

that produced by the competent substrate. The peaks eluting with 50, 53, and 60% methanol, which represented NCS-chrom spontaneous degradation products, were diminished with the competent substrate. That the new material is the post-activated form of NCS-chrom that is involved in hydrogen atom abstraction from DNA was shown by its incorporation of ³H when the substrate was a 16-mer DNA with a ³H label at the C-5' of C22 (Fig. 4C). These results show that the conversion of NCSchrom into a hydrogen-abstracting (presumably radical) species requires the participation of a particular DNA structure and confirm the involvement of C-5' chemistry in the cleavage reaction. Our finding of a new post-activated form of the drug in the presence of bulged DNA contrasts with the thiol-promoted reaction in which the final drug product is the same, whether duplex DNA is present or not (15). Radioactive peaks eluting at 4 min and 30 to 45 min represent cytosine (from the partial spontaneous breakdown of nucleoside 5'-aldehyde) and smaller oligonucleotides, respectively, generated in the DNA damage reaction (Fig. 4C). Quantitation of the three radioactive peaks showed that the amount of ³H abstracted by the drug from C-5' is sufficient to account for the DNA products.

DNA cleavage involves general base catalysis and is optimal at pH ~9.0. This observation suggests that drug activation requires ionization of the phenolic hydroxyl group of the NCS-chrom naphthoate moiety, which has an equilibrium constant (pK_{a}) of ~8.5 (16). One possibility is that the bent DNA substrate induces a conformational change in NCS-chrom so as to bring the hydroxy naphthoate and the bicyclic enediyne within proximity of the reaction. This change may enhance the ability of a nucleophile, either the phenolate anion or a tautomeric species associated with the naphthoate moiety, to attack C-12 of NCSchrom and initiate the cycloaromatization reaction to form the radical species (17). It is also possible that this reaction is a spontaneous one (18) and that a subsequent step is modified by the DNA to generate another intermediate form of the drug.

Our study suggests the potential use of NCS-chrom as a general probe for bulged structures in nucleic acids. The resemblance of the structure studied here and that of the trans-activation response sequence in human immunodeficiency-type 1 viral RNA warrants study of the latter as a target for both natural and synthetic enediynes.

REFERENCES AND NOTES

- 1. I. H. Goldberg, Acc. Chem. Res. 24, 191 (1991), and references therein.
- 2. M. D. Lee, G. A. Ellestad, D. B. Borders, ibid., p. 235

- 3. Y. Sugiura et al., Proc. Natl. Acad. Sci. U.S.A. 86, 7672 (1989)
- 4 N. Zein et al., ibid. 90, 2822 (1993).
- 5. A. G. Myers, Tetrahedron Lett. 28, 4493 (1987).
- T. Hatayama, I. H. Goldberg, M. Takeshita, A. P 6 Grollman, Proc. Natl. Acad. Sci. U.S.A. 75, 3603 (1978)
- 7 L. S. Kappen, C.-q. Chen, I. H. Goldberg, *Bio-chemistry* 27, 4331 (1988).
- A standard reaction (in the dark for 1 hour on ice) contained 50 mM tris-HCI (pH 8.5), 1 mM EDTA, 31-I DNA that was either 5' ³²P-labeled with $[\gamma^{-32}P]$ adenosine triphosphate and polynucle-ctide kinase (225 IIM phosphate) or 3' ${}^{32}P$ -laotide kinase (225 µM phosphate) or 3' beled with $\left[\alpha^{-32}P\right]$ cordycepin triphosphate and terminal deoxynucleotidyl transferase (450 µM phosphate), and NCS-chrom (48 µM). NCSchrom in methanol was added last (final methanol concentration was ≤10%). When dsDNA was the substrate, we annealed the 32 P-labeled strand with a 2.5-fold excess of its complementary strand in ×2 reaction buffer by heating the mixture at 90°C for 2 min and cooling it slowly. The dried sample was dissolved in 80% formamide for analysis on a 15% sequencing gel. Gel bands were quantitated with a phosphorimager (Molecular Dynamics, Inc., Sunnyvale, CA). About 73% of the starting material was cleaved at T22.
- 9. L. S. Kappen and I. H. Goldberg, unpublished data. Biochemistry 22, 4872 (1983) 10
- 11. J. A. Rice and D. M. Crothers, ibid. 28, 4512 (1989) 12.
- A. Bhattacharyya and D. M. Lilley, Nucleic Acids Res. 17, 6821 (1989).
- 13. C.-H. Hsieh and J. D. Griffith, Proc. Natl. Acad.

