A Genetic Linkage Map of the Mouse: Current Applications and Future Prospects

Neal G. Copeland,* Nancy A. Jenkins, Debra J. Gilbert, Janan T. Eppig, Lois J. Maltais, Joyce C. Miller, William F. Dietrich, Alix Weaver, Stephen E. Lincoln, Robert G. Steen, Lincoln D. Stein, Joseph H. Nadeau, Eric S. Lander*

Technological advances have made possible the development of high-resolution genetic linkage maps for the mouse. These maps in turn offer exciting prospects for understanding mammalian genome evolution through comparative mapping, for developing mouse models of human disease, and for identifying the function of all genes in the organism.

Historically, the mouse has been the mammal of choice for genetic analysis primarily because of its short gestation period and large litter sizes, the availability of inbred strains, and the ability to perform controlled matings. The mouse has also served as an important model for human genetic diseases such as anemias, autoimmunity and other immune dysfunctions, neurological disorders, birth defects, cancer, diabetes, atherosclerosis, and various reproductive anomalies. In recent years, the development of transgenic and embryonic stem cell technology has made it possible to ectopically express virtually any gene in any mouse tissue and to create targeted germline gain-of-function and loss-of-function mutations. Just in the past year, the ability to introduce into the mouse germ line yeast artificial chromosomes that carry several hundred kilobases of genomic DNA has opened unparalleled opportunities for genome analysis and for the development of new mouse models of human disease. It is not surprising, therefore, that the goals of the Human Genome Project include the development of high-resolution genetic and physical maps of the mouse, leading to the eventual identification and functional characterization of all genes in the organism.

As with human genetic maps, mouse genetic maps serve two distinct goals. First, they provide a tool for genetic analysis and manipulation—including mapping of mutations causing biologically interesting traits, chromosomal localization of cloned genes, and the construction of animals with defined genotypes. Second, they facilitate the development of the physical map, providing a well-ordered scaffold onto which can be placed "contigs" of overlapping clones.

Gene mapping in the mouse began early in the first part of this century when J. B. S. Haldane, A. D. Sprunt, and N. M. Haldane reported in the *Journal of Genetics* that two coat color mutations, albino and pink-eyed dilution, were linked (1). Conceptually, mouse mapping changed little from the time of Haldane to the early 1970s and consisted primarily of genetic linkage analysis of phenotypic deviants. As a result, the pace of gene mapping proceeded relatively slowly, and the number of mapped loci roughly doubled every decade (2).

In situ hybridization and somatic cell genetics have been useful in the mouse, but these techniques have played a lesser role in mouse mapping than in human gene mapping. Both techniques rely on the ability to discriminate cytologically between chromosomes. This is difficult in the mouse because normal mouse chromosomes are all acrocentric (human chromosomes are metacentric) and show a continuous gradation in size. In addition, somatic cell hybrids that carry single mouse chromosomes or chromosomes with deletions or translocations are rare, which complicates subchromosomal gene assignments by this approach. Finally, and probably most importantly, it was usually possible in mice to find a variant that could be genetically mapped with a specific cross, which was not possible in humans.

The explosion in mouse gene mapping in recent years was sparked by the advent of new types of genetic markers. Recombinant DNA techniques allowed the identification and mapping of DNA polymorphisms (3), which have provided an abundant source of biologically interesting loci for the mouse map. DNA markers were initially scored as restriction fragment length polymorphisms

SCIENCE • VOL. 262 • 1 OCTOBER 1993

(RFLPs) on Southern (DNA) blots; more recently, many have been developed that can be assayed by the polymerase chain reaction (PCR).

Interspecific Crosses

In addition to these new markers, the development of new types of crosses has played a key role in the dramatic explosion in mouse gene mapping. Until the mid-1980s, mouse gene assignments tended to rely on two- and three-point crosses between laboratory strains or recombinant inbred strains (4). However, these approaches are limited by the low degree of allelic variation among laboratory strains. Determining the overall order of genes in the mouse is also problematic if only a handful of genes are informative in any given cross; a composite map can be inferred only indirectly.

These problems were overcome with the use of interspecific crosses, which involve a laboratory strain and a distantly related species of Mus. Interspecific crosses exploit the genetic diversity inherent between wild mouse species and common laboratory strains. Most genes or DNA sequences are polymorphic in an interspecific cross and can thus be placed relative to other genes in a single interspecific cross. DNA from a single cross is sufficient to permit mapping of thousands of genes by RFLPs or tens of thousands of genes by PCR. Because many genes can be mapped simultaneously, gene order is easy to define, at least within a single cross. The use of interspecific crosses for mouse mapping was pioneered by Francois Bonhomme, Philip Avner, and Jean-Louis Guénet in the late 1970s and mid-1980s (5, 6). Since that time, many laboratories have developed and made use of interspecific crosses for mouse mapping, and now most mouse genes are mapped in interspecific crosses.

One of the most genetically divergent Mus species that still interbreeds with common laboratory mice to produce at least one sex that is fertile is Mus spretus (6). For this reason, M. spretus has become the mouse of choice for interspecific crosses. Notwith-standing its advantages, there are two drawbacks to using M. spretus: (i) F_1 males are

N. G. Copeland. N. A. Jenkins, and D. J. Gilbert are with the ABL–Basic Rosearch Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, MD 21702. J. T. Eppig, L. J. Maltais, and J. H. Nadeau are with The Jackson Laboratory, Bar Harbor, ME 04609. J. C. Miller, W. F. Dietrich, A. Weaver, S. E. Lincoln, R. G. Steen, L. D. Stein, and E. S. Lander are with the Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142. E. S. Lander is also with the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239.

^{*}To whom correspondence should be addressed.

sterile and thus only female F_1 mice can be used as parents in a backcross for gene mapping, which prevents the study of male meiosis; and (ii) the wide divergence between M. spretus and the laboratory mouse may have permitted the accumulation of small chromosomal inversions that could suppress recombination and possibly hamper the fine-structure genetic mapping needed in positional cloning. To overcome these limitations (or at least to hedge their bets), many laboratories have now started also using Mus musculus castaneus or Mus musculus molossinus as the wild mouse parent. These mice are somewhat more closely related to the laboratory mouse, belonging to the same species but a different subspecies. Both sexes are fertile in the F_1 progeny of such intersubspecific crosses. Moreover, the degree of polymorphism in such crosses is very high.

A problem that has not yet been fully resolved is how to combine mapping data generated by different laboratories using different crosses. A partial solution to this problem is to include a common set of anchor loci among the probes mapped in each cross. Mapping data can then be combined with respect to the anchor loci. Toward this end, the mouse mapping community has defined a common set of anchor loci for use in gene mapping. Anchor loci have been chosen to be evenly spaced every 10 to 20 centimorgans (cM) in the mouse genome, to be highly polymorphic within even intraspecific crosses, to be easily typed by PCR, and to be well mapped in interspecific crosses (7). Of course, although anchor data provide firm reference points between maps, the order of loci between the anchors can be only indirectly inferred on the basis of distances; such inferences can be unreliable because of variation in recombination frequencies among crosses.

The Mouse Genetic Map

Current genetic maps in mammals are generally composed of four types of loci: mutations that cause phenotypic deviations, isozyme loci, cloned genes, and highly polymorphic anonymous DNA segments. These categories overlap in some cases and will eventually merge as the entire mouse genome is mapped and cloned. Each type of locus plays an important role in genomic analysis. Mutant loci have been mapped throughout the century, and up-to-date maps have been published (7). Such maps point to biologically interesting genes but alone shed no light on the biochemical basis of the defect. Cloned genes provide important biological information and are especially useful in comparative mapping relating the mouse, human, and other mammalian genomes. However, gene probes can be tedious to genotype and are often not polymorphic in crosses between closely related strains. Highly polymorphic DNA segments—including minisatellites, microsatellites, and single-strand conformation polymorphisms—provide little biological information, but they are often informative in crosses between closely related strains and many can be rapidly mapped by PCR typing.

The wall chart that appears in this issue represents the integration of two DNA marker maps: a gene-based map with 1098 loci, which focuses on mouse-human comparative mapping, and a simple sequence length polymorphism (SSLP) or microsatellite map containing 1518 loci. Many genes and anonymous markers mapped in the mouse but not in humans have been omitted from the chart because of space constraints. The map shows many newly reported loci and also presents the first integration of these two mouse maps.

Gene-based map. The framework for the gene-based map is an interspecific backcross map being developed at Frederick, Maryland (8), which consists of the loci shown in black on the chart. The Frederick map was generated from crosses of (C57BL/6J \times M. spretus)F₁ × C57BL/6J mice. Cloned DNA probes were hybridized to Southern blots of DNA from the two parental strains digested with a variety of restriction enzymes to identify RFLPs. The probes were then hybridized to Southern blots of restriction-digested DNAs from the backcrossed mice in order to follow the inheritance of M. spretus-specific RFLP alleles in the progeny. For the construction of the map, the progeny were first typed for a series of markers whose positions had been accurately established on the mouse linkage map in other laboratories. These loci served as anchors for placing new genes on the evolving map. As each additional probe was mapped, the gene order was determined by comparing the new RFLP segregation patterns to the known patterns and finding the position that minimized the number of crossovers required to explain the new segregation pattern. Because all the loci were mapped in a single backcross, the relative position of each of these loci was established with a high degree of confidence. The gene orders are supported by a likelihood ratio of 1000:1, except for underlined loci whose position is less well established. Underlined loci represent loci for which key recombinant animals have not yet been typed. Mouse nomenclature is in flux and the chart conforms to our understanding of the manner in which the databases are being changed.

In total, the current Frederick map contains over 1300 loci distributed over all mouse chromosomes; the map on the chart

SCIENCE • VOL. 262 • 1 OCTOBER 1993

shows 643 of these loci. Virtually all loci, both published and unpublished, that have also been mapped in the human genome (indicated in bold type) are included because the gene-based map is meant to emphasize the current state of human-mouse comparative mapping. One hundred eighty-one additionally published loci mapped at Frederick that have not yet been mapped in the human genome are also included to help in integrating the Massachusetts Institute of Technology (MIT) SSLP map with the Frederick map (indicated in regular black type). Finally, the chart also contains virtually all additional genes and DNA segments that have been mapped in the human and the mouse genomes (but not in the Frederick cross) as reported in the 1993 Mouse Chromosome Committee Reports (indicated in red type) (7). A few DNA segments, particularly those mapping in the proximal region of mouse chromosome 17, were omitted from the chart because of space constraints. The loci reported in the committee reports were mapped by many different laboratories using a variety of different techniques (7). Because these loci were mapped in many different crosses, the position of these loci on the Frederick framework map can be only indirectly inferred from available mapping information. The locations of these loci on the map should thus be considered provisional.

