particular residues may occur 
at each position in a sequence element. 
The similarities of closely related sequences 
stem largely from recent common ancestry 
and are relatively easy to locate by various 
methods (2-1 l ) ,  including ours. In con- 
trast. our urimarv concern is to locate the 
common features of sequences that differ 
greatly. Here, similar local residue patterns 
reflect structural and functional constraints 
that arise from the energetic interactions 
among residues or between residue and 
ligand, irrespective of evolutionary history. 
The relation between a state's energy and 
frequency forms the basis of statistical me- 
chanics, and an analogous relation governs 
the frequencies of residues subject to ran- 
dom point mutations (14). Residue fre- 
quency models are therefore natural in the 
present context. 

Third, genomic rearrangements, as well 
as insertions, deletions, and duplications of 
sequence segments, result in the occurrence 
of a common Dattem at different ~ositions 
within sequences. However, these muta- 
tional events are "unobserved" because no 
data directly specify their effects on the 
positions of the patterns (6). As recognized 
by statisticians since the 1970s (15), many 
problems with unobserved data are most 
easily addressed by pretending that critical 
missing data are available. The key "miss- 
ing information principle" (15) is that the 
probabilities for the unobserved positions 
may be inferred through the application of 
Bayes theorem to the observed sequence 
data. 

The optimization procedure we use is 
the predictive update version (1 6) of the 
Gibbs sampler (1 7). Strategies based on 
iterative sampling have been of great inter- 
est in statistics (18). The algorithm can be ~, - 
understood as a stochastic analog of expec- 
tation maximization (EM) methods previ- 
ously used for local multiple alignment (6, 
7). It yields a more robust optimization 
procedure and permits the integration of 
information from multiple patterns. In ad- 
dition, a procedure for. the automatic de- 
termination of pattern width has been 
developed. For clarity, we first describe 
:he identification of a single pattern of 
fixed width within each i n ~ u t  seauence 
and then generalize to variable widths and 
multiple patterns. 

The basic algorithm. We assume that 
we are given a set of N sequences S,, . . ., 
SN and that we seek within each sequence 
mutually- similar segments of specified 
width W. The algorithm maintains two 
evolving data structures. The first is the 
pattern description, in the form of a prob- 
abilistic model of residue frequencies for 
each position i from 1 to W, and consist- 
ing of the variables qi,,, . . ., qi,ZO. This 
pattern description is accompanied by an 
analogous probabilistic description of the 
"background frequencies" p,, . . ., P20 

with which residues occur in sites not 
described by the pattern. The second data 
structure, constituting the alignment, is a 
set .of positions ak, for k from 1 to N, for 
the common pattern within the se- 
quences. Our objective will be to identify 
the "best," defined as the most probable, 
common pattern. This pattern is obtained 
by locating the alignment that maximizes 
the ratio of the corresponding pattern 
probability to background probability. 

The algorithm is initialized by choosing 
random starting ~ositions within the vari- - .  
ous sequences. It then proceeds through 
many iterations to execute the following 
two steps of the Gibbs sampler: 

1) Predictive update step. One of the N 
sequences, z ,  is chosen either at random or 

in specified order. The pattern description 
qiTj and background frequencies pj are then 
calculated, as described in Eq. 1 below, 
from the current positions ak in all se- 
quences excluding q. 

2) Sampling step. Every possible seg- 
ment of width W within sequence z is 
considered as a possible instance of the 
pattern. The probabilities Qx of generating 
each segment x according to the current 
pattern probabilities qiJ are calculated, as 
are the probabilities Px of generating these 
segments by the background probabilities 
pj. The weight Ax = QxIPx is assigned to 
segment x, and with each segment so 
weighted, a random one is selected (1 9). Its 
position then becomes the new a,. 

This simple iterative procedure consti- 
tutes the basic algorithm. The central idea 
is that the more accurate the pattern de- 
scription constructed in step 1, the more 
accurate the determination of its location 
in step 2, and vice versa. Given random 
positions ak, in step 2 the pattern descrip- 
tion qiTj will tend to favor no particular 
segment. Once some correct ak have been 
selected by chance, however, the qi,j begin 
to reflect, albeit imperfectly, a pattern ex- 
tant within other sequences. This process 
tends to recruit further correct ak, which in 
turn improve the discriminating power of 
the evolving pattern. 