Sci. U.S.A. 86, 4833 (1989)

- 14. DNA was first removed from the reaction mixture (200 µl) by ethanol precipitation. The supernatant was lyophilized, and the pellet was redissolved in 10% aqueous methanol for analysis by HPLC with a reversed-phase Beckman Ultrasphere octadecylsilane column (5 $\mu\text{m},$ 4.6 mm by 25 cm). The column was initially eluted for 10 min (1 ml/min) with 10 mM ammonium acetate (pH 5.0), followed by a 60-min linear gradient of 0 to 60% methanol that contained 10 mM ammonium acetate (pH 5.0). Radioactivity in the fractions was quantitated by liquid scintillation counting.
- D.-H. Chin, C.-h. Zeng, C. E. Costello, I. H. Gold-berg, *Biochemistry* 27, 8106 (1988). M. A. Napier and I. H. Goldberg, *Mol. Pharmacol.* 15.
- 16. 23, 500 (1983).
- 17. Recent ¹H nuclear magnetic resonance and mass spectroscopic studies of the post-activated drug (O. D. Hensens, D. L. Zink, D.-H. Chin, L. S. Kappen, I. H. Goldberg, unpublished data) indicate that a covalent bond is formed between C-1" and C-12 as a result of the tautomeric generation of an attacking nucleophile at C-1"
- 18. After submission of this paper, M. Lamothe and P. L. Fuchs [J. Am. Chem. Soc. 115, 4483 (1993)] reported on model studies that show that α -hydroxy naphthoate esters can undergo intramolecular alkylation at carbon and both oxygen centers.
- Supported by U.S. Public Health Service grant CA 19. 44257 from NIH. We thank G. A. Ellestad for calicheamicin γ_1^I and T. W. Doyle and J. Golik for esperamicin A.

9 June 1993; accepted 28 July 1993

Rat Annexin V Crystal Structure: Ca²⁺-Induced Conformational Changes

N. O. Concha,* J. F. Head, M. A. Kaetzel, J. R. Dedman, B. A. Seaton[†]

Annexins are a family of calcium- and phospholipid-binding proteins implicated in mediating membrane-related processes such as secretion, signal transduction, and ion channel activity. The crystal structure of rat annexin V was solved to 1.9 angstrom resolution by multiple isomorphous replacement. Unlike previously solved annexin V structures, all four domains bound calcium in this structure. Calcium binding in the third domain induced a large relocation of the calcium-binding loop regions, exposing the single tryptophan residue to the solvent. These alterations in annexin V suggest a role for domain 3 in calciumtriggered interaction with phospholipid membranes.

 ${f T}$ he annexin family of proteins (1) is identified by a characteristic amino acid sequence that contains a highly conserved core region, consisting of four or eight repeats of approximately 70 residues, and a highly variable NH2-terminal region (2). The conserved core region gives rise to the Ca²⁺-dependent binding to phospholipid membranes that is shared by all annexins.

tTo whom correspondence should be addressed.

SCIENCE • VOL. 261 • 3 SEPTEMBER 1993

The sequence differences found in the NH₂terminal regions of the molecules may contribute to the specific cellular function of each annexin.

Amino acid sequence data (3) indicate that annexins do not have the "E-F hand" Ca²⁺ coordinating sites found in calmodulin and its homologs. Several studies suggest that annexins in the absence of membranes have a much lower (millimolar as compared to micromolar dissociation constants) affinity for Ca²⁺ than the E-F hand family; however, when annexins are bound to the phospholipid bilayer, their apparent Ca²⁺binding affinity is greatly enhanced (to micromolar levels) (4, 5). The binding of annexins to phospholipids appears to require a membrane or micelle structure,

N. O. Concha, J. F. Head, B. A. Seaton, Department of Physiology, Boston University School of Medicine, Boston, MA 02118.