The Frederick framework map shown in the chart has been aligned with respect to the centromere by mapping various proximal loci (indicated by brackets) in a separate interspecific cross in which the inheritance pattern of cytologically visible subcentromeric repeats had been established (9). Because the mapping was performed in a separate cross, the distances are not perfectly comparable and, for a few chromosomes, some appear to extend 1 to 3 cM beyond the centromere. When telomere probes are developed, it will be possible to define the complete extent of the genetic map.

SSLP map. The SSLP map consists of polymorphic genetic markers defined by PCR assays, each involving a specific pair of primers flanking the site of a di-, tri- or tetranucleotide repeat sequence having a variable length in differing mouse strains. SSLPs or microsatellite polymorphisms were first described by Weber and May (10) in humans and were first studied by Todd and colleagues (11) in mice. They have rapidly become a genetic marker of choice for mammalian genetics for a number of reasons, including the ease of finding such markers [the most frequent simple sequence repeat in mammalian genomes is $(CA)_n$, which occurs roughly 100,000 times in the mouse genome with an average spacing of 1 every 30 kb], their high rate of polymorphism even among closely related individuals and strains, and the fact that they can be disseminated by simply publishing the primer sequence.

The SSLP map shown in the chart is the result of an ongoing project (12) at the Whitehead Institute/MIT Center for Genome Research (WI/MIT-CGR) aimed at building a dense genetic and physical map of the mouse genome. Most of the genetic markers are $(CA)_n$ repeats. Some 90% of the markers were developed by screening a small-insert library of mouse genomic DNA to find $(CA)_n$ repeat-containing clones, determining their DNA sequence, and choosing PCR primers flanking the repeat (with the use of a computer program designed to identify primers that would work under uniform PCR conditions). The remaining 10% were based on simple sequence repeats that occurred in published gene sequences and thus are gene-based markers. All the simple sequence repeats were tested for polymorphism among 12 inbred mouse strains. Overall, they showed a polymorphism rate of about 90% in interspecies or intersubspecies comparisons and a polymorphism rate of about 50% in intraspecies comparisons. Thus, these highly polymorphic markers are suitable for typing virtually any mouse cross, whether interspecific or among laboratory strains.

The SSLPs were all genotyped in a single $(C57BL/6J-ob \times CAST/Ei)F_2$ intersubspecific cross (CAST/Ei is a strain of M. m. castaneus). The genetic map was built by analyzing the inheritance patterns with the MAPMAKER computer program (13); for this, those SSLPs taken from genes with known chromosomal position served as anchors for alignment with the previous mouse maps. Because all the loci were analyzed in a single cross, their relative positions were established with a high degree of confidence. The gene orders are supported by a likelihood ratio of 1000:1, except for underlined loci whose position is less well established. These underlined loci represent markers for which there is not full genotypic information. The data were subjected to a mathematical error-checking procedure (14) to identify likely typing errors and have been extensively rechecked. Because the mapping cross involved only about 100 meioses, markers are clustered in "bins" whenever no crossovers occurred in the meioses studied; the fine-structure order of these markers can be established by studying more meioses or by physical mapping. The spacing between markers is reasonably close to random, although mathematical tests can detect a small but statistically significant excess of larger intervals that may correspond to recombinational hotspots.

The SSLP map in the chart showing 1518 loci was current as of 1 July 1993. As

this article goes to press, the total number of SSLP loci is already more than 2000. Taking advantage of the ability to distribute SSLPs simply by publishing their sequence, WI/MIT-CGR maintains an electronic mail (e-mail) server to provide up-to-date information about the map, including the locations, primer sequences, and allele sizes of all SSLPs. In addition, GenBank names for SSLP markers taken from GenBank are available via the e-mail server. To obtain an e-mail query form and instructions, send an e-mail message with the single word *help* to genome_database@genome.wi.mit.edu.

Integration and comparison of maps. The two maps play complementary roles in mouse genetics: the SSLP map provides markers now routinely used for the genetic analysis of crosses, whereas the gene-based map shows the known genes in a region, thereby suggesting likely candidate genes for a mutation and indicating correspondence to the human genome. With the aim of merging this information into a single comprehensive view of the mouse genome, the Frederick and Whitehead groups recently undertook a project to integrate the two maps. In order to do so, 254 of the SSLPs developed at WI/MIT-CGR were genotyped in a subset of 46 progeny from the Frederick interspecific backcross. SSLP markers that were relatively well spaced throughout the mouse genome were chosen for the integration. On the basis of their inheritance patterns, the SSLPs could be assigned to intervals in the Frederick map that were defined by the closest flanking crossovers in the progeny scored-typically, a region of about 2 cM. Although this does not establish fine-structure local order, it establishes 254 ties between the two maps (shown by green lines connecting the SSLP map with the chromosome diagram in the center)roughly one SSLP marker every 6 cM.

It is interesting to compare certain features of the maps, such as genetic length. The genetic length of the mouse genome has been estimated to be about 1600 cM, and the chromosome lengths in the chart are drawn to scale on the basis of this estimate. However, the frequency of recombination between loci is not constant but may depend on the cross and the sex of the individual in which meiosis occurs (15). Overall, although not thoroughly examined for mice, recombination distances appear larger in female than male meiosis, but for some chromosomal regions male recombination distances are greater (16).

In the Frederick cross, the total genetic length is estimated to be only about 1350 cM. Given the large number of markers on the map, the Frederick map would be expected to cover nearly the entire genome. Yet, each chromosome appears shorter than predicted, with the exception of chromo-

SCIENCE • VOL. 262 • 1 OCTOBER 1993

some 11. The discrepancy may be even greater than it seems because genetic distance was measured only in female meiosis, which shows more recombination as a rule. It is possible that small inversions and other rearrangements between C57BL/6J and M. spretus chromosomes may suppress recombination and result in a smaller map, although only one instance of a structural difference has been documented so far, a small inversion in the proximal region of M. spretus chromosome 17 (17). In the SSLP map, the genetic length is somewhat larger, although still less than 1600 cM. The total length is estimated to be about 1450 cM, with genetic distances in this cross representing the average of male and female meiosis in an intersubspecific cross. There may also be some recombinational suppression in this cross as well. Alternatively, it may be that the conventional estimate of 1600 cM is simply 10% too high.

Closer comparison suggests possible regions of recombinational suppression. One clear example is the interval from D5Mit19 to D5Mit68, which measured 24 cM in the SSLP cross but was compressed to only 6 cM in the Frederick cross; this would be consistent with the occurrence of a small inversion within this interval in M. *spretus* compared to C57BL/6J and CAST/Ei. More thorough examination of recombinational suppression will require typing markers in various interspecific, intersubspecific, and intraspecific crosses. Fluorescence in situ hybridization may then prove useful in confirming candidate inversions.

Transmission ratio distortion, the occurrence of non-Mendelian ratios for some loci, is often observed in interspecific crosses in animals and plants. In the mouse, it was first reported in a (C3H/HeHa \times M. spretus) $F_1 \times M$. spretus backcross in which there was a deficiency of backcross males carrying the intact X chromosome from C3H/HeHa (18). The mechanism (or mechanisms) responsible for transmission ratio distortion are not understood but may result from differential embryo survival because of different combinations of progenitor strain alleles. In the Frederick (C57BL/ 6J × M. spretus) interspecific backcross, transmission ratio distortion was observed for chromosomes 2, 4, and 10 (19), with the distortion consistently involving an excess of M. spretus alleles relative to C57BL/ 6J alleles inherited by backcross mice. By contrast, the (C57BL/6J × CAST/Ei) intersubspecific intercross showed no statistically significant evidence of transmission distortion. It is not clear whether this difference reflects greater incompatibility between C57BL/6J and M. spretus alleles, but the mapping and cloning of the loci that cause the transmission ratio distortion seem feasible.

Applications of the Map

Mouse maps, such as those depicted on the chart, have many different applications for genome research. Although their uses are too numerous to outline here, we highlight here some of the more important applications of the maps for current and future genome research.

Comparative mapping. Of the 2616 loci listed in the chart, 917 have homologs that have been mapped in humans (Table 1). These loci mark 101 segments of conserved linkage homology. On the chart, these conserved linkages are shown as colored segments within each chromosome map, and a summary of these results is shown in Fig. 1. The total length of all conserved autosomal segments is 911 cM, which indicates that $\sim 61\%$ of the genome is already accounted for in the current comparative map. Correcting for the fact that these conserved segments extend some distance beyond their current bounds (20), we estimate that approximately 1194 cM, or 80% of the mouse autosomal genome, is accounted for in the comparative map.

In 1984, Nadeau and Taylor calculated that the average length of a conserved autosomal segment in mice is ~ 8.1 cM (20). This calculation was based on 83 homologous loci marking 13 conserved segments and on several assumptions concerning the distribution of recombination and rearrangement breakpoints. By applying the same calculation to the map shown in the chart, which represents roughly a ~15-fold increase in data, the current average length of a conserved autosomal segment is 8.8 cM. which is not statistically different from the previous estimate. This remarkable consistency strongly suggests that the assumptions that underlie the calculation are correct.

Several examples exist of linkage conservation across a human centromere—for example, the region of human chromosome 20 homology on mouse chromosome 2 and the region of human chromosome 17 homology on mouse chromosome 11. Whether these represent ancestral linkages or derived rearrangements remains to be determined through more detailed comparative mapping studies.

The large number of conserved segments shown in the current map suggest that multiple chromosomal rearrangements have occurred since the divergence of the lineages leading to humans and mice. On the basis of the data in the chart, we calculate that approximately 150 rearrangements have occurred since this divergence (20). These rearrangements likely have occurred through several different mechanisms, including chromosome translocations, inversions, insertions, and other complex rearrangements. Such rearrangements have even led to changes in gene order within conserved segments (Table 1).

An important application of the comparative map is the transfer of linkage information and genome resources from 'map-rich" to "map-poor" species (21, 22). By mapping a well-defined set of evolutionarily conserved loci across mammalian genomes, it should be possible to use these conserved loci as reference points to transfer linkage information from "map-rich" species such as humans and mice to "mappoor" species such as cow, pig, and sheep and thereby expedite genome research. This is somewhat analogous to using anchor loci to combine linkage data within a single species. Such a set of reference loci for comparative mapping in mammals was recently proposed (22).

Another important application of the comparative map involves analysis of complex traits. Susceptibility to many important genetic disorders is controlled by more than one gene, and the identification of these genes is often easier in mice than in humans. Once a candidate disease gene or disease region is identified in the mouse, the homologous genes or regions in humans can be screened to see if they are linked to the corresponding human genetic disease.

