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Interaction of Mammalian Splicing Factor 
SF3a with U2 snRNP and Relation of Its 

60-kD Subunit to Yeast PRP9 

Reto Brosi, Karsten Groning , Sven-Erik Behrens, 
Reinhard Luhrmann, Angela Kramer* 

In the assembly of a prespliceosome, U2 small nuclear ribonucleoprotein (snRNP) func- 
tions in pre-messenger RNA (mRNA) splicing together with splicing factors (SFs) 3a, 
SF3b, and several other proteins. The 17s but not the 12s form of U2 snRNP is active in 
splicjng-complex formation. Here it is shown that the SF3a subunits correspond to three 
of the 17SU2 snRNP-specific polypeptides. SF3a interacts with U2 snRNP in the presence 
of SF3b to generate a structure similar to 17s U2 snRNP, which suggests a function for 
SF3a and SF3b in the incorporation of U2 snRNP into the spliceosome. Furthermore, the 
60-kilodalton subunit of SF3a is related to the yeast splicing protein PRP9. 

T h e  active spliceosome, which is the site been separated into two components (SF3a 
of two transesterification reactions that and SF3b), both of which are required for 
generate spliced mRNA, is assembled in a 
stepwise fashion by interactions between 
pre-inbJA, snRNPs, and a number of pro- 
teins (1). Components in five chromato- 
graphic fractions (SF1, SF3, U2AF, and U1 
and U2 snRNPs) obtained from HeLa cell 
nuclear extracts function in the assembly of 
the adenosine triphosphate (ATP)-depen- 
dent presplicing A complex (2). SF3 has 
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~ - c o m ~ l k x  formation (3). The component 
SF3a has been purified to homogeneity and 
consists of three subunits of 60: 66, and 120 
kD (SF3a6', SF3a66, and SF3a'20,~respec- 
tively); SF3b has been only partially puri- 
fied. 

As for U2 snRNP, which interacts with 
the pre-mRNA to form the presplicing 
complex (4), it exists in two forms, 12s or 
17's (5, 6). The 12.5 U2 snRNP contains 
the common snRNP proteins and the U2 
snRNP-specific proteins A' and B" '(7). 
The 17s U2 snRNP contains an additional 
set of polypeptides of 35, 53, 60, 66, 92, 
110, 120, 150, and 160 kD (6). This 17s 
U2 particle unlike its 12.5 counterpart is 
active in spliceosome assembly and splicing 
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(a), implying that at least some of the 17s 
U2 snRNP-specific proteins are required for 
splicing. The 60-kD polypeptide of the 17s 
U2 snRNP cross-reacts with an antibody to 
yeast PRP9 (anti-PRP9) (8); PEW9 func- 
tions in the assembly of the yeast presplic- 
ing complex (9). The presence of 60-, 66-, 
and 120-kD polypeptides in both SF3a and 
the 17s U2 snRNP along with the func- 
tioning of SF3a, 17s U2 snRNP, and PRP9 
at the same stage of spliceosome assembly 
suggested that these factors may share struc- 
tural features. 

In Western blotting experiments (1 0) 
the anti-PRP9 specifically recognizes puri- 
fied SF3a60, and a single polypeptide of 
similar size was detected in a HeLa nuclear 
extract (Fig. 1A). No reaction with mam- 
malian proteins was observed with preim- 
mune serum (1 1 ) . Anti-PRP9 also recogniz- 
es the 60-kD 17s U2-specific protein (Fig. 
1B) (1 2). In the particular gel system used, 
staining of a doublet is sometimes observed 
(1 3). Moreover, a monoclonal antibody 
(mAb) directed against SF3a66 (mAb66) 
(3) cross-reacts with the 17s U2 snRNP 
polypeptide of 66 kD. The direct compari- 
son of SF3a and 17s U2 snRNP proteins by 
SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) (Fig. 1C) reveals that, in 
addition to the comigration of the 60- and 
66-kD polypeptides, SF3alZ0 comigrates 
with the 1 10-kD polypeptide of the 17s U2 
snRNP. These results suggest that SF3a is 
part of the 17s U2 particle. - 