M. A. Kaetzel and J. R. Dedman, Department of Physiology and Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267.

^{*}Present address: Center for Advanced Research in Biotechnology, University of Maryland, Rockville, MD 20850

because soluble phospholipids are bound with very low affinity (5).

Previous annexin V crystal structures (6–8) have identified potential Ca^{2+} -binding sites in surface loops on the proposed membrane-facing surface of the molecule (6, 9). Calcium ions have been identified in three of the four homologous domains in annexin V. Each of these domains contains a conserved Ca^{2+} -binding motif (Table 1), which is structurally related to the Ca^{2+} and phospholipid-binding site of phospholipase A_2 (6). No Ca^{2+} ions have been found in domain 3, where this sequence motif is not conserved (10).

The crystal structure of rat annexin V has been determined to 1.9 Å resolution by multiple isomorphous replacement (Table 2). The amino acid sequences of human and rat annexin V (3) share 92% identity. Most of these substitutions are conservative replacements and occur mainly in domain 1. The two molecular structures are superimposable (Fig. 1) except in domain 3, which differs in conformation despite its close sequence similarity. The rat but not the human annexin V crystal structure shows Ca^{2+} bound in this domain, and Ca^{2+} ligation is the most likely explanation for the conformational difference (11). Chicken and human annexin V share 78% sequence identity, but their crystal structures show similar conformations and neither has Ca^{2+} bound in domain 3 (8).

The conformational difference between the human and rat annexin V crystal structures correlates well with previous spectroscopic results. Fluorescence studies have reported a Ca²⁺-induced solvent exposure of the domain 3 tryptophan in annexin V and, in the presence of phospholipid vesicles, the insertion of this tryptophan into the membrane in close proximity to phospholipid headgroups (12). In the rat annexin V structure, with Ca²⁺ bound in domain 3, the tryptophan of the 3AB (13) loop extends away from the molecule (Fig. 2). In contrast, in the crystal structures of annexin V with no Ca²⁺ in this domain, the tryptophan is buried in the hydrophobic protein core (14).

Table 1. Sequence alignment of the annexin V AB-loop Ca²⁺-binding sites (18). The first three coordination positions (boxed) bind Ca²⁺ through carbonyl oxygens. The spatially close but sequentially distant acidic residues occupy the fourth and fifth coordination positions. The remaining two positions may be water molecules.

Domain (residues)		Sequence						
1 (26–31, 72) 2 (98–103, 142) 3 (181–187, 226) 4 (257–262, 301)	M L G M	E	K K K K	G G K G	L A W A	GGGG	T T T T	E D E D

In the unligated domain 3 of the human annexin V structure, the carbonyl oxygen of Gly¹⁸³ is hydrogen-bonded to the main chain amide group of Lys¹⁸⁶ in a reverse turn. In rat annexin V this interaction is broken, and the corresponding (15) Gly¹⁸¹ and Lys¹⁸⁴ carbonyl oxygens both bind Ca^{2+} . As a result, the lysine side chain adopts a new position pointing in the opposite direction. This repositioning affects the main chain conformation of the adjacent Trp¹⁸⁵, causing the aromatic side chain to move 18 Å from its original position in the hydrophobic core to the surface location (Fig. 3).

The movement of the tryptophan from a buried to an exposed position would be expected to be energetically unfavorable. However, in the rat annexin V crystal, the tryptophan is stabilized by hydrophobic contacts with an adjacent molecule in the crystal lattice, which may mimic the hydrophobic bilayer environment in membranebound annexin. The burying of the tryptophan, as seen in the human annexin V structure, is accompanied by a comparatively strained geometry in the unligated reverse turn loop conformation. In the human annexin \hat{V} structure, Lys¹⁸⁶ and Trp¹⁸⁷ are two of five residues that occur in lefthanded helical conformations (6). In the rat annexin V structure, the corresponding residues occur in a more energetically favorable conformation. Thus, the relief of the conformational strain coupled with Ca²⁺ binding may provide stabilization energy to the tryptophan-containing loop in its new conformation (16). Membrane binding would further stabilize this conformation. Indirect support for the proposed stability of the 3AB loop is our observation that the crystallographic b factors of this region are among the lowest in the molecule, indicating little thermal disorder or flexibility.