Genome evolution and the origin of multigene families. Multigene families are thought to be generated by a number of different mechanisms. These include (i) reverse transcription, a process likely responsible for pseudogene formation; (ii) tandem gene

duplication, which is thought to arise from unequal crossing-over; and (iii) genome duplication. Genome duplication could involve chromosomal segment duplication, chromosome duplication, or whole genome duplication. It is believed that the eukaryotic genome has undergone multiple genome duplication events, with the most recent duplication event occurring approximately 300 million years ago, long before the divergence of the lineages leading to the mouse and human genomes (23). As more and more multigene families are mapped in the mouse as well as other mammalian species, it should be possible to begin to piece together the nature of the events giving rise to multigene families. Like traditional comparative maps, maps of duplicated or paralogous chromosomal segments can also be used to predict linkages and identify candidate disease genes.

A recent example of the power of the mapping approach for the study of the evolution of mammalian multigene families can be found in Wilkie *et al.* (24), who studied the evolution of the mammalian G α protein subunit multigene family. In this study, Wilkie and co-workers showed that members of two of the four subclasses, G₁₂ and G_s, of G α protein subunit genes probably arose by successive genome duplication of a single G α progenitor gene, whereas members of the G_i and G_g subclasses es probably arose from successive genome duplication of a tandem G α gene pair. Another excellent example of such map-

Fig. 1. The Oxford grid showing the locations of homologous genes and anonymous loci in humans and mice. Each colored cell in the matrix indicates at least one locus that has been mapped to the respective chromosome in both the mouse and human genomes.

ARTICLE

Table 1. Human chromosomal location of genes and anonymous DNA loci mapped in both humans and mice.

			· · · · · · · · · · · · · · · · · · ·						·		
Mouse	Hur	nan	Mouse	Hu	man	Mouse	Hu	man	Mouse	Hu	man
Symbol	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Logation	Symbol	Symbol	
	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Location
	Chromoson	ne 1	Cd44	CD44	11p13	Pax5	PAX5	9013	Cd8a	CD8A	2n12
Col9a1	COL9A1	6q12-q14	Cas1	CAT	11p13	Ggtb	GGTB2	9p21-p13	Cd8b	CD8B1	2p12
Bpag1	BPAG1	6p12-p11	Wt1	WT1	11p13	Galt	GALT	9p13	Fabp1	FABP1	2p11
Col3a1	COL3A1	2q31-q32.3	Fshb	FSHB	11p13	Aco1	ACO1	9p22-q32	Tofa	TGFA	2 2p13
Gis	GLS	2q32-q34	Kcna4	KCNA4	11p14	Cd72	CD72	9p	ll5r	IL5RA	3p26-p24
Ctla4	CTLA4 CD28	2q33 2q33	Rbtn2	RBTNL1	11p13 11p13	Lv Orm1	ALAD OPM1	9q32-q34	Rho Ref1	RHO RAE1	3q21-q24
dh1	IDH1	2q32-qter	Blvr	BLVR	7p14-cen	Orm2	ORM2	9q32	ltpr1	ITPR1	3p23
Creb1	CREB1	2q32-q34	Actc1	ACTC	15q11-qter	Hxb	HXB	9q32-q34	Alox5	ALOX5	10
Mtap2	CRYGA	2q34-q35 2q33-q35	Sgne1	SGNE1	15q13-q14 15q13-3-q14	Cd30I	CD30L	9q33 9p23	Ret	RET	10q11.2
Mylf	MYL1	2q32.1-gter	Thbs1	THBS1	15q15	lfa	IFN1	9p22	Glut3	GLUT3	12013.3
Fn1	FN1	2q34-q36	Sdh1	SORD	15pter-q21	lfb	IFNB1	9p22	Gnb3	GNB3	12p13
Tnp1	TNP1	2q35-q36	Ltk Enh4 2	LTK	15 15a15	Jun	JUN	1p32-p31	Cd27	CD27	12p13
Inha	INHA	2q33-qter	B2m	B2M	15q21-q22.2	C8b	C8B	1p32	Hcph	PTPN6	12p13
Des	DES	2q35	Hdc	HDC	15	Tal2	TAL1	1p32	Cd4	CD4	12pter-p12
Ugt1a1 Pav2	UGT1A1	2q37 2q35-q37		IL1A	2q12-q21 2q13-q21	Cyp4a	CYP4B1	1p34-p12 1p34	Tpi	TPI1	12p13
Acro	CHRNG	2q32-qter	Glvr1	GLVR1	2q11-q14	Glut1	GLUT1	1p35-p31.3	Gapd	GAPD	12013
Col6a3	COL6A3	2q37	Pdyn	PDYN	20pter-p12	Ssbp	SSBP	1p	Fgf6	FGF6	12p13
Acrd		2q33-qter	Prn	PPRNP	20pter-p12	Lmyc1	MYCL1	1p32	Ccnd2	CCND2	12p13
Sag	SAG	2034-037	Avp	AVP	20 20p13	Csfor	GJA4 CSF3R	1p30-q12 1p35-p34.3	Pro	PBH1	12013.2
Bcl2	BCL2	18q21.3	Oxt	OXT	20p13	Col8a2	COL8A2	1p34.3-p32.3	Ldh2	LDHB	12p12.2-p12.1
Planh2	PLANH2	18q21.3	ltp	ITPA	20p	Lck	LCK	1p35-p32	lapp	IAPP	12p12.3-p11.2
En1	INHBB FN1	20en-013 2013-021	Chab	CHGB	20pter-p12 20pter-p12	⊢gr	FGH LAP18	1p36.2-p36.1 1p36.1-p35	Kras2	KBAS2	12p13 12p12 1
C4bp	C4BPA	1q32	Bmp2	BMP2	20p12	Elp1	EPB41	1p34.2-p33	Pthlh	PTHLH	12p12.1-p11.2
Ren1	REN	1q32	Nec2	NEC2	20p11.2	Fuca	FUCA1	1p35-p34		•	
ll10 Atn2b4	ATP2B4	1 1025-032	Pax1	PAX1 THRD	20p11.2 20p12-cen	Htrid Ako2		1p36.3-p34.3 1p36.1-p34	Pve	Chromosoi PVS	19a13.2
Pep3	PEPC	1q25	Pygb	PYGB	20p	Pnd	PND	1p36	Zfp36	ZFP36	19q13.1
Myog	MYOG	1q31-q41	Hck	HCK	20q11-q12	Tnfr2	TNFR2	1p36.3-p36.2	Pkcc	PRKCG	19q13.4