The 17s U2 snRNP-specific polypep- 
tides dissociate from the particle at salt 
concentrations of 200 mM or higher (6). 
When nuclear extracts are fractionated in 
glycerol gradients at 150 mM KC1 (14), 
SF3a (as detected with mAb66 and anti- 
PRP9) cosediments with U2 snRNP in the 
17s region of the gradient (Fig. 2A). Some 
SF3a is found in the top fractions of the 
gradient, consistent with a sedimentation 
coefficient of 5-56 for purified SF3a (3). At 
500 mM KC1, SF3a sediments as a free 
protein and U2 snRNP sediments at 12s 
(Fig. 2B). The concomitant decrease in the 
sedimentation rate of U2 snRNP and SF3a 
suggests that SF3a dissociates from the U2 
particle in the presence of a high salt 
concentration. The similarity in the sedi- 
mentation behavior of the 17s U2 snRNP- 
specific polypeptides (6) and SF3a in re- 
sponse to increased salt concentrations is 
further evidence that this splicing factor is 
associated with U2 snRNP in nuclear ex- 
tracts. In agreement with these data, U2 
snRNA is the predominant RNA that is 
precipitated from nuclear extracts with 
mAb66 (1 I). 

A reproducible heterogeneity in the 
snRNP populations has been observed after 
Mono Q chromatography (1 5). When an- 
alyzed by Western blotting with mAb66 or 

anti-PRP9, SF3a was detected (as expect- 
ed) in Mono Q fractions (eluting between 
200 and 280 mM KC1) that exhibited ac- 
tivity in presplicing-complex formation 
(I 1). Lower concentrations of SF3a were 
found in fractions enriched in U1 snRNP 
(350 mM KC1) which also contained the 
17s U2 particle. Fractions highly enriched 

in the 12s U2 snRNP (450 mM KC1) were 
devoid of SF3a. Mono Q chromatography 
can separate specific proteins from snRNPs 
(16), and it is likely that SF3a dissociates 
from U2 snRNP as a result of the salt 
conditions used during chromatographic 
fractionation. A similar observation has 
been made in the case of the [U4/U6.U5] 
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Fig. 2. Analysis of SF3a and U2 RNA after glycerol gradient sedimentation. Nuclear extract was 
sedimented in glycerol gradients containing 150 mM KC1 (A) or 500 mM KC1 (B) (14). Fractions 
(numbers above lanes) were analyzed for RNA content and cross-reactivity with the SF3a antibody 
(mAb66) and anti-PRP9 (aPRP9). N, nuclear extract. 
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triple snRNP-specific polypeptides (1 7, 
18). These proteins are functionally equiv- 
alent to a splicing activity (heat shock 
labile splicing factor) that is inactivated 
during the heat shock of HeLa cells. Heat 
shock also affects U2 snRNP by converting 
it to a particle of fast electrophoretic mo- 
bility (19). Thus, the integration of the 
spliceosomal snRNPs into splicing com- 
plexes could be regulated by the associa- 
tion-dissociation of snRNP-specific poly- 
peptides and splicing factors depending on 
the state of the cell. Both constitutive and 
alternative splicing could be influenced by 
the availability of such protein factors in 
different tissues or at different developmen- 
tal stages of an organism. 

We next tested whether purified SF3a 
could bind to U2 snRNP. Fractions con- 
taining SF3a or SF3b or both were incubat- 
ed with U2 snRNP followed by the addition 
of a radiolabeled oligoribonucleotide com- 
plementary to the 5' end of U2 RNA. This 

3 a r S F 3 b -  rSF3; 
2 6  SF3a 
(I)(I) e e (I) (I) 

1 2 3 4 5 6 7 8 9 1011 12 131415 

Fig. 3. Analysis of the interaction of SF3a and 
SF3b with 12s U2 snRNP. Nuclear extract and 
fractions containing U2 snRNP, SF3a, and 
SF3b as indicated above the figure were incu- 
bated with 0.5 pmol of a radiolabeled oligoribo- 
nucleotide complementary to the 5' end of U2 
RNA (20) in the presence (lanes 1 through 11) 
or absence of ATP (lanes 12 through 15). The 
fractions used were as follows: Nxt, 0.5 pI of 
nuclear extract; 17s U2 snRNP, 1 pl of a Mono 
Q fraction containing 175 U2 snRNP; 12s U2 
snRNP, 1 pI of a Mono Q fraction containing 
12SU2 snRNP (-15 pmol of U2 RNA); SF3,4 pI 
of a Mono Q fraction containing both SF3a and 
SF3b; SF3a, Superose 12-purified SF3a (3) in 
amounts of 145 ng (lane 5) and 7, 35, 70, 110, 
and 145 ng (lanes 7 through 11, respectively); 
and SF3b, 1 pI of Mono Spurified SF3b. Re- 
actions shown in lanes 13 and 15 contained 
2.75 pI of Mono S-purified SF3a. 