Calcium liganding groups in site 3AB of the rat annexin V structure assume the same pentagonal bipyramidal configuration seen in AB sites in the other domains, despite the sequence differences (Table 1). However, the main chain conformation has a slight bend to accommodate the singleresidue insertion.

The 3DE loop also binds Ca^{2+} in the rat annexin V structure, although Ca^{2+} coor-

Fig. 1. Superposition of α carbon-backbones of rat and human (*6*) annexin V molecules. Domain 1, blue, both proteins; domain 2, magenta, both proteins; domain 3, red, rat annexin V; yellow, human annexin V; and domain 4, green, both proteins. Trp¹⁸⁵ (rat) and Trp¹⁸⁷ (human) are also shown.

Fig. 2 (left). Comparison of 3AB and 3DE loop positions in the Ca^{2+} -bound (rat, red) and unligated (human, yellow) states. The Ca^{2+} ion on the right is in the AB loop and the Ca^{2+} ion on the left is in the DE loop. Prepared with MOLSCRIPT (*19*). **Fig. 3 (right).** View of the 1.9 Å electron density of the 3AB loop (*20*).

SCIENCE • VOL. 261 • 3 SEPTEMBER 1993

REPORTS

dination is somewhat different from that in the 3AB site. The 3DE Ca2+-binding site includes two peptide carbonyl oxygens (Asp²²⁴ and Thr²²⁷) and a bidentate carboxylate group (Glu^{232}). Consistent with the observation that Asp^{224} and Thr^{227} provide main chain carbonyl rather than side chain oxygen ligands, neither residue is highly conserved among annexin sequences (6). The existence of this type of site could not be predicted from sequence data. Glutamate-232, which provides an acidic side chain, is invariant in annexins except in the case of domain 7 of annexin VI, where the corresponding residue is basic. However, the residue immediately after is an aspartate, so this domain may include an insertion in the DE loop relative to other such domains.

Comparison of the rat and human annexin V crystal structures reveals even greater displacements in atom positions in the 3DE loop than in the 3AB loop. The carboxylate oxygens of Glu²²⁶ move 23 Å, swinging over the entire DE loop and permitting the Ca²⁺ to bind in the 3AB site. Binding of Ca²⁺ at the DE site does not appear to trigger this transition, because other DE loops in the molecule can adopt a similar conformation without binding Ca²⁺. The pattern of events implied by these observations is that Ca²⁺ binds first to

the 3AB site, triggering movement of the AB loop, which in turn triggers the movement of the 3DE loop into a conformation favorable for binding the second Ca^{2+} .

The conformational change that occurs as Ca^{2+} is bound in the 3DE loop can be roughly described as a coil-to-helix transition. The biggest changes in backbone angles occur in residues 222 through 224, which adopt characteristic α helix geometry (17). This positions the Glu²²⁶ side chain so that it can coordinate the Ca²⁺ in the adjacent 3AB loop.

In the Ca²⁺-bound form, the AB and DE loops are held together further by a hvdrogen bond between the peptide carbonyl oxygen of Glu²²⁶ in the DE loop and the hydroxyl group of Thr¹⁸⁷ in the AB loop. In annexin V, this threonine occurs in the X-K-G-X-G-T (18) sequence in the conserved loop motif and in the W-G-T of the third domain loop. To underscore the importance of this interaction in all annexins, the residue at the position equivalent to Glu²²⁶ in all domains is acidic, and the equivalent to Thr¹⁸⁷ is a hydroxyl-containing residue. In the only exceptions, domain 1 of annexins I and II, the absence of the acidic residue correlates with the absence of the hydroxyl.