An aspect of the algorithm alluded to in 
step 1 above concerns the calculation of the 
qi,j from the current set of ak. For the ith 
position of the pattern we have N - 1 
observed amino acids. because seauence z 
has been excluded; let c i ,  be the count of 
amino acid i in this Dosition. Bavesian 
statistical analysis suggests that, for the 
purpose of pattern estimation, these ci,j 
should be supplemented with residue-de- 
pendent "pseudocounts" bj to yield pattern 
probabilities 

C,, j + b, 
4i,j = N - l + B  

where B is the sum of the b;. The b; are ' J 

calculated analogously, w i d  the corre- 
sponding counts taken over all nonpattem 
positions (20). 

After normalization, A-gives the prob- 
ability that the pattern in sequen_ce z be- 
longs at position x. The algorithm finds the 
most probable alignment by selecting a set 
of aLs that maximizes the product of these 
ratios. Equivalently, one may maximize F, 
the sum of the logarithms of these ratios. In 
the notation developed above, F is given by 
the formula 

qi, j 
F = x x C i , j  log - 

Pj 
(2) 

i=  1 j= 1 

where the ci,j and qijj are calculated from the 
complete alignment (Fig. 1). 
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Phase shifts. One defect of the algo- 
rithm as just described is the "phase" prob- 
lem. The strongest pattern may begin, for 
example, at positions 7, 19, 8, 23, and so 
forth within the various sequences. Howev- 
er, if the algorithm happens to choose al  = 
9 and a, = 21 in an early iteration, it will 
then most likely proceed to choose a, = 10 
and a, = 25. In other words, the algorithm 
can get locked into a nonoptimal "local 
maximum" that is a shifted form of the 
optimal pattern. This situation can be 
avoided by inserting another step into the 
algorithm (1 6). After every Mth iteration, 
for example, one may compare the current 
set of ak with sets shifted left and right by up 
to a certain number of letters. Probability 
ratios may be calculated, as above, for all 
possibilities, and a random selection is 
made among them with appropriate corre- 
sponding weights. 

Pattern width. The algorithm as so far 
described requires the pattern width to be 
input. It is possible, of course, to execute 
the algorithm with a range of plausible 
widths and then select the best result ac- 
cording to some criterion. One difficulty is 
that the function F is not immediately 
useful for this purpose, as its optimal value 
always increases with increasing width W. 

The ~roblem here corres~onds to the 
well-known issue of model selection en- 
countered in statistics. The difficulty stems 
from the change in the dimensionality with 
the additional freely adjustable parameters. 
Several criteria that incorporate the effects 
of variable dimension have been useful in 
other applications (2 1). Unfortunately, 
these criteria did not perform well at select- 
ing those pattern widths that identified 
correct alignments in data sets with known 
solutions. 

A superior criterion proved to be one 
based on the incomplete-data log-probabil- 
ity ratio G (22), which subtracts from the 
function F the information required to de- 
termine the location of the pattern in each 
of the input sequences. We found that 
dividing G by the number of free parame- 
ters needed to specify the pattern (19W in 
the case of proteins) produced a statistic 
useful for choosing pattern width. We call 
this quantity the information per parame- 
ter. The use of this empirical criterion is 
discussed in the examples section below and 
is illustrated in Figs. 2 and 3. 

Multiple patterns. As described above, 
a pattern within a set of sequences can be 
described as consisting of several distinct 
elements separated by gaps. The Gibbs 
sampler may easily maintain several distinct 
patterns rather than a single one. Seeking 
several patterns simultaneously rather than 
sequentially allows information gained 
about one to aid the alignment of others. 
The relative positions of elements within 

the sequences can be used to improve their 
simultaneous alignment. Because only one 
element in sequence x is altered at a time, 
the combinatorial problem of joint posi- 
tioning is circumvented. Nevertheless, be- 
cause no element's position is permanently 
fixed, the best joint location of all elements 
may be identified. 

Incorporating models of element loca- 
tion that favor consistent ordering (colin- 
earity) and of element spacing that favor 
close packing accommodates insertions and 
deletions. Our implementation of a multi- 
element version of the Gibbs sampler (23) 
includes ordering probabilities (24). As il- 
lustrated below, this joint information im- 
proves the prediction of the correct align- 
ment of colinear elements. Constraints on 
loop length variation result in similarities in 
the spacing of the elements of homologous 
proteins. Thus, inclusion of an element 
spacing component in the model should 

improve alignment. However, we have not 
yet found it necessary to incorporate spac- 
ing effects into the algorithm (25). 

