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Stratospheric Meteorological Conditions in the 
Arctic Polar Vortex, 1 99 1 to 1 992  

P. Newman, L. R. Lait, M. Schoeberl, E. R. Nash, K. Kelly, 
D. W. Fahey, R. Nagatani, D. Toohey, L. Avallone, J. Anderson 

Stratospheric meteorological conditions during the Airborne Arctic Stratospheric Expe- 
dition II (AASE II) presented excellent observational opportunities from Bangor, Maine, 
because the polar vortex was located over southeastern Canada for significant periods 
during the 1991-1 992 winter. Temperature analyses showed that nitric acid trihydrates 
(NAT temperatures below 195 k) should have formed over small regions in early 
December. The temperatures in the polar vortex warmed beyond NAT temperatures by 
late January (earlier than normal). Perturbed chemistry was found to be associated with 
these cold temperatures. 

T h e  mechanism responsible for causing 
large perturbations in Arctic stratospheric 
chemistry has been established as heteroge- 
neous processes on polar stratospheric 
clouds (PSCs) (1). It has been hypothesized 
that PSCs consist of various nitric acid 
hvdrates. sulfuric acid aerosols. and water 
ice particles. These clouds tend to form at 
temDeratures below 195 K (2). close to the 

~ , .  
temperature required for the condensation 
of NATs (3). Water ice particles form at 
temperatures near 188 K and are large 
enough to fall out of the stratosphere on 
short time scales. The settling of these ice 
particles reduces both water and nitrogen 
concentrations in the stratos~here (dehv- 

\ ,  

dration and denitrification, respectively), 
further perturbing the stratospheric photo- 
chemical balance. In this report, we char- 
acterize the thermal structure of the Arctic 
lower stratosphere during the Northern 
Hemisphere winter of 1991-1992 (AASE 
11) and contrast this with the corresponding 
data for the winter of 1988-1989 (AASE 
I). We will relate these cold temperatures 
to PSCs and discuss the impact of PSCs on 
the polar vortex chemistry during the win- 
ter period. 

In early December 1991, the polar 
lower-stratospheric temperatures at the 
460 K potential temperature (0) surface 
(4) were cold (<205 K), and by late 
December they had cooled by an addition- 
al 10 K (5 ) .  In early January 1992, the 

cold temperatures straddled the polar 
night boundary and were located near the 
vortex edge (6), with a minor warming 
that raised temperatures above 195 K in 
late January (Fig. 1). During 1989, the 
cold temperatures were located mainly in 
the polar night, well inside of the polar 
vortex boundary, with a major warming in 
Februarv 1989 (7. 8 ) .  . .  , 

We examined the relation between the 
1991-1992 cold temperatures and the per- 
turbed chemistry in the stratosphere by 
using back trajectories to estimate the 
coldest temperature experienced by air 
parcels 10 days before sampling by the 
National Aeronautics and Space Admin- 
istration (NASA) ER-2 aircraft (9). We 
then used measured H 2 0  and derived 
HNO, data (10) to estimate the NAT 
phase transition temperature. High con- 
centrations of chlorine monoxide (C10) 
(in excess of 200 parts per trillion) marked 
air parcels that experienced heterogeneous 
chemistry on PSCs. The National Meteo- 
rological Center (NMC) temperatures ob- 
served on the back trajectories (Fig. 2) 
reveal that (i) at temDeratures below the ~, 

NAT phase transition concentrations of 
C10 were almost always high, (ii) at 
temperatures slightly above the phase 
transition there was some perturbed chem- 
istry (but generally not to the same degree 
as at those points well below the phase 
transition), and (iii) at temperatures 6 K 
higher than the phase transition concen- 
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vortex. We used the data to compute the 
range and average NAT phase tempera- 
tures on the 460 K surface (194.5 + 2 K). 
When NMC temperatures fell below this 
phase transition and formed PSCs, we 
used the NMC and trajectory data to 
calculate the PSC area and the rate of 
processing by PSCs. 

Polar temperatures grazed the NAT 
saturation line on 3 December 1991 and 
dropped significantly below the NAT line 
in late December (Fig. 3). During late 
January 1992, temperatures warmed signif- 
icantly. Balloon observations show that 
temperatures were below the NAT line as 
late as 9 February and were cold enough to 
allow ice particle formation on 17 and 18 
January 1992. However, NMC tempera- 
tures never fell below the frost point. 

We used the 194.5 K (lower estimate: 
193.5 K; upper estimate: 196 K) NAT 
phase transition temperature estimated 
from the ER-2 data on the 460 K O surface 
to calculate that NATs first appeared on 19 
December 1991 (lower: 26 December; up- 
per: 5 December) and the last day on which 
N.ATs were detected was 27 January 1992 
(lower: 27 January; upper: 11 February). 
This gave a total of 40 days (lower: 33 days; 
upper: 69 days). 

We used the trajectory model to analyze 
differences between the winters of 1988-1989 
and 1991-1992 (1 2). The technique involves 
dividing the polar vortex region (defined by 
Ertel's potential vorticity values in excess of 
2.5 x lop5 K mZ kg-' s-' on the 460 K 
surface) into equal areas on an equal-spacing 
grid. A parcel was placed at the center of each 
of these equal areas and run forward over the 
period during which PSCs could have formed. 
Both the 1988-1989 trajectories and the 
1991-1992 trajectories were initialized on 10 
December and were run forward to 18 Febru- 
ary (70 days) (1 3). 

The fraction of the vortex on the 460 K 
surface dovered by PSCs was over 30% in 
1991-1992 and up to 40% in 1988-1989 
(Fig. 4). The error bars on the PSC vortex 
coverage range are rather large, extending 
from 14 to 37% in early January when the 
vortex :overage was 27%. 