Cd45	PTPRC	1q31-q32	Ghrf	GHRH	20p12 or 20q11.2-q12 20cep-g13 1	Eno1	ENO1	1p36 1g22-g24	D7H19S51 Tofb1	D19S51	19q13.3 19q13.1
Ncf2	NCF2	1cen-q32	Src	SRC	20q11.2-q13	Pgd	PGD	1p36.3-p36.13	Otf2	OTF2	19
Lamb2	LAMB2	1q31	Rpn2	RPN2	20q12-q13	Gnb1	GNB1	1p36-p31.2	Cea	CEA	19q13.2
Abli At3	ABL2	1q24-q25 1g23-g25 1	Top1	TOP1 PLC1	20q12-q13.1 20q12-q13.1		Chromoso	ne 5	Cyp2a Cyp2b	CYP2A CYP2B	19q13.2 19q13.2
Sele	SELE	1q22-q25	Ada	ADA	20q12-q13.11	Gnai1	GNAI1	7q21-q22	D7H19S19	D19S19	19q13.2
Cf5	F5	1q21-q25	Cebpb	CEBPB	20q13.1	Hgf	HGF	7q21.1	Xrcc1	XRCC1	19q13.2
Atp1b1 Solo	ATP1B1	1q22-q25	Pck1	PCK1 GNAS1	20q13.31 20q13 2-q13 3	Pgy1	PGY1 PGY2	7q21 7q21	Ckmm		19q13.3
Sell	SELL	1023-025	Acra4	CHRNA4	20010.2-010.0	Sri	SRI	7	Atpla3	ATP1A3	19q13.2
Otf1	OTF1	1cen-q32				En2	EN2	7q36	Ercc2	ERCC2	19q13,3
Cd3z	CD3Z	1q22-q25		Chromosor	ne 3	ll6	IL6	7p21-p15	D7H19F11S1	D19F11S1	19q13.1
Rxra	RXRG	1023-025	Crh	CRH	8q12-q13 8q13	D5H4S43	D4S43	4p16.3	Cebp	CEBPA	19013.1
Fcgr2	FCGR2A	1cen-q32	Car1	CA1	8q13-q22.1	Msx1	MSX1	4p16.3-p16.1	Mag	MAG	19q13.1
Fcgr3	FCGR3	1q23	Car2	CA2	8q13-q22.1	D5H4S115	D4S115	4p16.3	Cd22	CD22	19q13.1
Mpp Apoa2	APOA2	1021-023	Giut2	GLUT2	3a26.1-a26.3	D5H4S62	D4S62	4p16.2-16.1	Bcl3	BCL3	19a13.1-a13.2
Cd48	CD48	1q21.3-q22	Evi1	EVIÍ	3q24-q28	Qdpr	QDPR	4p15.3	Pep4	PEPD	19q12-q13.2
Fcer1g	FCER1G	1q23	Fim3	FIM3	3q27	D5H4S76	D4S76	4p16.2-15.1	Hrc	HRC	19q13.2-q13.3
Atplaz Cm	CRP	1921-923	Fof2	FGF2	4q25-q31 4a25-a27	Idua	IDUA	4p16.2-15.1 4p16.3	Bras	RRAS	19013.3-ater
Fcer1a	FCER1A	1q23	112	IL2	4q26-q27	Pep7	PEPS	4p11-q12	Lhb	LHB	19q13.3
Sap	APCS	1q23	Mme	MME	3q21-q27	Pgm1	PGM2	4p14-q12	Snrp70	SNRP70	19q13.3
Adoro	ADPRT	1041-042	Faa	FGG	4q25-q54.5 4q28	Gabra2	GABRA2	4p13-p12	Kcnc1	KCNC1	11p15
Eph1	EPHX	1p11-qter	Rnulb1	RNU1	1p36.1	Cncg	CNCG	4p14-p13	Myod1	MYOD1	11p15
Tgfb2	TGFB2	1q41	Cacy	CACY 1	1q21-q25	Pdgfra	PDGFRA	4q11-q12	Ldh1	LDHA	11p15.1-p14
Cu34 Cr2	CB2	1q12-qiti 1q32	Fcor1	FCER1G	1023	Fik1	KDR	4g12	Tph	TPH	11p15.1-p14.3
Мср	MCP	1q32	Fdpsl1	FDPSL1	1q24-q31	Csnb	CSN2	4pter-q21	Saa	SAA	19q13.1
	C1		Gba	GBA	1q21	Alb1	ALB	4q11-q13	p D7N/sec	P	15q11-q12
ltih2	ITIH2	10n15	Ntrk1	NTRK1	1023-031	Masa	GRO1	4q11-q13 4a21	Gabrb3	GABRB3	15011.2-013
Gata3	GATA3	10p15	Lmna	LMNA	1cen-q32	Bmp3	BMP3	4p14-q21	Snrpn	SNRPN	15q11-q13
Vim Bmi1		10p13	li6r	IL6R	1q21 1g21	Fgf5	FGF5	4q21 4p16 3	Gabra5	GABRA5	15q11-q13 15q11-q12
Gad2	GAD2	10p13-p11.2	Cdla	CD1A	1q22-q23	Spp1	SPP1	4q11-q21	lgf1r	IGF1R	15q25-qter
ll1m	IL1RN	2q14.2	Flg	FLG	1q21	Tcf1	TCF1	12q24.3	Fur	PACE	15q25-q26
Pax8 Surf	PAX8	2q 9033-034	Hist2	H3F2 G IA5	1q21 1n36-012	Bcd1	ACADS	12q22-qter 7g22	Fes Fab	FES FAH	15q25-qter 15q23-q25
Tan1	TAN1	9q34.3	Cd2	CD2	1p13	СурЗ	CYP3	7q21.3-q22.1	ldh2	IDH2	15q21-qter
Dbh	DBH	9q34.3	Hsd3b	HSDB3	1p13.1	Zp3	ZP3A	7	Tyr	TYR	11q14-q21
Spna2	SPTAN1	9q34.1	Tshb		1p13 1p13	Epo Gab2	EPO GNB2	7q21.3-q22.1	Mod2	ME2 OMP	6p25-p24 11o14-o21
ASS I Ab1	ABL1	9q34.1 9q34.1	Nafb	NGFB	1013	Ache	ACHE	7q21.3-q22.1 7q22	Pth	PTH	11p15.2-p15.1
Ak1	AK1	9q34.1	Ampd1	AMPD1	1p13	Mor1	MDH2	7cen-q22	Rbtn1	RBTN1	11p15
D2H9S46E	D9S46E	9q34	Atpla1	ATP1A1	1p13	Pdgfa	PDGFA	7p22	Calc		11p15.2-p15.1
rnc Gm78	GBP78	9q33-q34.1	Cd53	CD53	1p13.3 1p31-p12	Fit1	FLT1	13012	Pkcb	PRKCB	16p12
Gsn	GSN	9q33	Gnai3	GNAI3	1p13	Atrc1	ATRC1	13q12.3	ll4r	IL4R	16p12.1-p11.2
His1	VIS1	2q14-q21	Gnat2	GNAT2	1p13		Chromoson		Spn	SPN	16p11.2
itab6	ITGB6	2431-432 2	Amv2	AMY2	1p21-p13	Cola2	COL1A2	7q21.3-q22.1	Oat	OAT	10026
Scn2a	SCN2A	2q23	Amy1	AMY1	1p21	Tac2	TAC2	7q21-q22	Cyp2e1	CYP2E	10
Scn3a	SCN3A	2q23	Cf3	F3	1p22-p21	Met	MET	7q31	Mgmt	MGMT	10q26
GCG Itga6	ITGA6	∠q36-q37 2	vcam1 Pxmn1	PXMP1	1p32-p31 1p22-p21	Cftr	CFTR	7q31.3	Th	TH	11015.5
Gad1	GAD1	2q31	Fabpi	FABP2	4q28-q31	Сра	CPA1	7q32	H19	D11S813E	11p15.5
Acra	CHRNA1	2q24-q32	Ank2	ANK2	4q25-q27	Pax4	PAX4	7q22-qter	lgf2	IGF2	11p15.5
Creb1 Hoyd	GREB1 HOXD	2q32-q34 2q31-q37	Egt Nfkb1	EGF NFKB1	4q25 4q24	Ptn	PTN	/q33-q34 7a33-a34	Hras1 Fof3	HHAS FGF3	1 1015.5 1 1013
Evx2	EVX2	2q31-q32	Adh1	ADH1	4q21-q23	Braf	BRAF	7q34	Fgf4	FGF4	11q13.3
Dix2	DLX2	2cen-q33	Adh3	ADH3	4q21-q23	Try1	TRY1	7q32-qter	Ccnd1	CCND1	11q13
itga4 Itgav	ITGA4	2q31-q32 2q31-q32	Rpe65	HPE65	1031	Cic1	I CHB	/q35 7g32-gter	Drd4	DHD4	11p15.5
Sfpi1	SPI1	11p12-p11.2		Chromoson	ne 4	Evx1	EVX1	7p15-p14	1	Chromosor	ne 8
Cf2	F2	11p11-q12	Lyn	LYN	8q13	Npy	NPY	7pter-q22	Atp4b	ATP4B	13q34
Hag1 D2Hou1	RAG1 D11S102	11p13 11p13	Mos Calb1	MOS CALB1	8021.3-022 1	Gac	HUXA GCTG	/p15-p14 7pter-p14	Fcer2a	INSH FCFR2	19p13.3 19p13.3
Rag2	RAG2	11p13	Cga	CGA	6q14-q21	lgk	IGKC	2p12	Polb	POLB	8p12-p11
-					-	• •		-	*		-