Examples. To examine the algorithm, 
we have chosen three examples that present 
different classes of difficulties for automated 
multiple alignment. First is the helix-turn- 
helix (HTH) motif, which represents a 
large class of sequence-specific DNA bind- 
ing structures involved in numerous cases of 
gene regulation. Such HTH motifs gener- 
ally occur singly as local, isolated structures 
in different sequence contexts. Detection 
and alignment of HTH motifs is a well- - 
recognized problem because of the great 
sequence variation compatible with the 
same basic structure. Second are the lipo- 
calins, a family of proteins that bind small, 
hydrophobic ligands for a wide range of 
biological purposes. These proteins show 
widely spaced sequence motifs within high- 
ly variable sequences but share the same 

A sim-37 223 IIDLTYIONK SOKETGDILGISOMHVSR LORKAVKKLR 240 A25944 
SPOIIIC 94 RFGLDLKKEK TQREIAKELGISRSVVSR IEKRALMKMF 111 ~28627 
NahR 22 W N Q L L M R  RVSITAWLGLT9PAVSN ALKRLRTSLQ 39 A32837 
Ancennapedia 326 FHFNRYLTRR RRIEIAHALCLTERQIKI W F Q M K W K  343 A23450 
NcrC .Brady.l 449 LTAALAATRG NQIRAADLLGLNRNTLRK KIRDLDIQW 466 826499 
DicA 22 IRYRRKNLKH TQRSLAKALKISHVSVSQ WERGDSEPTG 39 824328 (BVECDAI 
MerD 5 MNAY TVSRLALDAGVSVHIVRD YLLRGLLRPV 22 C29010 
Fis 73 LDMVMOYTRG NOTRAALMMGINRGTLRK KLKKYGMN 90 A32142 lWECFSI 
MAT a1 99 FRRKQSLNSK EKEEVIKKCGITPLQVRV WFINKRMRSK 116 A90983 JEBYll 
Lambda cII 25 SALLNKIAML GTEKTAEAVGMKSQISR WDWIPKFS 42 A03579 QCBP~LI 
Crp (CAP1 169 THPEMQIKI TRQEIGQIVGCSRETVGR ILKMLEDQNL 186 A03553 QRECC. 
Lambda Cro 15 ITLKDYAMRF GQTKTAKDLGWQSALNK AIHAGRKIFL 32 A03577 RCBPL. 
~ 2 2  ~ r o  12 YKKDVIDHFG TQPAVAKALGISDAAVSQ WREVIPEKDA 29 A25867 (RGBP221 
AraC 196 ISDHLADSNF DIASVAOHVCLSPSRLSH LFROOLGISV 213 A03554 IRGECAI 
m r  196 FSPREFRLTM TRGDIG~&LGLTVETISR LLGSFQKSGM 213 A03552 ~RGECF~ 
HtpR 252 ARWLDEDNKS TLQELADRYGVSAERVRQ LEKNAMKKLR 269 A00700 IRGECH) 
NtrC 1K.a. ) 444 LTPALRHTOG HKOEAARLLGWGRNTLTR KLKELGME 461 A03564 lRGKBCPl 
~ y t ~  11 MKAKKQET~ TMKDVALKAKVSTATVSR ALMNPDKVSQ 28 A24963 ~RPECCT~ 
DeoR 23 LQELRRSDKL HLKDAAALWVSEMTIRR DLNNHSAPW 40 A24076 IRPECDOI 
GalR 3 MA TIKDVARLAGVSVATVSR VINNSPKASE 20 A03559 IRPECGI 
Lac1 5 MKPV TLY3VAEYAGVSYQTVSR WNQASHVSA 22 A03558 RPECLl 
TecR 26 LLNEVGIEGL lTRKLAQKLGVEQPTLYW HVKNKRALLD 43 A03576 RPEClNl 
TrPR 67 IVEELLRGM SQRELKNELGAGIATITR GSNSLKAAPV 84 A03568 IRPECWI 
NifA 495 LIAALEKAGW VQAWARLLGMTPRQVAY RIQIMDITMP 512 SO2513 
SpoIIG 205 RFGLVGEEEK TQKDVADMb!GISQSYISR LEKRIIKRLR 222 SO7337 
Pin 160 QAGRLIAAGT PRQKVAIIYDVGVSTLYK TFPAGDK 177 SO7958 

EbgR 3 MA TLKDIAIEAGVSLAWSR VLNDDPTLNV 20 SO9205 
LexA 27 DHISQTGMPP TRAEIAQRLGFRSPNAAE EHLKALARKG 44 S11945 
P22 CI 25 SSILNRIAIR GQRKVADALGINESQISR WKGDFIPKMG 42 B25867 IZlBPC21 

t.+++*+*********+ + * +  

Position in site 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Arg 94 222 265 137 9 9 137 137 9 9 9 52 222 94 94 9 265 606 
Lvs 9 133 442 380 9 71 380 194 9 133 9 9 71 9 9 9 71 256 - - 