label allowed us to detect the RNA after 
native PAGE (20). A major and a minor 
form of U2 snRNP were detected in a 
nuclear extract in the upper third of the gel 
(Fig. 3) (21, 22). The 17s U2 snRNP 
present in the Mono Q-U1 fraction, used 
as a control, migrated slightly faster than 
the major form detected in the nuclear 
extract, whereas the U2 snRNP of the 
Mono Q-U2 fraction was detected at the 
bottom of the gel. When this fraction was 
incubated with SF3a, no change in electro- 
phoretic mobility was apparent, indicating 
that SF3a by itself does not stably bind to 
U2 snRNP. However, when U2 snRNP was 
incubated with a fraction that contained 
SF3a and SF3b (Mono QSF3), two bands 
of low electrophoretic mobility appeared, 
suggesting that SF3b might be required for 
the SF3a-U2 snRNP interaction. When 
U2 snRNP was incubated with partially 
purified SF3b, U2 RNA comigrated with 
the lower complex formed in the presence 
of the Mono Q-SF3 fraction. Titration of 
SF3a into this reaction mixture converted 
the complex to a slower migrating form. 
The latter form of U2 snRNP comigrated 
with the major U2 complex detected in 
nuclear extract and with 17s U2 snRNP. 
The interactions of SF3b and SF3a with U2 
snRNP appear to be specific for the U2 
particle because no change in the electro- 
phoretic mobility of U1 snRNP was ob- 
served in a similar experiment (I I). Thus, a 
component or components present in the 
SF3b fraction prepare U2 snRNP for an 
interaction with SF3a, consistent with the 
finding that both splicing factors are re- 
quired for presplicing-complex assembly 
(3). The finding that SF3b also participates 
in the formation of the 17s U2 snRNP 
suggests that this fraction contains some or 
all of the remaining 17s U2-specific pro- 
teins, although other possibilities cannot be 
ruled out. It should be possible to clarify 
this issue once SF3b is available in pure 
form. In any case, our results indicate that 
the assembly of the 17s U2 snRNP can be 
separated into at least two steps: the action 
of SF3b followed by the binding of SF3a. 

The association of SF3a and SF3b with 
the 12s U2 snRNP most likely corresponds 
to the previously described interaction of 
nuclear components with an in vitro-as- 
sembled U2 snRNP that results in the 
formation of a U2 particle of slow electro- 
phoretic mobility (23). A difference be- 
tween these two approaches, however, is 
the requirement for ATP to form the low- 
mobility U2 snRNP in n$lear extracts 
(23), whereas the interaction between the 
isolated components occurred in the ab- 
sence of ATP (Fig. 3). A similar discrepan- 
cy has been observed for the assembly of the 
[U4/U6.U5] triple snRNP (1 7). 

The ATP-independent formation of the 

active 17s U2 snRNP cannot account for 
the ATP requirement observed for presplic- 
ing-complex formation (24). Binding of U1 
snRNP to the 5' splice site as well as 
binding of U2AF to the polypyrimidine 
tract located upstream of the 3' splice site 
occur in the absence of ATP (5, 25). 
Hence, the interactions of U1 snRNP and 
U2AF with the pre-mRNA and the assem- 
bly of the 17s U2 snRNP most likely 
precede the association of mammalian 
splicing factor SC35 with the prespliceo- 
some, a reaction that is ATP-dependent 
(26) - 

The cross-reaction of anti-PEP9 with 
the 60-kD polypeptide of SF3a and the 17s 
U2 snRNP suggests that this polypeptide 
represents the human homolog of the yeast 
splicing protein PRP9. Both polypeptides 
also share significant homologies in their 
deduced amino acid sequences (27). An 
immunological relation to PRP9 has also 
been observed for SAP61 (28), a protein 
component of the mammalian presplicing 
complex (29). SAP61 corresponds to 
SF3a6', as shown by co-electrophoresis of 
these polypeptides in 2D gels (30), and 
SF3a66 and SF3alZ0 are identical to SAP62 
and SAP114, respectively. The protein 
SAP62 appears to be the human homolog 
of the yeast splicing protein PEP11 (28). 
Thus, SF3a activity can be correlated with 
two yeast proteins that are both required for 
the assembly of the ATP-dependent pre- 
splicing complex (9, 3 1 ). 