Changes in domain 3 appear to facilitate interactions between the adjacent Ca^{2+} -

Table 2. Structure determination. Rat annexin V was purified and crystallized as previously described (*21*). The R3 crystals have unit cell dimensions of a = b = 156.9 Å and c = 37.03 Å. Native diffraction data were collected to 1.87 Å from two crystals on a Xentronics area detector using CuKa radiation, and derivative data sets were collected to the resolution shown from one crystal each. Data were processed with the XENGEN data processing software (*22*). Both isomorphous and anomalous difference data from three derivatives were used. Complete details of the structure determination will be published elsewhere (*23*). The model was built on a Silicon Graphics Iris 4D35 workstation using the software package O (*24*) and refined using the program XPLOR (*25*). The final model was refined against $F/\alpha(F) \ge 2$ (where α is the standard deviation) data from 6 to 1.9 Å resolution. The final 1.9 Å resolution model containing 2528 non-hydrogen atoms had an *A* factor (*26*) of 20.2%, with a bond length root-mean-square deviation (rmsd) of 0.015 Å and a bond angle rmsd of 2.9°. The overall *b* factors were 29 and 33 for main chain and side chain atoms, respectively. The last five residues at the COOH-terminus were too disordered to be included in the model. Seven calcium atoms, two sulfate ions, and 40 water molecules were refined. Omit maps were used to check the Ca²⁺-binding loops and other regions.

Parameters	Native	CMNP*	K ₂ Ptl ₆	GdCl ₃
Data resolution (Å)	1.87	3.10	2.50	3.05
Data completeness (%)	78.7	88.8	92.0	91.7
Observations (number)	42509	9778	22208	10866
Unique reflections (number)	22374	5661	10709	6078
R _m t	0.0415	0.0376	0.0445	0.0663
Mean fractional isomorphous		0.165	0.216	0.233
difference‡				
R _{merge} §		0.148	0.173	0.200
Sites (number)		2	. 3	2
Phasing power		2.35	1.95	1.43

*CMNP, 2-chloro-4-mercury nitrophenol. $\uparrow R_{sym} = \Sigma\Sigma(|l(h), -\langle l(h)\rangle|)/\Sigma\Sigma(h)$, where l(h), is the intensity of the *i*th measurement of the reflections *h* and $\langle l(h) \rangle$ is the mean intensity of the *N* equivalent reflections. The summation is over all the reflections in a given resolution range. $\ddagger Mean$ fractional isomorphous difference $= \Sigma|F_{PH} - F_P|/F_P$, where the summation is over all the reflections in a given resolution range. $\$ R_{merge} = \Sigma\Sigma(|f(h), -\langle F(h)\rangle|)/\Sigma\Sigma f(h)$, where F(h), is the structure factor amplitude of the *i*th measurement of the reflection *h*, and $\langle F(h)\rangle$ is the mean structure factor amplitude of the *N* measurements. The summation is over all the reflections. $\parallel Phasing power = F_H/E$, where F_H is the rms mean heavy atom contribution, and *E* is the rms residual defined as $[\Sigma(F_{PHC} - F_{PH})^2/N]^{1/2}$ where the summation is over all the reflections in a given resolution range. F_{PHC} is the calculated structure factor amplitude of the heavy-atom derivative, and F_{PH} is the observed structure factor amplitude of the heavy atom derivative.

binding loops and also between the loops and the phospholipid membrane. The disposition of hydrophobic residues in the AB loops in general may be an important link between Ca²⁺ binding and membrane interaction. In each of the three conserved X-K-G-X-G-T loops, the first hydrophobic (X) residue (Met²⁶, Leu⁹⁸, or Met²⁵⁷) coor-dinates Ca^{2+} through peptide carbonyl oxygens. These side chains are buried in the protein core, thus helping to anchor the loop. The second hydrophobic residue X $(Leu^{29}, Ala^{101}, or Ala^{260})$ is solvent-exposed in the Ca²⁺-bound AB conformation, where it may be capable of inserting into the lipid bilayer of the membrane. In domain 3, Leu¹⁸³ and Trp¹⁸⁵ both adopt a similarly exposed orientation in the Ca²⁺bound loop conformation, though neither is directly involved in Ca^{2+} coordination. The distribution of the exposed hydrophobic residues across the membrane-facing side of the molecule may explain the strong preference of annexins for membranes and micelles rather than phospholipid monomers.

