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Chemical Modification of the Photoluminescence
Quenching of Porous Silicon

Jeffrey M. Lauerhaas and Michael J. Sailor*

The photoluminescence of porous silicon can be quenched by adsorbates, and the
degree of quenching can be tuned by chemical derivatization of the porous silicon
surface. Thus, as-prepared porous silicon has a hydrophobic, hydrogen-terminated
surface, and the photoluminescence is strongly quenched by ethanol and weakly
qguenched by water. Mild chemical oxidation (iodine followed by hydrolysis) produces a
hydrophilic porous silicon surface. Photoluminescence from this hydrophilic material is
quenched to a lesser extent by ethanol and to a greater extent by water, relative to the
original surface. This demonstrates that the visible luminescence from porous silicon is
highly surface-sensitive, and the surface interactions can be tuned by specific chemical

transformations.

T'he observation of visible photolumines-
cence (PL) from porous Si has attracted
attention for a wide range of applications,
including electrooptic (1), solar energy
conversion (2), photodetector (3), and
chemical sensor devices (4-7). Chemical
sensors could take advantage of changes in
the PL wavelength and intensity that oc-
cur in the presence of different chemical
adsorbates. For nonreactive molecular ad-
sorbates, the quenching of PL intensity
scales roughly with the dipole moment of

Department of Chemistry, University of California at
San Diego, La Jolla, CA 92093.

*To whom correspondence should be addressed.

the chemical species (5, 6), so that mole-
cules with large dipole moments like
methanol or ethanol quench the PL of
porous Si to a large extent (typically
>99% loss of PL intensity). The reversible
quenching phenomenon has been inter-
preted as the stabilization of surface traps
by alignment of molecular dipoles on the
porous Si surface (5, 6). An exception to
the correlation is water, which does not
appreciably quench the PL of porous Si
despite its large dipole moment. This ob-
servation has been attributed to the hydro-
phobic nature of the porous Si surface;
water does not wet the hydrogen-termi-
nated surface of porous Si, so dipole align-
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ment does not occur.

We tested this postulate by derivatizing
the surface of porous Si with hydrophilic
O and OH groups. The surface modifica-
tion reduced the surface hydrophobicity of
porous Si, and the PL quenching effect of
water was enhanced relative to ethanol.
These results clearly show that PL from
porous Si is highly dependent on the
nature of the interaction of physisorbed
molecules with the surface. The chemical
“tunability” of this quenching response
may be useful in the development of Si-
based sensors with a specific adsorbate
binding response.

The Fourier-transform infrared (FTIR)
spectrum of a freshly etched porous Si wafer
(8) shows a hydrogen-terminated surface
with little to no surface oxide present (Fig.
1A). The proposed reaction (Scheme 1) of
[, and air

1 ; |
Scheme 1

with porous Si involves an initial attack by
I, at Si-Si bonds (9, 10), which is con-
sistent with the observation that the Si-H
and Si-H, infrared stretching modes are
not reduced significantly on I, exposure
(Fig. 1B) (11). X-ray photoelectron spec-
troscopy (XPS) of the surface revealed the
presence of an iodide species (I 3ds,, at
619.9 £ 0.3eV;Si2pat 102.2 = 0.3 eV).
There was an immediate loss of >99% of
the integrated PL intensity on I, exposure.
Oxidation of the I,-treated porous Si ma-
terial in air results in new peaks charac-
teristic of Si-O (at 1100 cm™!), O-Si-H
(at 2225 cm™!), and OH (at 3480 cm™})
species (12) (Fig. 1C) and recovery of
30% of the original PL intensity (13).
Initial oxide growth occurs much more
rapidly on a porous Si wafer that has been
pretreated with I, (10, 14). Oxide is
detectable by FTIR and XPS [O (SiO,) 1s
at 533.0 = 0.3 eV] on I,-treated wa-
fers within 5 min of being exposed to air,
whereas an untreated porous Si sample
requires 122 min in air to grow a com-
parable oxide thickness. Contact angle
measurements on the samples show that
the chemically oxidized surface is more
hydrophilic than as-formed (H-termi-
nated) porous Si (H,O drop, advanc-
ing contact angles were 112° and 131°,
respectively).