Genetic and physical interactions be- 
tween the yeast splicing proteins PRP5, 
PRP9, PRP11, and SPP91PEP2 1 that 
function at the onset of the splicing reac- 
tion have recently been established (32). 
With the caveat in mind that more proteins 
have been identified in mammalian cells 
than in yeast that function in presplicing- 
complex formation, SF3alZ0 could be relat- 
ed to either PRP5 or SPP91PRP21. Clon- 
ing of the cDNA encoding the 120-kD 
polypeptide should clarify this issue. Given 
the structural relation between the mam- 
malian and yeast splicing factors, it now 
becomes feasible to analyze whether this 
similarity extends to a conservation of their 
function during the splicing reaction. 
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Correspondence Between a Mammalian 
Spliceosome Component and an Essential Yeast 

Splicing Factor 

Maria Bennett and Robin Reed* 
None of the mammalian splicing factors that have been cloned corresponds to the yeast 
pre-messenger RNA splicing factors, the PRP proteins. Here, a generalizable strategy was 
used to isolate a complementary DNA encoding the mammalian spliceosome-associated 
protein (SAP) SAP 62. It is demonstrated that SAP 62 is the likely functional homolog of 
the yeast PRP11 protein. Both PRP11 and SAP 62 associate stably with the spliceosome, 
contain a single zinc finger, and display significant amino acid sequence similarity. Unlike 
PRP11, SAP 62 contains 22 proline-rich heptapeptide repeats at the carboxyl-terminus. 

Th e mammalian spliceosomal protein SAP 
62 first binds to pre-mRNA in the prespli-
ceosomal complex A (I) and cross-links to 
the 3 ' portion of the pre-mRNA in this 
complex (2). A functional 3 ' splice site and 
adenosine triphosphate (ATP) are required 
for this interaction, indicating that SAP 62 
may play an important role at the 3 ' splice 
site (I) . Originally SAP 62 was identified as 
one of more than 20 proteins that associate 
stably and in an ATP- and splice site-
dependent manner with highly purified spli-
ceosomes on two-dimensional (2D) gel 
electrophoresis (1). We have increased the 
scale of our spliceosome purification proce­
dure to obtain sufficient amounts of individ­
ual proteins from 2D gels for sequence 
analysis (3). On the basis of the peptide 
sequences, we have isolated a complemen­
tary DNA (cDNA) clone encoding SAP 62 
as well as cDNAs encoding other spliceo­
somal proteins (4) • In the predicted amino 
acid sequence of SAP 62 (Fig. 1A) one zinc 
finger of the C2H2 class (5) is present. The 
presence of this zinc finger leads us to 
predict that SAP 62 is a nucleic acid bind­
ing protein, consistent with the observation 
that SAP 62 can be cross-linked by ultravi-
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olet (UV) light to pre-mRNA in the spli­
ceosome (2). In contrast with the essential 
splicing factors cloned so far in mammals, 
U2AF (6) and the serine-arginine-rich 
family (7), SAP 62 lacks a ribonucleopro-
tein (RNP) binding domain of the RNA 
recognition motif (RRM) type (8) and does 
not contain an arginine-serine (RS) do­
main. 

The COOH-terminal third of SAP 62 is 
proline-rich (43%) and is organized into 22 
tandem heptapeptide repeats of the se­
quence GVHPPAP (Fig. IB). A similar 
number of heptapeptide repeats of the se­
quence YSPTSPS are present in the 
COOH-terminus of the large subunit of 
RNA polymerase II (RNAP II), and phos­
phorylation of serine and threonine residues 
in these repeats plays a critical role in 
RNAP II activity (9). A feature of the SAP 
62 repeats is their proline richness, which 
suggests that the repeats may be involved in 
protein-protein interactions. Although pro­
line richness is characteristic of several 
RNA and some DNA binding proteins (10, 
11), there is no precedent of conserved 
heptapeptide repeats in essential splicing 
factors or in other RNA binding proteins. 

We detected by Northern (RNA) blot 
analysis of HeLa cell mRNA with the SAP 
62 cDNA as a probe an mRNA of about 2 
kb (Fig. 2) (12). The deduced SAP 62 
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