~ i u  53 9 96 401 9 9 140 140 9 9 9 53 140 140 9 9 9 53 
Asp 67 9 9 473 9 9 299 125 9 67 9 67 67 9 9 9 9 67 
Gln 9 600 224 9 9 9 224 9 9 9 9 9 278 63 278 9 9 170 
His 240 9 9 9 9 9 125 125 9 9 9 9 125 125 125 9 9 240 
Asn 168 9 9 9 9 9 168 89 9 89 9 248 9 168 89 9 89 89 
ser 117 9 117 117 9 9 9 9 9 9 9 819 63 387 63 9 819 9 
Gly 151 9 56 9 9 151 9 9 9 1141 9 151 9 56 9 9 56 9 
Ala 9 9 112 43 181 901 43 181 215 9 43 9 43 181 
Thr 915 130 130 9 251 9 9 9 9 9 9 311 130 70 855 
Pro 76 9 9 9 9 9 9 9 9 9 9 9 2 1 0 2 1 0  9 9 9. 9 - -  - - ~  

Cys 9 9 9 9 9 9 9 9 2 9 5 5 8 1 2 9 5  9 9 9 9 9 . 9 - 9  
Val 58 107 9 9 500 9 9 9 156 9 598 9 205 58 9 746 9 58 
Leu 9 121 9 9 149 9 93 149 458 9 149 9 37 37 9 177 9 9 
Ile 9 166 114 61 323 9 114 166 9 9 427 9 61 9 61 427 9 61 
Met 9 104 9 9 9 9 9 198 198 9 104 9 9 198 9 9 9 9 
?yr 9 9 136 9 9 9 9 262 262 9 9 136 136 9 262 9 262 136 

Fig. 1. Alignment and probability ratio model for the helix-turn-helix pattern common to 30 proteins 
(45). (A) The alignment. Columns from left to right are: sequence name; locations a, of the left end 
of the common pattern in each sequence; aligned sequences, including residues flanking the 
18-residue common pattern; right-end positions (a, + 17) of the common pattern; NBRF/PIR 
accession number; and NBRF/PIR code name, if available. Asterisks (***) below the alignment 
indicate the 20-residue segment previously described on the basis of structural superpositions (26, 
27). Almost equal values of information per parameter were given by pattern widths of 18 to 21 
residues (Fig. 2): the longer widths extended to the right the 18-residue pattern shown. (B) 
Probability ratios (100 x q,,,/p,) for each amino acid at each position in the pattern model. 
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structural topology throughout the polypep- 
tide chain. We chose the five most diver- 
gent li~ocalins with known 3D structure for - 
analysis because the correct alignment of 
their sequence motifs has previously de- 
pended on structural superposition. Third 
are isoprenyl-protein transferases, essential 
components of the cytoplasmic signal trans- 
duction network. The P subunits of these 
enzymes contain multiple copies of multiple 
motifs that have not previously been satis- 
factorily characterized by automated align- 
ment methods. 

Single site: HTH proteins. The wide- 
spread DNA binding HTH structure com- 
prises -20 contiguous amino acids (26). In 
our test set of 30 proteins (Fig. I) ,  the 
correct location of the motif is known (26, 
27) from x-ray and nuclear magnetic reso- 
nance structures, or from substitution mu- 
tation exoeriments. or both. The rest of the 
3D structure of these proteins, apart from 
the HTH structure itself, is completely 
different in different subfamilies. Further- 
more, the element is found at positions 
throughout the polypeptide chain. Our test 
set represents a typically diverse cross sec- 
tion of HTH sequences. Close homologs 
have been excluded. The difficulty of detec- 
tion and alienment of the HTH motif from " 
such sequences is well recognized. There 
have been several attempts to develop po- 
sition-specific weight matrices and other 
empirical pattem discriminators diagnostic 
for this structure (28). These have achieved 
some success in making several predictions 
that were later confirmed and that have also 
aroused controversy (29). 

We used this example to develop two 
important features of the algorithm. First, 
the empirical criterion of information per 
parameter allowed for the automated deter- 
mination of element width (Fig. 2). Sec- 
ond, heuristic convergence criteria substan- 
tially shortened the time required to find 
the best model (Fig. 3, legend). These two 
features enabled the algorithm to identify 
and align all 30 HTH motifs quickly and 
consistently. Correct alignments were ob- 
tained with six pattem widths in the range 
from 17 to 22 residues (Fig. 2), of which 2 1 
residues had the highest converged value of 
information per parameter, These results 
comDare favorablv with the 20-residue view 
based previously on structural superposi- 
tions (26, 2 7). The criteria developed em- 
pirically with the HTH example have 
worked consistently well in all of our sub- 
sequent applications. 