The PL intensity of as-formed porous Si
was strongly quenched by ethanol vapor
(97.4 £ 0.1% drop in integrated intensi-
ty, average of nine runs, 95% confidence
interval) and weakly quenched by water
vapor (11 = 3%) (Fig. 2A). In contrast,
the material that was made more hydro-
philic by surface oxidation (Fig. 2B) was
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quenched to a greater degree by water
vapor (44 £ 2%) and to a lesser degree by
ethanol (88 + 3%), relative to the origi-
nal hydrophobic material. Benzene
quenched the PL of the hydrophobic and
hydrophilic surfaces to the same degree,
within our experimental error (38 = 6%
for H-terminated material and 38 + 4%
for O-terminated material). The adsor-
bate-quenching experiments were revers-
ible; the same quenching ratios were ob-
tained on multiple exposure-evacuation
cycles on the same wafers. Porous Si with
a thicker (thermally grown) oxide layer
showed very little quenching response to-
ward any of these adsorbates.

The data can be interpreted within the
context of a surface trapping model. Pre-
sumably, the adsorbed polar molecules
stabilize electrons or holes at the porous
Si surface, where nonradiative or sub-
bandgap emission processes dominate the
recombination rate (I15). This phenome-
non is thus somewhat analogous to polar
solvent enhancement of nonradiative de-
cay rates observed in many molecular flu-
orophore systems (16). For freshly etched,
hydrophobic porous Si, the hydrophobic
CH; end of ethanol aligns with surface
Si-H groups, creating a net dipole mo-
ment and a corresponding stabilization of
surface charge. When the surface is made
partially hydrophilic by treatment with I,

OH Si-H 8(Si-Hy)

H Si-H, | sisi
/! Si-0-Si

)]

2

] (C) PS + 1 min I, + 18 hours air

a

‘o- *
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-]

<
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A (A PS
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4000 3100 2200 1300 400
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Fig. 1. Transmission FTIR spectra of (A) freshly
etched porous Si (PS), (B) |,-exposed porous Si
(PS + 1 min 1), and (C) l,-exposed porous Si
exposed to air (PS + 1 min |, + 18 hours air).
Vibrational mode assignments are as shown in
the top spectrum. Asterisk specifies hydrocar-
bon impurity.

and air, the OH group of ethanol can
hydrogen bond to surface O groups, result-
ing in a decrease in the net dipole mo-
ment. In a similar manner, water does
not align on freshly etched porous Si,
because the surface is hydrophobic. When
the surface is made more hydrophilic, H,O
hydrogen-bonding interactions can pro-
duce the net dipole and the concomi-
tant increase in the nonradiative or sub-
bandgap emission channel. Benzene, be-
cause it has zero dipole moment, can-
not stabilize surface traps through polar
interactions; therefore, it quenches both
materials to the same extent, regardless
of the nature of the porous Si surface
(Fig. 2).

The fact that benzene has no dipole
moment but still quenches the PL of
porous Si suggests that a second mecha-
nism is important. Measurements of PL
lifetime support the existence of a separate
nonradiative channel for nonpolar adsor-
bates. We measured PL decay data from a
porous Si sample in vacuum or exposed to
benzene or ethanol vapors with a pulsed
N, laser (337 nm) and a gated charge-
coupled device detector setup (100-ns
time resolution). The highly nonexponen-
tial decay curves for porous Si in vacuum
and benzene vapor had the same t,, (2.9
+ 0.4 and 3.5 = 0.3 ws, respectively) and
scaled identically in time, whereas the PL
decay from ethanol-exposed porous Si was
much shorter (t,, = 0.98 = 0.03 ps).
Thus, at least two nonradiative mecha-
nisms are operative in the solvent-induced
quenching of PL from porous Si: polar
molecules like ethanol decrease the long
(microsecond) component of the emission
lifetime, whereas the nonpolar quencher
benzene does not.

The significant surface sensitivity of po-
rous Si demonstrated in this report indi-
cates that the simple quantum confinement
model provides an inadequate description
of the photophysics of this material. Al-
though the energetics of electron-hole pair
generation may be determined by spatial
electron or hole confinement, an adequate
model to describe the recombination pro-
cesses in luminescent porous Si should ac-
count for the accessibility of surface-related
decay processes.

Fig. 2. PL spectra of sam-
ples exposed to vacuum
( ) and ethanol (— —),
water (-++ - ), and benzene
(—-—) vapors. (A) A
freshly etched porous Siwa-
fer, and (B) a chemically
modified porous Si wafer.
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