REFERENCES AND NOTES

- R. D. Burgoyne and M. J. Geisow, *Cell Calcium* 10, 1 (1989); M. J. Crumpton and J. R. Dedman, *Nature* 345, 212 (1990); C. B. Klee, *Biochemistry* 27, 6645 (1988); C. E. Creutz, *Science* 258, 924 (1992); M. A. Swairjo and B. A. Seaton, *Annu. Rev. Biophys. Biomol. Struct.*, in press.
- M. J. Geisow, U. Fritsche, J. M. Hexham, B. Dash, T. Johnson, *Nature* **320**, 636 (1986); M. J. Geisow, *FEBS Lett.* **203**, 99 (1986).
- R. B. Pepinsky et al., J. Biol. Chem. 263, 10799 (1988).
- P. J. Śhadle, V. Gerke, K. Weber, *ibid.* 260, 16354 (1985); D. D. Schlaepfer, T. Mehlman, W. H. Burgess, H. T. Haigler, *Proc. Natl. Acad. Sci. U.S.A.* 84, 6078 (1987); H. T. Haigler, D. D. Schlaepfer, W. H. Burgess, *J. Biol. Chem.* 262, 6921 (1987); M. D. Bazzi and G. L. Nelsestuen, *Biochemistry* 30, 971 (1991).
- J. F. Tait, D. Gibson, K. Fujikawa, J. Biol. Chem. 264, 7944 (1989).
 R. Huber, J. Römisch, E.-P. Paques, EMBO J. 9,
- R. Huber, J. Römisch, E.-P. Paques, *EMBO J.* 9, 3867 (1990); R. Huber, M. Schneider, I. Mayr, J. Römisch, E.-P. Paques, *FEBS Lett.* 275, 15 (1990); R. Huber *et al., J. Mol. Biol.* 223, 683 (1992).
- A. Lewit-Bentley, S. Morera, R. Huber, G. Bodo, *Eur. J. Biochem.* **210**, 73 (1992).
 M. C. Bewley, C. M. Boustead, J. Walker, D. A.
- M. C. Bewley, C. M. Boustead, J. Walker, D. A Waller, R. Huber, *Biochemistry* 32, 3923 (1993).
- G. Mosser, C. Ravanat, J.-M. Freyssinet, A. Brisson, J. Mol. Biol. 217, 241. (1991).
- In the annexin I crystal structure [X. Weng et al., Protein Sci. 2, 448 (1993)], domain 3-contains a Ca²⁺ in the AB loop, although the DE loop remains unoccupied. The AB loop assumes the rat annexin V conformation in domain 3. However, almost half of the 3AB loop residues, including Trp¹⁸⁵, differ from annexin V.
- 11. The rat annexin V crystals were grown at a final Ca²⁺ concentration (20 mM) that was the highest of the published structures. In the "high Ca²⁺" human annexin V structure, crystals were grown at lower Ca²⁺ concentration and transferred into solutions containing 50 mM Ca²⁺, where they cracked and annealed (6). In this procedure, the crystal lattice contacts were formed before the transfer to high Ca²⁺, which appears to produce a different result from the cocrystallization procedure. In the rat annexin V crystals, Trp¹⁸⁵ partici-

pates directly in lattice contacts, and these crystals dissolve when transferred to low Ca2+ solutions