Multiple sites: Lipocalins. The majority 
of protein sequence families contain multi- 
ple colinear elements separated by variable- 
length gaps (1 3). We have successfully 
aligned distantly related sequences for sever- 
al problems in this class, including protein 
kinases, aspartyl proteinases, aminoacyl- 

tRNA ligases and mammalian helix-loop- from structural comparisons (31, 32). The 
helix proteins. We report here on one of the rest of the topologically conserved lipocalin 
most difficult of these test cases: in lipocalins folds have very different sequences. 
(30, 3 I ) ,  two weak sequence motifs, cen- Conventional automated sequence align- 
tered on the generally conserved residues ment methods, although successful for se- 
-Gly-X-Trp- and -Thr-Asp-, are recognized lected subsets of the data [such as (33)], fail 

Fig. or of 3. Convergence the Gibbs sampling behav- 1 . 8 8 7 '  

algorithm. Because the 
Gibbs sampler, when run for 1.6 
finite time, is a heuristic rath- S 
er than a rigorous optimiza- $ 1.4 
ti06 ~rocedure, one cannot 

Fig. 2. Information per parameter as the criterion 91.8 
of pattern width for helix-turn-helix (HTH) pro- g 
teins. The points indicate the maximum values of 

g1.s- 
information per parameter found by the algo- 
rithm. The upper points (A and +) used the 5 
complete sequences of the 30 HTH proteins $1.4- 

listed in Fig. 1A. (A) All of the sequences'in the $ 
data set were aligned in the correct register (as E1.2- 
in Fig. 1A). (+) One or more of the sequences in 8 
the data set were incorrectly aligned. All com- 
pletely correct alignments in the width range _o 
from 17 to 22 residues gave greater values of 5 

guarantee the optimality of 1.2. 
the results it produces, p ,<,,: m;2.7-.w-b:~,, I .. ,r-+'>..h~4... . :-w.... 

Therefore, the best solution 
found in a series of runs will 

. . . A .  

+ + * 
+ + 

+ + 

. . . . . .  . .  . . . . . * .  
x x x x  i x X x x  X X  x X x 

be called "maximal." A sin- 
gle pattern of width 18 resi- 

' 

dues was sought in the data 
set of 30 HTH proteins ' 0.6 

shown in Fig. 1A. Solid lines 

15 20 25 30 
information per parameter than any incorrect Pattern width 
alignments outside this width range. (e) The 
"nonsites" sequence data of the 30 HTH proteins, constructed by deleting the 18 residues of the 
HTH.pattern itself (Fig. 1A) from each of the sequences. (x) A shuffled data set (46) of the 30 HTH 
sequences. The alignments from the nonsites background of the HTH proteins give values slightly 
greater than random expectation. 

show the course of three 
independent runs with dif- 
ferent random seeds. Evolv- 

0.41 1 
b 1000 2000 3000 4000 5000 6000 

Number of iterations 

ing models in such runs rap- 
idly reach intermediate "background" information values (1.0 to 1.2 bits per parameter) and then 
sample different models in this plateau region for a widely variable number of iterations before 
converging rapidly. Curve 1 is typical in showing a very short lag time on the plateau; longer lags 
as in curves 2 and 3 are less common. Curves 1 and 3 illustrate the stochastic behavior of the Gibbs 
sampler: once."converged," the model stays predominantly at the maximal value of 1.84 bits per 
parameter but is never permanently in this solution. In the infinite limit, the sampler will spend the 
plurality of its time on the pattern that maximizes Fand therefore the information per parameter (22). 
Curve 2 demonstrates persistence (after escape from the background plateau) in-$ submaximal 
state (1.80 bits per parameter), which is a "phase-shifted" version of the best modet. -When 
sufficiently large stochastic phase shifts are allowed (see text), such states do not normallytrap the 
evolving model for many iterations. Curve 3 reaches exactly the same maximal value as curve 1, 
suggesting one possible strategy for detecting convergence, namely, recurrence of exactly the 
same pattern with different seeds. The following heuristic approach was found to greatly reduce the 
time required to find the apparently optimal alignment: (i) For a given random seed, repeat the basic 
algorithm a fixed number of times (typically 10 times for each input sequence) beyond the last 
iteration in which the best pattern observed (with this seed) improved; and (ii) try at most some fixed 
number of seeds (usually 10 for a single element), but stop when the best pattern is reproduced by 
a specified number of different seeds (usually 2). The rationale underlying this approach is that it is 
unlikely for the identical suboptimal solution to be found on several independent trials before the 
optimal solution is found once. The dotted line represents a run on the nonsite data set (Fig. 2). Such 
runs never exceed 1.2 bits per parameter and thus are stuck permanently in states resembling the 
background plateaus from which the models of the HTH motif alignments eventually escape. 
Repeated runs in which shuffled sequences as input data are used can provide criteria for how 
strong a pattern is required to be considered significant (38). 
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to align these motifs for the full spectrum of 
lipocalin sequences. Challenged with five 
such diverse sequences of known crystal 
structure, our algorithm correctly aligned 
these two regions and extended the width of 
both to 16 residues (Fig. 4), in agreement 
with the structural evidence (3 1, 32). 