SCIENCE • VOL. 262 • 1 OCTOBER 1993

61

									1		
Mouse	Hum	nan	Mouse	Hum	an	Mouse	Hum	an	Mouse	Hun	nan
Symbol	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Location
Ank1	ANK	8p21.1-p11.2	ltgb2	ITGB2	21q22.3	Hspa2	HSPA2	14q22-q24	Hoxc	нохс	12q12-q13
Plat	PLAT	8p12-q11.2 8p12	Pfkl Gos15	PFKL GNA15	21q22.3	Pygi May	PYGL	14q11.2-q24.3	ltgb7	ITGB7	12q13.1
Defcr	DEF1	8p23-p22	Gna11	GNA11	19p13.3	Spnb1	SPTB	14q24.1-q24.2	Spl1	SP1	12q
Gr1	GSR	8p21.1	Tcfe2a	TCF3	19p13.3	Fos	FOS	14q24.3		Chromosom	- 10
Sovr	LPL	8 8p22	Pah	PAH	19p13.3 12a22-24.2	Tafb3	TGFB3	14031	Prm1	PRM1	16p13.13
Vpp3	VPP3	2cen-q13	lgf1	IGF1	12q22-q23	Galc	GALC	14	Prm2	PRM2	16p13.13
Jund		19p13.2 19p13.1	Tra1 Pen2	TRA1 PEPB	12q24.2-qter 12q21	Chga Aat	CHGA	14q32 14q32 1	l Igli	IGLL1 IGI	12q11.2-q12.3 22q11.1-q11.2
Ucp	UCP	4q28-q31	Mgf	MGF	12q14.3-qter	Pre2	AACT	14q32.1	Comt	COMT	22q11.1-q11.2
Lyl1	LYL1	19p13.2	Myf6	MYF6	12	Cbg	CBG	14-q32.1	Smst	SST	3q28
Junb Ces1	JUNB CES1	19p13.2 16a13-a22.1	Lvzs	LYZ	12	Ckb	CKB	14q32.33	Stf1	STF1	3q26.2-qter 3q21
Es6	ESB3	16	lfg	IFNG	12q24.1	lghC	IGH	14q32.33	Drd3	DRD3	3q13.3
Mt1	MT1A	16q13	Mdm1	MDM1	12	Akt	AKT1	14q32.33	Gap43	GAP43	3q21-qter
Mt2 Mt3	MT3	16q13 16q13	D10H12S53E	GLI D12S53E	12q13 12pter-a21		Chromosome	13	D16H21S16	D21S16	34 21a11
Got2	GOT2	16q12-q22	Êrbb3	ERBB3	12q13	Nid	NID	1q43	D16H21S52	D21S52	21q11
Acadm Mov24	ACADM MOV/24	1p31 16a23-a24		Chromosome	11	Rasi1		7p 7p15-p13	App Glur5	APP GLUB5	21q21.2 21q21 1-q22 1
Um	UVO	16q22.1	Camk2b	CAMK2B	22q12	Tcrg	TCRG	7p15-p14	Sod1	SOD1	21q22.1
Lcat	LCAT	16q22.1	Lif	LIF	22q11.1-q13.1	Gli3	GLI3	7p13	D16H21S58	D21S58	21q22.1-q22.2
Hp	HP CTBB1	16q22.1 16q23-q24.1	Tcn2	TCN2 NEEH	22q 22a12 1-a13 1	HIST1	H1 CSH1	6p22.2-p21.1 17a22-a24	Gart	IENAR	21q22.1 21q22.1
Tat	TAT	16q22.1	Gk	GCK	7p	PI2	CSH2	17q22-q24	Son	SON	21q22.1
Maf	MAF	16q22-q23	Ikaros	IKAROS	7p11.2-p13	Pri	PRL	6p22.2-p21.3	Cbr	CBR	21
Aprt Cdb3	CDH3	16q24.2-qter 16q24.1-gter	Sonb2	SPTBN1	7p12 2p21	Bmp6	BMP6	6	Erg	ERG	21022.3
Acta2	ACTA1	1p21-qter	Rel	REL	2p13-p12	D13H6S231E	D6S231E	6p23	Ets2	ETS2	21q22.3
Agt	AGT	1q42-q43	Hba	HBA1	16p13.3	Drdl	DRD1	5q34-q35	Mx1	MX1	21q22.3
	Chromosom	.9	Gabra1	GABRA1	5q32-q34 5q34-q35	Srd5a1	SRD5A1	5q22-q32 5p15	Hmg14	HMG14	21022.3
Mmel	MMEL	11q22-q23	Gabrg2	GABRG2	5q31.1-q33.1	Nec1	NEC1	5q15-q21	, i i i i i i i i i i i i i i i i i i i		•
ll1bc	IL1BC	11q23	114	IL4	5q23-q31	Rasa	RASA	5q13	Mag1	Chromosome	e 17 6034-027
Olfr2	OLEB2	19013.2 19013.1-013.2	115	ILS IL3	5q23-q31 5q23-q31	Crhbp	CRHBP	50 1 - 013	laf2r	IGF2R	6a25-a27
Epor	EPOR	19p13.2	Csfgm	CSF2	5q23-q31	Dhfr	DHFR	5q11.2-q13.2	Tcp10a	TCP10A	6q27
Dnmt	DNMT	19p12.3-p12.2	II13	IL13 CLCT1	5q31	Hexb	HEXB	5q13	Pig	PLG TCB1	6q26-q27 6g25-g27
Icam1	ICAM1	19p13.2	Inf1	IRF1	5q23-q31	Htr1a	HTR1A	5cen-q11	Sod2	SOD2	6q25
Glur4	GLUR4	11q22	Camb	ANX6	5q32-q34	Ctla3	CTLA3	5	Tcp10b	TCP10B	6q27
Appl	APPL	11	Tcf7	TCF7	5q31 5g31_g33	Itga1	ITGA1	5	Tcp10c	TCP10A	6q27 6q27
Fli1	FLI1	11q23.3 11q23-q24	Gir1	GRM1	5q33	Hmgcr	HMGCR	5q13.3-q14	Tcte3	TCTE3	6q27
Es17	ESA4	11q	Pmp22	PMP22	17p12-p11.2	-	-		D17Lon1	N.A.	16p13.3
Thy1	THY1	11q22.3-q23	Ahd4		17 17otor-p11	Barth	Chromosome	3n24	D1/Lon2	N.A. CBS	16p13.3 21o22.3
Cbl2	CBL2	11g23.3-gter	Shbg	SHBG	17pter-p12	Vcl	VCL	10q22-q23	Crya1	CRYAA	21q22.3
Cd3g	CD3G	11q23	Rovm	RCV1	17	Plau	PLAU	10q24-qter	D17H21S56	D21S56	21q22.3
Cd3d	CD3D CD3E	11q23	Myhn2 Zfo3	MYH10 ZEP3	17p13 17pter-p12	Conita2 Bbn3	CACNL1A2 BBP3	3p14.3 10o11.2	Glo1	PIM1 GLO1	6p21 6p21.3-p21.1
Ups	HMBS	11q23.2-qter	Rpo2-1	POLR2	17p13.1	Glud	GLUD1	10q21.1-q24.3	H2	HLA	6p21.3
Drd2	DRD2	11q22-q23	Asgr1	ASGR1	17p13-p11	Sftp1	SFTP1	10q21-q24	Tnfa	TNFA	6p21.3
Apoa1 Apoa4		11q23-q24 11q23-gter	Asgr2 Acrb	ASGH2 CHRNB	17p 17p12-p11	Apex	APEX	14 14a11.2-p12	Col11a2	COL11A2	6p21.3
Ncam	NCAM	11q23-q24	Trp53	TP53	17p13.1	Tcra	TCRA	14q11.2	Cyp21a1	CYP21	6p21.3
Hexa	HEXA	15q23-q24	Atp1b2	ATP1B2	17	Tord	TCRD	14q11.2	C4	C4 CVP01P	6p21.3
Cvp1a2	CYP1A2	15422-4181	D11Bav2	D17S28	17p13.3	Ctia1	CTLA1	14g11.2	Rd	RD	6p21.3
Cyp1a1	CYP1A1	15q22-q24	Nf1	NF1	17q11.2	Ctsg	CTSG	14q11.2	Bf	BF	6p21.3
Cyp11a	CYP11A	15q23-q24	Cryba1 Edp1	CRYBA1	17q11.2-q12 17q22-q23	Myhca Myhch	MYH6 MYH7	14q11.2-q13 14q112-q13	Bat1	BAT1 C2	6p21.3 6p21.3
Csk	CSK	15q23-q25	Tcf2	TCF2	17q11.2-q12	Ang	ANG	14q11.1-q11.2	Neu1	NEU	6
Mpi1	MPI	15q22-qter	Tca3	SCYA1	17	Gjb2	GJB2	13	Hsp70	HSPA1	6p21.3
Acra5	CHRNA5	15q24	Sigje Min1a	SCYA2 SCYA3	1/q11.2-q12 17o11-o21	Gja3 Nfl	GJA3 NEFI	13 8n21	Brth	RXRB	6pter-g13
Pk3	PKM2	15q24-q25	Mip1b	SCYA4	17q11-q21	Clu	CLU	8p21	Pgk2	PGKB	6p21.1-p12
Acra3	CHRNA3	15q24	Мро	MPO	17q21.3-q23	Bmp1	BMP1	8	Mut	MUT	6p2
a Htr1b	N.A. HTB1B	15q15-q24 6q13	Cola1	COL1A1	17g22 17g21.3-g22	Gnrh	LHRH	8p21-p11.2	Tcte1	TCTE1	6p21
Bmp5	BMP5	6	Ngfr	NGFR	17q21-q22	Es10	ESD	13q14.1-q14.2	Nfya	NFYA	6p21.1
Col12a1	COL12A1	6	Hoxb	HOXB	17q21-q22	Htr2 Pb1	HTR2	13q14-q21 13q14-2	Rd2	RDS	6p21.2-cen 6pter-p21 1
Mod1	ME1	6q12	Rara	RARA	 17q12	D14H13S26	D13S26	13q21	C3	C3	19p13.3-p13.2
Pgm3	PGM3	6q12	Erbb2	ERBB2	17q11.2-q12	Rap2a	RAP2A	13q34	Vav	VAV	19p13.2
Rbp1 Rbp2	RBP1	3q21-q22 3p11-gter	Erba	THRA1 CSE3	17q11.2-q12 17q11.2-q12	Pcca	PCCA	13q32	l Fert	LAMA	5021 18p11.32-p11.2
Trf	TF	3q21	Top2a	TOP2A	17q21-q22		Chromosome	15	Tik	ТІК	2p22-p21
Gnat1	GNAT1	3p21	Krt1	KRT15	17q21-q23	Ghr	GHR	5p14-p12	Lhcgr	LHCGR	2p21
Gnai2	GNAI2 MST1	3p21 3p21	Cnp1 Gfan	GEAP	1/q21 17q21	MIVI2 ji7r	MLV12 (L7B	5p14-p13 5p13		Chromosom	e 18
Acy1	ACY1	3p21.1	ltgb3	ITGB3	17q21.32	Prir	PRLR	5p14-p13	Nil2	NIL2	10p11.2
Mylc	MYL3	3p21	Wnt3	WNT3	17q21-q22	Lifr	LIFR	5p13-p12	Tpl2	TPL2	10p11
Ltt Col7a1		3p21 3p21	Mula	MAP1 MYL4	17g21-gter	C6 C7	C6 C7	5p14-p12	Ttr	TTR	18g12.1
Bgl	GLB1	3p23-p22	Ace	ACE	17q23	Hspg	HSPG1	8q22-q23	spm	NPC	18p
Cck	CCK	3pter-p21	Apoh	APOH	17q23-qter	Myc	MYC	8q24.12-q24.13	Apc	APC ECP1	5q21-q22
NKI	NKIH	3p23-p21	Empb3	EPB3	17g21.g21	·Pvt1	PVT1	8q24	Camk4	CAMK4	5q21-q23
	Chromosòme	10	Scn4a	SCN4A	17q23.1-q25.3	Tgn	TG	8q24	Fgf1	FGF1	5q31.3-q33.2
Dmdl	UTRN	6q24	Gh	GH1	17q22-q24	Gpt1	GPT CVB11P	8q24.2-qter	Gri1	GRL	5q31-q32
Estr	ESR	6g24-g27	Timp2	TIMP2	17025	ll2rb	IL2RB	22g13	Lox	LOX	5q23.3-q31.2
lfgr	IFNGR1	6q23-q24	Gaa	GAA	17q23	Lgals1	LGALS1	22q12-q13.1	li Datati	CD74	5q31-q33
Myb	MYB	6q22-q23	ltgb4	ITGB4 GALK1	1/q11-qter 17g23-g25	Pdgfb Myhn1	PDGFB	22q12.3-q13.1 22q12.3-q13.1	Pagfrb Csfmr	PUGFRB CSE1B	5q33-q35 5q33-q35
Macs	MACS	6q21-q27	Tk1	TK1	17q23.2-q25.3	Pva	PVALB	22q12-q13.1	Rps14	RPS14	5q31-q33
Col10a1	COL10A1	6q21-q22	Thbp	P4HB	17q25	Bzrp	BZRP	22q13.31-qter	Adrb2	ADRB2	5q31-q32
Fyn Bost	FYN BOS1	6g21-g22		Chromosome	12	Dia 1 Cvo2d	CYP2D	∠∠q13.31-qter 22q11.2-σter	Fech	FECH	3431.2-934 18021.2-021.3
Gja1	GJA1	6q14-qter	Pomc1	POMC	2p23	Acr	ACR	22q13-qter	Grp	GRP	18q21.1-q21.32
Hk1	HK1	10q22	Odc	ODC1	2p25	Pdgfec	ECGF1	22q13	Dcc	DCC	18q21.1
Cocza Pfp	CDC2 PRF1	10q21.1 10q22	Apod Svnd	SDC	2p24-p23	Gdc1	GPD1	12q12-q13.1	MIDD	NIDP'	10420
Bor	BCR	22q11	Nmyc1	MYCN	2p24.1	Wnt1	WNT1	12q13		Chromosome	e 19
Gnaz	GNAZ	22q11.1-q11.2	Rrm2	RRM2	2p25-p24	Ela1	ELA1	12 12	Adrbk1	ADRBK1	11q13 11q
Col6a2	COL6A1 COL6A2	21022.3	Ahr	AHHR	2pter-q31	Rarg	RARG	12q13	Gst3	GSTP1	11q13
S100b	S100B	21q22.3	Lamb1-1	LAMB1	7q22-q31	ltga5	ITGA5	12q11-q13	Seao	SEA	11q13