- 12. P. Meers. Biochemistry 29 3325 (1990). $_$ and T. Mealy, *ibid*. **32**, 5411 (1993).
- 13. Nomenclature as in (6): AB loops and DE loops separate the antiparallel A and B helices and D and E helices, respectively; numerals identify the domain
- 14. The proposed location of the exposed tryptophan at the polar-apolar interface of the phospholipid bilayer is consistent with tryptophan distribution in other membrane proteins. The partitioning of these side chains at the bilayer surface may promote proper ionic interactions and in gramicidin appears to play a role in ion conductance IW. Hu. K.-C. Lei, T. A. Cross, Biochemistry 32, 7035 (1993)].
- 15. Identical residues in domain 3 are numbered two higher in the human annexin V sequence on account of additional residues
- The φ, ϕ angles of Lys^{184} and Trp^{185} as observed 16. in human and rat annexin V structures (rat annexin V numbering) are as follows. Lys¹⁸⁴: $\phi = 27^{\circ}, \phi =$ 60° (human), φ = -97°, φ = 130° (rat); Trp¹⁸⁵: φ = 31°, φ = 58° (human), φ = -77°, φ = 118° (rat).
- 17. The φ, ϕ angles for residues 222 to 224 in human and rat annexin V structures (rat annexin V numbering) are as follows. Residue 222: $\phi = -85^\circ$, ϕ = 8° (human), φ = -58°, φ = -43° (rat); residue 223, φ = -131°, φ = 147° (human), φ = -61°, φ= -41° (rat); residue 224, φ = -117°, φ = 135° (human), φ = -68°, φ = -40° (rat).
 18. Single-letter abbreviations for the amino acid res-
- idues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M,

Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. P. J. Kraulis, *J. Appl. Crystallogr.* **24**, 946 (1991).

- 19
- Map coefficients are $(2|F_o| |F_c|)$, contoured at 20 1.8σ.
- 21. B. A. Seaton, J. F. Head, M. A. Kaetzel, J. R. Dedman, J. Biol. Chem. 265, 4567 (1990)
- 22. A. J. Howard, C. Nielsen, N. H. Xuong, Methods
- Enzymol. 114, 452 (1985). N. O. Concha, J. F. Head, M. A. Kaetzel, J. R. 23 Dedman, B. A. Seaton, in preparation.
- T. A. Jones, S. W. Cowan, M. Kjeldgaard, Acta Crystallogr. Sect. A 47, 110 (1991).
- 25 A. T. Brunger, A. Krukowski, J. W. Erickson, ibid. 46, 585 (1990).
- R factor = $\Sigma [F_{obs}(h) F_{calc}(h)]/F_{obs}(h)$, where $F_{obs}(h)$ and $F_{calc}(h)$ are the observed structure factor amplitude, and the structure factor ampli-26. tude calculated from the model, respectively.
- 27. We thank E. and M. Westbrook for assistance with data collection at Argonne National Labs and G. Petsko for advice and for his crystallographic programs. We thank our colleagues in our laboratories, P. Meers for discussion, and K. Allen for help with figures. Supported by National Institutes of Health grants R29-GM-44554 (B.A.S.), RO1-NS-20357 (J.F.H.), and RO1-DK-41740 (J.R.D.); the American Heart Association. Massachusetts Division, Research Grant-in-Aid 13-539-878 (B.A.S.); and an American Cancer Society Junior Faculty Research Award (B.A.S.). Coordinates have been deposited in the Brookhaven Protein Databank (accession number 1RAN).

9 June 1993; accepted 19 July 1993

Cooperative Interactions Between the Caenorhabditis elegans Homeoproteins UNC-86 and MEC-3

Ding Xue, Yuan Tu, Martin Chalfie*

The POU-type homeodomain protein UNC-86 and the LIM-type homeodomain protein MEC-3, which specify neuronal cell fate in the nematode Caenorhabditis elegans, bind cooperatively as a heterodimer to the mec-3 promoter. Heterodimer formation increases DNA binding stability and, therefore, increases DNA binding specificity. The in vivo significance of this heterodimer formation in neuronal differentiation is suggested by (i) a loss-of-function mec-3 mutation whose product in vitro binds DNA well but forms heterodimers with UNC-86 poorly and (ii) a mec-3 mutation with wild-type function whose product binds DNA poorly but forms heterodimers well.