Multiple copies of multiple sites: Pre- 
nyltransferases. Internal repeats in protein 
sequences underlie many important struc- 
tures and functions and are more common 
than is generally recognized (34). These 
repeats are often obscured by sequence di- 
vergence following duplication, rendering 
their detection and characterization a chal- 
lenging problem. The analysis of repeats is 
often labor-intensive, relying in part on 
visual inspection of "dot plots" (1 0, 34)-a 
procedure that limits searches and surveys 
of large databases. 

An example of recent interest involves 
sequence repeats in the subunits of the 
heterodimeric protein-isoprenyltransferases 
(1 0, 35). These enzymes are responsible for 
targeting and anchoring members of the ras 
superfamily of small guanosine triphos- 
phatases to their sites of action on various 
cellular membranes (36). The P subunits of 
prenyltransferases contain a subtle internal 
repeat of possible function significance 
(34). Although no direct structural infor- 
mation is yet available for these proteins, 
previous sequence analysis suggested that 
the p subunit repeat consists of three motifs 
separated by variable-length gaps and that 
this entire tripartite structure is repeated 
three to five times in each of four proteins 
(1 0, 35). 

The challenge here is therefore to iden- - 
tify a relatively large number of weak pat- 
terns covering up to 80 percent of the 
length of the sequences. The resulting 
crowding of elements increases interele- 
ment dependencies and the complexity of 
the joint probability surface over which the 
algorithm must find the most probable 
alignment. 

The previous analysis was subjective and 
time-consuming, relying on the combined use 
of several different multiple alignment meth- 
ods. In contrast, the Gibbs sampling algo- 
rithm quickly and objectively reproduced and 
extended the previous results (Fig. 5). 

Evaluation and comparison. The main 
difficulties of automated local multiple 
alignment stem from the high dimensional- 
ity of the search space and the existence of 
many local optima. Here, the large search 
space is explored one dimension at a time 
by comparing each sequence to an evolving 
residue frequency model. Stochastic sam- 
pling permits the algorithm to escape local 
optima in which deterministic approaches 
may get trapped. Including a phase shift 
step expedites convergence by permitting 
the sampler to explore related local optima. 

Tests showed the algorithm to be rela- the algorithm to seek a pattern in only a 
tively insensitive to various numbers of specified number of input sequences. 
negative examples included among the in- The use of an appropriate model for 
put sequences. To cope with large numbers interelement spacing would improve the 
of negative examples, we have extended algorithm's sensitivity, but this feature has 

Motif A Motif B 

17 32 104 119 
ICYA-MENSE .. GYCPDVKPVN DEDLSAFAGAWHEIAK LPLENENQGK ... FGQRW'NLVP WJLATDYKNYAINYNC DYHPDKKAHS .. 

2 5 4 0 109 124 
LACE-BOVIN .. QALIVTQTMK GLDIQKVAGTWYSLAM AASDISLLDA ... KIDALNEM(V LVLDTDYKKYLLFCME NSAEPEQSLA .. 

16 3 1 100 115 
BBP-PIEBR .. GACPEVKPVD NFDWSKYHGKWWE!VAK YPNSVEKYGK ... YGGVTKEMiF NVLSTDNKNYIIGYYC KYDEDKKGHQ .. 

14 29 105 120 
RETB-BOVIN . .  CRVSSFRVKE NFDEARFAGTWYAMRK KDPEGLFLQD ... SFLQKGNDDH WIIDTDYETFAVQYSC RLLNLDGWA .. 