SCIENCE • VOL. 262 • 1 OCTOBER 1993

62

Mouse	Hu	Human		Human		Mouse	Human		Mouse	Human	
Symbol	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Location	Symbol	Symbol	Location
Mdu1 Pygm Fth Cd5 Chtf Cd20 Osbp Ahd2 Lpc1 Rin Fas Ide Got1	MDU1 PYGM FTH1 CD5 CNTF CD20 OSBP ALDH1 ANX1 ALDH1 APT1 IDE GOT1	11q12-q13 11q12-q13.2 11q13 11q13 11 11q12-q13.1 11q12-q13.1 11q11-qter 9q21 9q12-q21.2 9q12-q21.2 10q22-q24.1 10q22-q24.1 10q22-q25.1	Cybb Otc Td DXHXS32 DXHXS676 Ubeix Maoa Maob Timp Syn1 Pic Araf Lamp2	CYBB OTC IP1 DXS32 DXS676 UBE1 MAOA MAOB TIMP1 SYN1 PFC ARAF1 LAMP2	Xp21.1 Xp21.1 Xp11.21-cen Xp22-p11 Xp11.23 Xp11.4-p11.3 Xp11.4-p11.3 Xp11.4-p11.3 Xp11.3-p11.23 Xp11.3-p11.23 Xp11.3-p11.23 Xp11.3-p11.23 Xp13-p11.23	DXPas8 Bgn L1cam Avpr2 DXHXS254E DXHXS253E G6pd Psvp Cf8 Dmd Pola Zfx Ar	DXS52 BGN L1CAM AVPR2 DXS254E DXS253E G6PD RCP F8C DMD POLA ZFX AR	Xq28 Xq28 Xq28 Xq28 Xq28 Xq28 Xq28 Xq28	DXHXS178 Prps1 Col4a5 Alas2 DXHXS674 DXHXS679 Pdha1 Gira2 PrpS2 Grpr Armel Sts	DXS178 PRPS1 COL4A5 ALAS2 DXS674 DXS679 PDHA1 GLRA2 PRPS2 GRPR AMELX STS	Xq21.33-q22 Xq21-q27 Xq22 Xp11.21 Xp11.22p11.21 Xp122.2p11.21 Xp22.1-p21.3 Xp22.1-p21.3 Xp22.3-p22.2 Xp11.22-cen Xp22.31-p22.1 Xp22.32
Cyp2c Rbp4 Tdt Notch1 Bpag2 Adra2a Adrb1 Cyp17 Cstgmra Gata1	CYP2C RBP4 DNTT HOX11 BPAG2 ADRA2A ADRB1 CYP17 CSF2RA Chromoso GATA1	10q24.1-q24.3 10q23-q24 10q23-q24 10q24-q26 10q24-q26 10q24-q26 10q24-q26 10q24-q26 10q24-q26 10q24-q26 10q24-3 Xp22.32; Yp11.3	Hpri Cd40l Cf9 Mdf2 Cdr Fmr1 DXHXS296 Ids Gabra3 DXHXS1104 Bpa Str	HPRT CD40L F9 MCF2 CDR1 FMR1 DXS296 IDS GABRA3 DXS1104 CDPX2 IP2	Xq26.1 Xq26.3-27.1 Xq26.3-27.1 Xq27.1-q27.2 Xq27.3 Xq27.3-q28 Xq28 Xq28 Xq28 Xq28 Xq28 Xq27-q28	Ta Gjb1 Ccg1 Ppk4x Phka1 DXHXS393 Xist Pgk1 Bik Ags Pip DXHXS101	EDA GJB1 CCG1 PPS4X PHKA1 DXS393 XIST PGK1 BTK GLA PLP DXS101	Xq12-q13.1 Xq13.1 Xq13.1 Xq13.1 Xq13.1 Xq13-q24 Xq13.2 Xq13.3 Xq21.33-q22 Xq21.33-q22 Xq21.33-q22 Xq21.33-q22 Xq22	'Human chromosomal locations for most loo were obtained from GDB, a computerized database of human linkage information maintained by the William H. Welch Medica Library (The Johns Hopkins University, Battimore, MD). The human mapping resul for a few of the loci have yet to be publishe and we thank the many laboratories who he given us permission to cite their unpublishe mapping data. N.A., not assigned.		

ping can be found in the evolution of the homeobox genes (25).

Mapping can also provide unexpected insights into chromosome evolution. For example, although the X chromosome tends to show extreme conservation of genes across mammalian species, Disteche et al. (26) recently showed that the mouse granulocyte-macrophage colony-stimulating factor receptor α subunit gene (Csfgmra), which is located in the pseudoautosomal region of the X and Y chromosomes in humans, maps to the very distal region of mouse chromosome 19. This was the first demonstration of a gene that is pseudoautosomal in humans but not in mice. This finding may not be surprising, however, because it is known that genes in the pseudoautosomal region have homologs on both the X and Y chromosomes and are likely to escape X inactivation (26); the process of X inactivation is thought to be responsible for the conservation of genes on the mammalian X chromosome.

Cloning classical mouse mutations. Over the past century, hundreds of mutations that cause deviant phenotypes have been identified and characterized in the mouse. These mutations represent spontaneous mutations, as well as mutations induced by chemicals, radiation, transgene insertion, viral integration, and more recently, homologous recombination in embryonic stem (ES) cells. Although it is obvious that many of these mutations define a set of developmentally important genes, few of the mutant genes have been cloned, with the exception of those mutations induced by homologous recombination in ES cells.

Mouse linkage maps are already having a great impact on the rate at which these mutations are cloned. In Table 2, we have compiled a list (albeit probably incomplete) of mouse mutations that have been successfully cloned. Most of these mutations (31 of 42) were cloned by the candidate gene

approach, which works as follows: As each new gene is placed on the mouse map, phenotypic deviants mapping in the vicinity can be reviewed to determine if any has a phenotype consistent with what one might expect to result from a defect in the mapped gene. If a plausible connection is found, the gene in question can be molecularly characterized in both wild-type and deviant mice for the identification of mutations. Given the rapid expansion of the gene-based map, it is likely that many more mutations will be cloned in the future by means of the candidate gene approach.

Several mouse mutations (5 of 42) were cloned after one or more alleles were found that are molecularly tagged with a transgene insertion, viral sequence, or genome rearrangement (Table 2). Again, one of the first steps in this cloning approach is to map sequences from the tagged allele in order to determine if any mutations exist that map in the same vicinity and that have a phenotype similar to that of the molecularly tagged allele. Complementation tests for recessive and semidominant deviants can then be performed to determine if the molecularly tagged allele is allelic with any preexisting mutations. The molecular tag can then be used as an entry point for cloning the mutated gene.

Several other mutations have been cloned by positional cloning (4 of 42) that is, chromosomal walking from nearby genetic markers (Table 2) (27). Until very recently, this approach was largely impractical because of the paucity of molecular markers on the mouse genetic map and the absence of efficient walking methods and large insert libraries. However, given the great increase in marker density on current mouse genetic maps, particularly with respect to SSLP markers, and given the availability of large-insert yeast artificial chromosome (YAC) libraries of the mouse genome (28), it is now possible to positionally clone virtually any mouse mutation. The rate-limiting steps in positional cloning have now become the generation of large numbers of backcrossed animals needed to define recombination events in close proximity to the mutation of interest and the identification and evaluation of candidate genes in the nonrecombinant interval, rather than the identification of closely linked markers. As physical maps of the mouse genome become available and techniques for identifying genes in large blocks of genomic DNA improve, the ability to clone mutations on the basis of their position will be enhanced.

Two classical spontaneous mutations were cloned serendipitously as an indirect result of attempts to generate germ-line knock-out mutations in the transforming growth factor α (*Tgfa*) and wingless-related mouse mammary tumor virus (MMTV) integration site-1 (Wnt-1) genes. Knock-out mutations in these two genes produced phenotypes very similar to those of the spontaneous mutations waved-1 (wa-1) and swaying (sw), respectively. Complementation tests showed that the classical mutations were allelic to the knock-out mutations, and molecular studies confirmed that the spontaneous mutations resulted from defects in these genes. Given the rapid rate at which new genes are being knocked-out by homologous recombination, it is likely that other classical mutations will be cloned by this approach as well. Again, maps and phenotypic comparisons will continue to provide the crucial clues.

Mouse models of human genetic diseases. The mouse has provided many important models of human genetic diseases. In the chart, we have provided a partial list of known single-gene models of human genetic diseases as well as polygenic disorders that may also be models for certain human conditions. Even with such a partial list, it is obvious that the number of known or

SCIENCE • VOL. 262 • 1 OCTOBER 1993

potential mouse models of human diseases is large and includes some of the most important diseases affecting humans. Not included in this list are many uncloned mouse mutations that are also thought to represent models for human diseases (29). As discussed earlier, the development of a high-density linkage map of the mouse genome will greatly increase the speed at which these mutations are cloned and hence facilitate the development of additional models of human diseases. Once human disease genes are cloned and mutations characterized, further research on gene function and disease will rely in part on mouse models.

Mapping genes in the mouse can also facilitate the cloning of human genetic disease loci, even in cases where no appropriate mouse model exists. For example, given the speed at which new genes can be mapped in the mouse, the high density of the mouse linkage map, and the considerable amount of information already gained regarding human-mouse comparative mapping, it is often easier to map a new gene in the mouse and predict its location in humans than to map the gene directly in humans. In some cases, the predicted location may lie near an already mapped human disease locus and subsequent studies may show that defects in that gene are in fact responsible for the disease (30).

Prospects for the Future

The advent of dense genetic linkage maps and other technological advances not only simplifies traditional mouse genetic studies, but also opens up completely new paradigms and approaches. Although it is hard to predict the full range of future directions, some areas seem poised for rapid expansion in the coming years.

Genetic dissection of polygenic traits. With the genetic analysis of single-gene traits becoming increasingly straightforward, the challenging frontier will begin to shift to the study of polygenic traits that provide models of common human diseases. Mouse strains show striking variation in their susceptibility to diabetes, epilepsy, cancer, bacterial and viral infections, and obesity (31). There is also substantial inherited variation in such physiological parameters as skeletal morphology, blood pH, response to drugs and hormone treatments, immunological responses, life-span, and behavior (31). In most cases, these differences are the result of the combined effects of multiple, interacting genes. Genetic dissection of such polygenic traits requires simultaneously following the inheritance of markers spanning the entire genome to identify the regions that together account for the phenotype (32). This has only just become practical with the advent of dense genetic maps, particularly that of the easily typed and highly polymorphic SSLPs. Some early studies have confirmed the promise of this approach. Some (33) have undertaken a comprehensive genetic dissection of the factors causing type 1 diabetes in the nonobese diabetic (NOD) mouse. Frankel and co-workers (34) have dissected genetic factors underlying epilepsy in a seizure-prone strain. Dietrich and colleagues (35) have analyzed the severity of colon cancer in mice that carry a mutation in the Apc gene (the homolog of the human gene underlying familial colon cancer) and mapped a major quantitative modifier locus that dramatically alters the phenotype. Similarly, others (36) have shown the power of using recombinant congenic strains to analyze polygenic variation in cancer susceptibility. Quantitative variation may prove especially valuable for the study of mammalian physiology, not least because it is easier to find such variation than to identify single-gene

Table 2. Representative mouse phenotypic deviants for which the altered genes have been identified.