The differentiation of six touch receptor neurons in the nematode C. elegans requires two homeobox genes, unc-86 and mec-3. The unc-86 gene encodes a POU-type homeoprotein required in touch cell precursors to generate the touch receptor neurons (1, 2). The mec-3 gene, which encodes a LIM-type homeoprotein, is needed to specify the touch cell fate once the cells have been produced (3-5). The presence of unc-86 protein (UNC-86) in the touch cells (2), the binding of UNC-86 to the mec-3promoter, and the requirement for some of the UNC-86 binding sites in vivo for mec-3

regulation is likely to be direct (6).

expression (6) suggest that unc-86 directly

initiates mec-3 expression. Furthermore,

mutation of one UNC-86 binding site in

the mec-3 promoter reveals that unc-86 is

also required to maintain mec-3 expression

(6), a role consistent with the finding that

UNC-86 is present in the touch cells

expression of genes such as mec-4 and mec-7

(3, 7, 8) that are needed for touch receptor

function (4, 9), and it is required for the

maintenance of its own expression (5, 6,

10). Because mec-3 protein (MEC-3) binds

to its own promoter and mutations in some MEC-3 binding sites affect the maintained

expression of mec-3lacZ fusions, such auto-

The mec-3 gene is required for proper

throughout the life of the animals (2).

The proteins UNC-86 and MEC-3 bind to overlapping regions in the mec-3 promoter (Fig. 1A), two of which (CS2 and CS3) are needed for mec-3 expression (6). We examined the binding of UNC-86 and MEC-3 to oligonucleotides of these regions in gel mobility-shift assays (11). UNC-86 bound differently to the two oligonucleotides, vielding one retarded band with CS2 and two retarded bands with CS3 (Fig. 1B). The two CS3 bands represent the binding of UNC-86 as a monomer and a dimer (12). Homodimer formation has been observed with three other POU-type homeoproteins, Pit-1, Oct-2, and Cf1-a (13, 14).

As for MEC-3, it bound to both oligonucleotides and resulted in a single retarded species (Fig. 1B), although the binding of MEC-3 to CS2 was weak. When both MEC-3 and UNC-86 were added to each of the oligonucleotides, the MEC-3 band was reduced and a more intense band (the UM complex) appeared at a position near the UNC-86 monomer band. The UM complex contains both MEC-3 and UNC-86 because it can be supershifted by either an antibody to MEC-3 (anti-MEC-3) or an antibody to an influenza virus epitope tag added to UNC-86. In the UM complex, MEC-3 bound at least 24 times as much oligonucleotide (CS2 or CS3) as it did without UNC-86. The binding of oligonucleotide by UNC-86 in the UM complex increased at least sixfold over the binding of DNA to UNC-86 alone. These data suggest that the binding of both proteins to DNA, especially the binding of MEC-3 to DNA, is greatly increased by a cooperative protein interaction. Although the UM complex is observed in gel shifts with both oligonucleotides, most of the following experiments were done with the CS3 oligonucleotide.

Interactions between UNC-86 and MEC-3 were also detected by chemical crosslinking (15) (Fig. 2A), which showed that a heterodimer is formed, and by immunoprecipitation (16) (Fig. 2B), which showed that the proteins can interact without DNA.

Truncated UNC-86 and MEC-3 allow for visualization of the heterodimers in gel shifts and help define the domains needed for these interactions (Fig. 3). The POU domain of UNC-86 [UNC-86(POU)] is sufficient for both DNA binding and heterodimer formation. For MEC-3, a region of only 76 amino acids (amino acids 217 to 293) containing the homeodomain and the adjacent COOH-terminal 16 amino acids was sufficient for DNA binding and heterodimer formation, whereas the MEC-3 homeodomain (amino acids 217 to 277) alone bound DNA but formed heterodimers with UNC-86 on DNA very poorly. The LIM domains, which neither bind DNA nor form heterodimers, appear to inhibit DNA binding. The extrahomeodomain re-

Department of Biological Sciences, Columbia University, New York, NY 10027.

^{*}To whom correspondence should be addressed.

¹³²⁴