27 42 109 124 
MUPZ-MOUSE . .  HAEEASSTOR NFNVEKINGEWHTIIL ASDKREKIED . . .  SVTYDGFNTF TIPKTDYDNFLMAHLI NERDGETFQL .. * *  * * *  

Fig. 4. Two motifs located automatically in five lipocalins of known crystal structure. The sequences, 
defined by SwissProt database codes, are, from top to bottom: Manduca sexta insecticyanin, 
bovine P-lactoglobulin, Pieris brassicae bilin-binding protein, bovine plasma retinol-binding protein, 
and mouse major urinary protein 2. Asterisks (***) below the alignment denote generally conserved 
residues recognized from structural comparisons (30, 31). The criterion of information per 
parameter (0.66 and 0.65 bits for motifs A and B, respectively) suggested an extended width of 16 
residues for both motifs, in agreement with the superposable structures of the proteins in these 
regions (31, 32). 

Raml , 71 DRDWLSDD--- 
SPSG-------------------- GPFGGGPGQLSH LA- STYAAINALSLC DNIDGCWDRID 
KEPN-------------------- GGFKTCLEVGEV DTR GIYCALSIATLL NILTEEL---- 

-------------- 230 LTEGVLNYLKNC QNYE GGFGSCPHVDEA HGG YTFCATASLAIL RSQIN---- 
279 1 NVEKLLEWSSARI PLQEEIIIII---- -------- -- I RGFCGRSNKLVDI GC- I YSFWVGGSAAILI EAFGYGQcF-- 

FY-LHTNYCLLGLAVA~ E-----I---- 
. . .  27 aa... 

99 SRPWLCYAILHS LELLDEPIPQIV 
122 VATDVCQFLELC QSPD-------------------- 
173 NREKLLQYLYSL KQPD-------------------- 
221 LFEGTAEWIARC QNhT-------------------- 
269 NLKSLLQWSR QMRFE- - - - - - - - - - - - - - - - - - -  
331 HOOALOEYILMC COCPA------------------- 

Bet2 
8 -1 WEKHIRYIESL DTKKHNFEYhLTEHLRLN - _ - - - _ _ _ - _ _ - -  - -  -1 DSPETFV--- 

56 LKEEVISFVLSC ~'DDKY I G A F A P F P R H D A H ~ L L  T~LSAVOILATY DALDVLGKDR 
108 I RKL'RLISFIRGN QLED -...--..-- 
156, "lJDpAVD-KC1 Y m D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  ....-...-- 

12 VTKKHRKFFERH . . .  103 aa... 
127 DKRSLARFVSKC Q . . .  52 aa... 
'191 DTEKLLGYIMSO OCYN------------------- IGAFGAHNEPHSGI-- /YTSCALSTLALL~SSLEKLSDKF 

Fig. 5. Repeating motifs in prenyltransferase subunits. Raml (Swiss-Prot, accession number 
P22007) and FT-P (Swiss-Prot, Q02293) are the P subunits of farnesyltransferase from the yeast, 
Saccharomyces cerevisiae, and rat brain, respectively. Bet2 (PIR International, 522843) is the P 
subunit of type I geranylgeranyltransferase from S. cerevisiae. GGT-P (GenBank, L10416) and 
Cdc43 (Swiss-Prot, P18898) are the P subunits of type I I  geranylgeranyltransferase from S. 
cerevisiae and rat brain, respectively. The primary structures of these proteins have been shown to 
contain a variable number of tripartite internal repeats, each of which is composed of "A" and "B" 
subdomains separated by a "linker region" containing multiple Gly and Pro residues (10, 35). When 
analyzed by the Gibbs sampler, these previously defined motifs were identified and additional 
copies were also observed [compare with figure 1 in (35)l. The information per parameter for.motifs 
A, L, and B was 2.3, 2.3, and 2.4 bits, respectively. Dashes indicate the locations and extents of 
gaps between motifs; ellipses (. . .) accompanied by a number and the abbreviation "aa" indicate 
the locations and extehts of larger gaps expressed as the number of amino acid residues. The 
spacing between motifs L and B is only two or three residues, whereas that between motifs A and 
L is greater and more variable. 
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not been needed to identify even the subtle 
patterns described above. The problem of 
highly correlated input sequences can be 
addressed by various weighting schemes 
(37), but we have yet to implement such a 
feature. Choosing an optimal number of 
elements requires further study. We have 
found that an additional element is not 
warranted when multiple random seeds lead 
to many different alignments and when the 
resulting information per parameter consis- 
tently fails to exceed that obtained from 
shuffled sequences (38). Prior knowledge 
concerning amino acid relations (39) has 
been used profitably in pairwise protein 
sequence alignment as well as in pattern 
construction methods (8, 40). We have 
modified the Gibbs sampler to use such 
prior information, but in practice, for even 
moderate numbers of sequences ( r 5 ) ,  we 
have not found it to yield any improve- 
ment. However, an interesting new ap- 
proach to incorporating prior information 
has been described (4 I ) ,  and there is much 
room for further experimentation. 