Cloning Mechanism	Mutation	Chromosomal Location	Gene	Reference	Cioning Mechanism	C Mutation	hromosomal Location	Gene	Reference
Candidate	Adipose storage deficiency (ads) 5	Beta-glucuronidase	40		Retinal degeneration slow (Ro	12) 17	Photoreceptor peripherin	59
Gene	[mucopolysaccharidosis typeVII (<i>aus ^{mps})]</i>					Shiverer (<i>shi</i>)	18	Myelin basic protein	60
	Albino (c)	7	Tyrosinase	41		Slaty (sit)	14	Tyrosinase related protein 2	2 61
	Arrested development of	6	Skeletal muscle	42		Small eye (<i>Sey</i>)	2	Paired box gene 6	62
	righting response (adr)		chloride channel			Sparse fur (<i>spf</i>)	х	Ornithine transcarbamylase	63
	Brown (b)	4	Tyrosinase related	43		Splotch (Sp)	1	Paired box gene 3	64
		-	protein			Steel (S/)	10	Mast cell growth factor	65
	Dominant spotting (W)	5	Kit protooncogene	44		Testicular feminization (Tfm)	х	Androgen receptor	66
	Dwarr (dw)	16	factor-1	45		Testis determining Y (Tdy)	Y	Sry transcription factor	67
	Extension locus (E)	8	Melanocyte stimulating hormone receptor	46		Trembler (<i>Tr</i>)	11	Peripheral myelin protein, 22kD	68
	Extra toes (Xt)	13	Gli-Kruppel family member	3 47		Undulated (un)	2	Paired box homeotic gene-	1 69
						X-linked immune deficiency (x	rid) X	Burton's tyrosine kinase	70
	Jimpy (<i>jp</i>)	x	Myelin proteolipid protein	48	Insertion Tags	Dilute (d)	9	Novel myosin heavy chain	71
	Little (<i>lit</i>)	6	Growth hormone releasing	49	1	Limb deformity (Id)	2	Formin	72
	Lymphonroliferation (Inr.)	10	Factor receptor	50		Pink-eyed dilution (p)	7	P polypeptide	73
	Methoston (ma)	19	Hematonoietic coll	50		Microphthalmia (mi)	6	Mi bHLHZip protein	74
	Motheaten (me)		phosphatase			Moloney leukemia virus 13 (Mov13) 11 integration site		Procollagen type I alpha 1	75
	Multiple intestinal neoplasia (Min) 18	Adenomatous polyposis co	li 52	Positional	Agouti (a)	2	Agouti signal protein	76
	Muscular dysgenesis (mdg)	1	Alpha 1 dihydropyridine sensitive calcium channe receptor	53 al	Cloning	Brachyury (T)	17	T product	77
	Muscular dystrophy, X-linked (mdx)	x	Dystrophin	54		Mycobacterium bovis resistand (Bcg)	ce 1	Nramp transporter	78
	Myxovirus sensitivity (Mx)	16	Mx protein	55		Short-ear (se)	9	Bone morphogenetic protei	n 5 79
	Osteopetrosis (op)	3	Colony stimulating factor, macrophage	56	ES ceil- induced	Swaying (<i>sw</i>)	15	Wingless related MMTV integration site 1	80
	Pallid (<i>pa</i>)	2	Pallidin (Epb 4.2)	57	mutation	Waved-1 (wa1)	6	Transforming growth factor, alpha	81
	Retinal degeneration (rd)	5	cGMP-phosphodiesterase,	58	Î				

mutants with dramatic phenotypes (presumably because missense variants may be tolerated, whereas null alleles in key physiological processes may be lethal). Moving from initial linkage to cloned loci for such polygenic traits remains a challenge for the future, but strategies have been outlined and several projects are under way.

Deletion analysis of tumors. A powerful approach in cancer research has been the identification of chromosomal regions that undergo genetic changes, such as deletions, mitotic recombination, or chromosomal loss and reduplication, during tumor initiation and progression. Such regions can be recognized because genetic markers that are heterozygous in normal tissue are reduced to homozygosity by these structural alterations. Genome-wide loss-of-heterozygosity (LOH) studies have been carried out for a number of tumor types in humans, but they have not yet become common in the mouse. With the availability of dense genetic maps, this situation is likely to change.

Mice offer great advantages for LOH mapping compared to humans. F₁ hybrid mice between two strains can provide an unlimited number of tumors from a genetically defined background that can all be typed with a single set of fully informative markers. The use of F_1 hybrids eliminates the effect of genetic background; this is unlike the situation in human studies, where one cannot typically tell whether variation in LOH among patients is due to chance or inherited differences affecting the process of tumorigenesis. In mice, one can also study whether one allele is preferentially lost in the F_1 hybrids, which suggests that the opposite chromosome carries a linked locus predisposing to cancer; such assessments are impossible in outbred populations such as that of humans. Moreover, in mice tumor progression can be analyzed by examining tumors at various histological stages. Finally, fine-structure deletion mapping and positional cloning of tumor suppressor genes in mice should be feasible, given the ability to collect hundreds of tumors. With a wide range of naturally occurring, chemically induced, and transgene-induced tumors available, the mouse is ideal for genetic studies of tumorigenesis in vivo.

Physical maps, gene catalogs, and genomic sequences. Over the next decade, mouse genome mapping will continue at a rapid pace. One early target will surely be construction of a complete physical map of the mouse genome. Although the mouse genome is the same size as the human genome, the task of physical mapping is simplified by the ease of ordering anchor points by genetic mapping. Indeed, a physical map should virtually fall out as the density of markers in the genetic map increases. The current genetic map with 1500 SSLPs has an average spacing between markers of about 2 Mb, which corresponds to about three, large-insert (\sim 700 kb) YACs from available libraries (28). With projects under way to create a map of 6000 SSLPs, the average spacing should fall to about 500 kb, with the result that most of the physical map may be constructed simply by identifying the YACs corresponding to each consecutive marker along a chromosome (37).

A subsequent milestone will be the identification of all mouse genes and their localization on the genetic and physical maps. With improved methods for generating "normalized" complementary DNA (cDNA) libraries, it may become practical to catalog genes from all developmental stages and most adult organs by complete cDNA sequencing and PCR-based mapping of the cDNAs to YACs. A natural extension of today's gene-based map, such a catalog should prove invaluable for studies involving positional cloning, human-mouse comparison, and genome organization.

Finally, the recently revised goals of the Human Genome Project include obtaining the complete nucleotide sequences of both the human and mouse genomes. By comparing two mammalian genomes, important regions should become obvious by virtue of their sequence conservation over 140 milkion years of evolution. Already, comparative sequencing of the T cell receptor regions in humans and mice has revealed many novel regulatory signals (38). Although the notion of sequencing two mammalian genomes might seem prohibitively costly, it seems likely that DNA sequencing technology either will advance to the point that both genomes can be easily sequenced or will fall short of accommodating even a single genome; it is implausible that it will be feasible to sequence one but not both.

Conclusion

Mouse genetics began several hundred years ago, with the cultivation of coat color and neurological mutants whose odd colors and behaviors entertained the imperial courts of Japan (39). Over the past half century, the mouse has become a mainstay of biomedical research in areas ranging from embryology to immunology. As mouse genetics enters the next millenium, it is clear that the field will continue to provide an ever deeper window into ourselves through the many similarities in our physiology, our heritable diseases, and, ultimately, our genomes.

REFERENCES AND NOTES

- J. B. S. Haldane, A. D. Sprunt, N. M. Haldane, J. Genet. 5, 133 (1915).
- 2. E. M. Eicher, in Mammalian Genetics and Cancer: The Jackson Laboratory Fiftieth Anniversary Sym-

SCIENCE • VOL. 262 • 1 OCTOBER 1993

posium, E. S. Russell, Ed. (Liss, New York, 1981), pp. 7-49.

- 3. D. Botstein, Am. J. Hum. Genet. 32, 314 (1980).
- B. A. Taylor, in *Genetic Variants and Strains of the* Laboratory Mouse, M. F. Lyon and A. G. Searle, Eds. (Oxford Univ. Press, Oxford, 1989), pp. 773–796.
- F. Bonhomme, F. Benmehdi, J. Britton-Davidian, S. Martin, *C. R. Acad. Sci. Paris* 289, 545 (1979).
 P. Avner, L. Amar, L. Dandolo, J. L. Guénet,
- Trends Genet. 4, 18 (1988).
 Mammalian Genome 4 (Suppl.), L. M. Silver, J. H. Nadeau, P. Goodfellow, Eds. (Springer-Verlag, New York, in press); Mouse Genome, J. Peters, Ed. 91, 19 (1993); GBASE, a computerized database of mouse linkage information maintained by The Jackson Laboratory. Bar Harbor, ME
- The Jackson Laboratory, Bar Harbor, ME. 8. N. G. Copeland and N. A. Jenkins, *Trends Genet.* 7, 113 (1991); unpublished results.
- 9. J. D. Ceci et al., unpublished results.
- J. L. Weber, *Genomics* 7, 524 (1990); _____ and P. E. May, *Am. J. Hum. Genet.* 44, 388 (1989).
- C. M. Hearn *et al.*, *Mamm. Genome* 1, 273 (1991);
 J. M. Love, A. M. Knight, M. A. McAleer, J. A. Todd, *Nucleic Acids Res.* 18, 4123 (1990); R. J. Cornall, T. J. Aitman, C. M. Hearn, J. A. Todd, *Genomics* 10, 874 (1991).
- W. Dietrich *et al.*, *Genetics* **131**, 423 (1992); W. Dietrich *et al.*, in *Genetic Maps*, S. J. O'Brien, Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, ed. 6, 1993), pp. 4.110–4.142.
- E. S. Lander *et al.*, *Genomics* 1, 174 (1987).
 S. E. Lincoln and E. S. Lander, *ibid.* 14, 604 (1992).
- E. J. Zimmer, E. Ogin, D. C. Shreffler, H. C. Passmore, *Immunogenetics* 25, 274 (1987); Y. Uematsu, H. Kiefer, R. Schulze, K. Fischer-Lindahl, M. Steinmetz, *EMBO J.* 5, 2121 (1986); T. Shiroishi *et al., Immunogenetics* 31, 79 (1990); J. A. Kobori, E. Strauss, K. Minard, L. Hood, *Science* 234, 173 (1986); R. H. Reeves, M. R. Crowley, B. F. O'Hara, J. D. Gehart, *Genomics* 8, 141 (1990); R. H. Reeves, M. R. Crawley, W. S. Moseley, M. F. Seldin, *Mamm. Genome* 1, 158 (1991).
 M. T. Davisson, T. H. Roderick, D. P. Doolittle, in *Genetic Variants and Strains of the Laboratory Mouse*, M. F. Lyon and A. G. Searle, Eds. (Oxford Univ. Press, Oxford, 1989), pp. 432–505.
- M. F. Hammer, J. Schimenti, L. M. Silver, *Proc. Natl. Acad. Sci. U.S.A.* 86, 3261 (1989).
- 18. F. G. Biddle, Genome 29, 389 (1987).
- J. D. Ceci, L. D. Siracusa, N. A. Jenkins, N. G. Copeland, *Genomics* 5, 699 (1989); M. J. Justice *et al.*, *Genetics* 125, 855 (1990); L. D. Siracusa, A. M. Buchberg, N. G. Copeland, N. A. Jenkins, *ibid.* 122, 669 (1989).
- J. H. Nadeau and B. A. Taylor, *Proc. Natl. Acad.* Sci. U.S.A. 81, 814 (1984).
- 21. O. Hino et al., ibid. 90, 730 (1993).
- S. J. O'Brien et al., Nature Genet. 3, 103 (1993).
 J. H. Nadeau, in Advanced Techniques in Chromosome Research, K. W. Adolph, Ed. (Marcell Dekker, New York, 1991), pp. 269–296; K. Schughart, C. Kappen, F. H. Ruddle, Proc. Natl. Acad. Sci. U.S.A. 86, 7067 (1989); L. G. Lundin, Genomics 16, 1 (1993).
- 24. T. M. Wilkie et al., Nature Genet. 1, 85 (1992).
- R. Krumlauf, *BioEssays* 14, 245 (1992); P. Hunt and R. Krumlauf, *Annu. Rev. Cell Biol.* 8, 227 (1992); R. Krumlauf, *Trends Genet.* 9, 106 (1993); J. W. Pendleton, B. K. Nagai, M. T. Märtha, F. H. Ruddle, *Proc. Natl. Acad. Sci. U.S.A.* 90, 6300 (1993); J. H. Nadeau, J. G. Compton, V. Giguère, J. Rossant, S. Varmuza, *Mamm. Genome* 3, 202 (1992).
- 26. C. M. Disteche et al., Nature Genet. 1, 333 (1992).
- 27. F. S. Collins, ibid., p. 3.
- Z. Larin, A. P. Monaco, H. Lehrach, *Proc. Natl.* Acad. Sci. U.S.A. 88, 4123 (1991); K. Kusumi et al., Mamm. Genome 4, 391 (1993); F. L. Chartier, *Nature Genet.* 1, 132 (1992).
- J. R. Buchhalter, *Epilepsia* 34, S31 (1993); J. E. Dick, *Mol. Genet. Med.* 1, 77 (1991); S. M. Darling and C. M. Abbott, *BioEssays* 14, 359 (1992); M. C. Johnston and P. T. Bronsky, *J. Craniofacial Genet. Dev. Biol.* 11, 277 (1991); J. E. Dick, F. Pflumio, T.