Some basic similarities between our 
method and several earlier ones should be 
noted. Stormo and Hartzell and Hertz et al. 
(5) seek the pattern that maximizes a mea- 
sure similar to F. Their approach differs 
mainly in the heuristic optimization proce- 
dure used, which is an adaptation of an 
algorithm first proposed by Bacon and An- 
derson (4). We have implemented the 
method of (5) and tested it on a variety of 
examples. This approach uses only a small 
subset of the data for the early sequences 
examined, and thus is easily misled. As a 
result, the solution found was rarely as good 
as that produced by the samplgr. Further- 
more, the need to construct an alignment for 
each possible segment in the initial sequence 
requires on average more passes through the 
input data than does the sampler (see be- 
low), resulting in greater execution times. 

Both EM methods (42) and the Gibbs 
sampler are built on a common statistical 
foundation. Two EM approaches for multi- 
ple alignment have been described, block- 
based methods (6, 7) and gap-based meth- 
ods in the form of hidden Markov models 
(43). For multielement problems, the 
Gibbs sampler outperforms block-based EM 
methods. Because EM methods are forced 
to sum over all possibilities, the time com- 
plexity grows exponentially with additional 
elements. In contrast, the Gibbs sampler 
never needs to consider more than one 
element at a time. The speed of the sampler 
stems partly from the fact that it always 
deals with a specific model alignment rather 
than a weighted average. Also, because EM 
methods are deterministic, they tend to get 
trapped by local optima which are avoided 
by the sampler. Hidden Markov models, 
because they permit arbitrary gaps, have 

great flexibility in modeling patterns, but 
suffer the penalties of this added complexity 
discussed above. 

Several other approaches to the local 
multiple alignment problem bear a brief 
review. Methods that seek a "consensus" 
word with the highest aggregate score 
against segments within the input sequences 
have been described (3). Their space re- 
quirements effectively limit them to protein 
patterns of six residues, and their time re- 
quirements effectively allow only closely re- 
lated words to contribute to a consensus. 
These constraints greatly decrease the sensi- 
tivity of these methods to weak patterns. 

Algorithms that compare all input se- 
quences with one another and then coalesce 
consistent painvise local alignments have 
been described (8-1 0). The MACAW algo- 
rithm (8) has comparable speed to the Gibbs 
sampler for a relatively small number of 
input sequences and can locate many dis- 
tinct.patterns in a single run. Its time com- 
plexity, however, is at least quadratic in the 
aggregate length of the input sequences, and 
it tends to be less sensitive to weak sequence 
patterns. The performance of methods that 
must compare all input sequences with one 
another may degrade as the number of se- 
quences increases. In contrast, the power of 
the Gibbs sampler and EM methods in- 
cre?ses with additional sequences because 
the pattern model is improved by more data. 
As illustrated above, the Gibbs sampler is 
successful even with a relativelv small num- 
ber of input sequences. A version of the 
Gibbs sampling algorithm has been added to 
the MACAW program (B), and the updated 
program is available upon request. 

The memory requirements for the Gibbs 
sampker are negligible; storing the input 
sequences is usually the dominant space 
demand. When flexible halting criteria. - 
such as those described in Fig. 3 ,  are used, it 
is difficult to analyze the worst-case time 
complexity of the method. However, for 
typical protein sequence data sets, we have 
found that, for a single pattern width, each 
input sequence needs to be sampled on 
average fewer than T = 100 times before 
convergence. In the more time-consuming 
step 2 of the basic algorithm, approximately 
LW multiplications are performed, where L 
is the length of the sequence that has been 
removed from the model. Therefore, the 
total number of multiplications needed to 
exeyte the Gikbs sampler is approximately 
TNLW, where L is the average length of the 
N input sequences (44). The factor T is 
expected to grow with increasing L. Howev- 
er, experimentation suggests that T tends to 
decrease slowly with increasing N when the 
common pattern exists at roughly equal 
strength within the input sequences. Thus, 
linear time complexity has been observed in 
applications. 

In conclusion, as illustrated by our ex- 
amples, the Gibbs sampler objectively 
solves difficult multiple sequence alignment 
problems in a matter of seconds in the 
absence of any expert knowledge or ancil- 
lary information derived from three-dimen- 
sional structures or other sources. By adopt- 
ing a randomized optimization procedure in 
the place of deterministic approaches, it is 
able to retain both speed and sensitivity to 
weak but biologically significant patterns. 
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