Lapidot, Semin. Immunol. 3, 367 (1991); J. P. Sundberg, W. G. Beamer, L. D. Shultz, R. W. Dunstan, J. Invest. Dermatol. 95, 62S (1990); R. S. Fisher, Brain Res. Rev. 14, 245 (1989); J. Hardy, Trends Neurosci. 11, 89 (1988); J. M. Holland, Clin. Dermatol. 6, 159 (1988); E. H. Leiter et al., Birth Defects 23, 221 (1987).

- S. E. Leff et al., Nature Genet. 2, 259 (1992); T. Özçelik et al., ibid., p. 265; R. Cutler Allen et al., Science 259, 990 (1993); C. T. Baldwin *et al.*, Nature 355, 637 (1992); M. Tassabehji *et al.*, *ibid.*, p. 635; M. Tassabehji et al., Nature Genet. 3, 26 (1993)
- 31. M. F. W. Festing, Inbred Strains in Biomedical Research (Oxford Univ. Press, New York, 1979).
- 32. A. H. Paterson et al., Nature 335, 721 (1988); E. S. Lander and D. Botstein, Genetics 121, 185 (1989)
- J.-B. Prins et al., Science 260, 695 (1993); J. A. 33. Todd et al., Nature 351, 542 (1991); R. J. Cornall et al., ibid. 353, 262 (1991).
- M. L. Rise, W. N. Frankel, J. M. Coffin, T. N. 34. Seyfried, Science 253, 669 (1991).
- W. F. Dietrich *et al.*, *Cell*, in press. P. C. Groot *et al.*, *FASEB J.* **6**, 2826 (1992); C. J. 35
- 36. Moen et al., Mamm. Genome 1, 217 (1991). 37. R. Arratia, E. S. Lander, S. Tavare, M. Waterman,
- Genomics 11, 806 (1991).
- L. Hood, personal communication 38
- M. Tokuda, J. Hered. 26, 481 (1935). 39
- 40. E. Birkenmeier et al., J. Clin. Invest. 83, 1258 (1989). 41. B. S. Kwon, A. K. Haq, S. H. Pomerantz, R. Halaban, Proc. Natl. Acad. Sci. U.S.A. 84, 7473
- (1987). 12 K. Steinmeyer et al., Nature 354, 304 (1991)
- 43. I. J. Jackson, Proc. Natl. Acad. Sci. U.S.A. 85, 4392 (1988).
- B. Chabot, D. A. Stephenson, V. M. Chapman, F Besmer, A. Bernstein, Nature 335, 88 (1988); E. N. Geissler, M. A. Ryan, D. E. Housman, Cell 55, 185 (1988).
- S. Li *et al.*, *Nature* **347**, 528 (1990); S. A. Camper, T. L. Saunders, R. W. Katz, R. H. Reeves, *Genom*-45. ics 8, 586 (1990).

- 46. L. S. Robbins et al., Cell 72, 827 (1993).
- 47. T. Schimmang, M. Lemaistre, A. Vortkamp, U. Rutter, Development 116, 799 (1992); C.-C. Hui and A. L. Joyner, Nature Genet. 3, 241 (1993).
- 48. A. Dautigny et al., Nature 321, 867 (1986). 49. P. Godfrey et al., Nature Genet. 4, 227 (1993);
- S.-C. Lin et al., Nature 364, 208 (1993).
- 50. R. Watanabe-Fukunaga, C. I. Brannan, N. G. Copeland, N. A. Jenkins, S. Nagata, Nature 356, 314 (1992)
- 51. H. W. Tsui, K. A. Siminovitch, L. de Souza, F. W. L. Tsui, Nature Genet. 4, 124 (1993); L. D. Shultz et
- al., Cell 73, 1445 (1993). 52. L.-K. Su et al., Science 256, 668 (1992)
- 53. T. Tanabe, K. G. Beam, J. A. Powell, S. Numa,
- Nature 336, 134 (1988). 54. E. P. Hoffman, R. H. Brown, L. M. Kunkel, Cell 51, 919 (1987): P. Sicinski et al., Science 244, 1578
- (1989).
- 55. P. Staeheli, R. Grob, E. Meier, J. G. Sutcliffe, O. Haller, *Mol. Cell. Biol.* 8, 4518 (1988); H. Arnheiter, S. Skuntz, M. Noteborn, S. Chang, E. Meier, Cell 62, 51 (1990).
- 56. H. Yoshida et al., Nature 345, 442 (1990).
- 57. R. A. White et al., Nature Genet. 2, 80 (1992).
- 58. C. Bowes et al., Nature 347, 677 (1990).
- 59. G. H. Travis, M. B. Brennan, P. E. Danielson, C. A Kozak, J. G. Sutcliffe, Nature 338, 70 (1989); G. Connell, Proc. Natl. Acad. Sci. U.S.A. 88, 723 (1991)
- 60. C. Readhead *et al.*, *Cell* 48, 703 (1987).
 61. I. J. Jackson *et al.*, *EMBO J.* 11, 527 (1992).
- 62. R. E. Hill et al., Nature 354, 522 (1991)
- 63. G. Veres, R. A. Gibbs, S. E. Scherer, C. T. Caskey,
- Science 237, 415 (1987). 64. D. J. Epstein, M. Vekemans, P. Gros, Cell 67, 767 (1991)
- N. G. Copeland et al., ibid. 63, 175 (1990); E. 65. Huang et al., ibid., p. 225; K. M. Zsebo et al., ibid., p. 213.
- 66. M.-L. Gaspar, T. Meo, P. Bourgarel, J.-L. Guenet, M. Tosi, Proc. Natl. Acad. Sci. U.S.A. 88, 8606 (1991); N. J. Charest et al., Mol. Endocrinol. 5, 573 (1991).

- 67. J. Gubbay et al., Nature 346, 245 (1990).
- 68. U. Suter et al., ibid. 356, 241 (1992); U. Suter et
- al., Proc. Natl. Acad. Sci. U.S.A. 89, 4382 (1992). 69. R. Balling, U. Deutsch, P. Gruss, Cell 55, 531
- (1988) 70. D. J. Rawlings et al., Science 261, 358 (1993); J.
- D. Thomas et al., ibid., p. 355
- 71. J. A. Mercer, P. K. Seperack; M. C. Strobel, N. G. Copeland, N. A. Jenkins, Nature 349, 709 (1991).
- R. P. Woychik, T. A. Stewart, L. G. Davis, P. D'Eustachio, P. Leder, *ibid.* 318, 36 (1985); R. P. Woychik, R. L. Maas, R. Zeller, T. F. Vogt, P. Leder, ibid. 346, 850 (1990).
- 73. M. H. Brilliant, Y. Gondo, E. M. Eicher, Science 252, 566 (1991); J. M. Gardner et al., ibid. 257, 1121 (1992); E. M. Rinchik et al., Nature 361, 72 (1993)
- 74. C. A. Hodgkinson et al., Cell 74, 395 (1993).
- 75. A. Schnieke, K. Harbers, R. Jaenisch, Nature 304, 315 (1983).
- 76. S. J. Bultman, E. J. Michaud, R. P. Woychik, Cell 71, 1195 (1992); M. W. Miller et al., Genes Dev. 7, 454 (1993).
- 77. B. G. Herrmann, S. Labeit, A. Poustka, T. R. King, H. Lehrach, Nature 343, 617 (1990)
- 78. S. M. Vidal, D. Malo, K. Vogan, E. Skamene, P. Gros, Cell 73, 469 (1993).
- 79. D. M. Kingsley et al., ibid. 71, 399 (1992).
- 80. K. R. Thomas, T. S. Musci, P. E. Neumann, M. R. Capecchi, ibid. 67, 969 (1991).
- N. C. Luetteke et al., ibid. 73, 263 (1993); G. B. Mann et al., ibid., p. 249.
- 82. We thank all of the mouse chromosome committee chairpersons who reviewed the gene maps. We also thank investigators who supplied probes and reagents as well as those who allowed us to cite unpublished results. Finally, we thank past and present students, postdoctoral fellows, and technicians who have aided in the development of these maps. This work was supported in part by the National Cancer Institute under contract NO1-CQ-74101 with ABL (N.G.C., D.J.G., and N.A.J.) and by the National Center for Human Genome Research, grant HG00198 (E.S.L.).