The fraction of air inside the vortex that 
passed through the PSC air at least once (the 
air was processed by PSCs) was over 90% by 
late January in both 1988-1989 and 1991- 
1992 (85% for the lower 193.5 K NAT 
temperature) (Fig. 5). In both cases, approx- 
imately 5% of the parcels escaped the vortex 
into mid-latitudes, where temperatures were 
too warm to permit the formation of PSCs. 
These processing rates are consistent with 
previous calculations performed with a 
three-dimensional transport code (1 4) and 
are independent of the chemical recovery 
time for recovery times greater than 2 weeks. 

In early December 1991, the processing of 
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Fig. 1. N M C  temperature average 
for 1 to 15 January 1989 on a 460 
K isentropic surface. The 195 K 
contour (bold) indicates the re- 
gion of PSC formation. The thick 
shaded line shows the vortex 
boundary and the dashed line 
shows the polar night boundary 
on 15 January. 

the vortex was slow because the area covered 
by PSCs was small. However, the area of the 
vortex that had been processed increased rap- 
idly in late December because PSCs covered 
15% of the vortex and the PSC coverage was 
toward the vortex edge. When a PSC is 
located at the vortex edge (near the jet core), 
strong winds can move substantial amounts of 
air mass through the relatively stationary PSC 
formation region, thereby processing air. In 
1988-1989 the processing was slower, because 
the PSC coverage was small early in the 
period, and the PSCs were located at the 
vortex center, where air tended to circulate 
within the cold region rather than moving 
through the region. The degree of processing 
by ice particles was low in both 1991-1992 
and 1988-1989. In an average winter, cold 
temperatures persist from early December to 
mid-February; therefore, it seems probable 
that even relativelv warm Northern Hemi- 

NAT temperature 

Fig. 2. Minimum NMC back trajectory temper- 
ature differenced with the calculated NAT sat- 
uration temperature. The difference is plotted 
versus the calculated NAT saturation tempera- 
ture. The saturation temperature is calculated 
from the in situ ER-2 observations of H,O and 
derived HNO, (10). Filled (open) circles indi- 
cate CIO values above (below) 200 ppt. Dot 
size is proportional to the CIO concentration. 

sphere winters will lead to virtually complete 
processing of the polar vortex. Calculations 
on other potential temperature surfaces (440 
to 520 K) were similar. Above 520 K and 
below 440 K, temperatures were generally too 
warm to permit PSCs to form, so the effect of 
PSCs on the vortex at these altitudes was 
minimal. 

We used the ensemble of 1991-1992 tra- 
jectories to estimate that 26% of the air in the 
vortex was below PSC temperatures for 3 
days, while no air in the vortex spent more 
than 10 days as a PSC. On average, a parcel 
of air spent 2.8 2 2.0 days at temperatures 
below PSC temperatures. In contrast, during 
1988-1989 an average parcel of air spent 8.1 
+ 5.0 days. Much of the 1988-1989 vortex 
air snent substantial time as PSCs. because air 
in the center of the vortex tended to cycle 
around inside the cold region rather than pass 
through the cold region, as was characteristic 
in 1991-1992. We also calculated that an 

SCIENCE ' VOL. 261 27 AUGUST 1993 

average parcel of air in the 1991-1992 (1988- 
1989) vortex encountered 2.6 + 1.2 (5.0 + 
2.2) PSCs over the course of the winter. 

Because a 10-pm particle can fall 1 km in 
3 days, ice particles should settle out of the 
stratosphere on short time scales, leading to 
denitrification and dehydration. Because 
temperatures were too warm for ice particles 
in 1991-1992, sedimentation by ice particles 
in the Northern Hemisvhere should be rel- 
atively small in comparison to the Southern 
Hemisphere. In contrast, in 1988-1989 the 
vortex was partially denitrified. However, 
this ice particle sedimentation is highly con- 
ditional, because (i) the ice particle area is 
not well represented, (ii) particle size distri- 
butions are not samvled (sedimentation rates . . 
are a strong function of particle size), and 
(iii) subsynoptic cold temperatures are not 
resolved in the observational network. 

Increased water or HNO, concentrations 



Fig. 3. Minimum tem- 
perature in the region 
60" to 90°N. The solid 
line represents the 
NMC minimum temper- 
ature, and the stars and 
diamonds are from 
0000 and 1200 UT 
raobs (radiosonde ob- 
servations), respective- 
ly. The two horizontal 
solid lines represent the 
estimated NAT temper- 
ature (upper) and the 
frost point (lower). 
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Fig. 4. The solid line (shaded region) shows the 
fractional PSC coverage on the 460 K surface 
of the polar vortex during 1991-1992 (1988- 
1989). The two dotted lines show the fractional 
coverage for extreme estimates of PSC satura- 
tion temperatures in 1991-1992. 

will cause the PSC formation temperatures 
to increase. Water and HNO, increase 
because of increases in two source gases, 
CH, and NzO (CH4 is currently increas- 
ing at 0.8% per year, and NzO at 0.2% per 
year) (15). We used the CH, trend to 
calculate an H,O increase of 0.007 part 
per million by volume per year (1 6 ) ,  while 
the HNO, increase is estimated as 0.009 
ppblyear (1 7). These trends of H 2 0  and 
HNO, result in a yearly increase in the 
NAT phase transition temperature of 0.01 
K. Hence, changes in the NAT phase 
transition and the consequent changes in 
PSC processing are small. 

Day number 

Fig. 5. The solid line (shaded region) shows the 
fractional PSC processing on the 460 K surface 
of the polar vortex during 1991-1992 (1988- 
1989). The two dotted lines show the fractional 
processing for extreme estimates of PSC satu- 
ration temperatures in 1991-1 992. 

these increased HN03 and HzO concentra- 
tions on the 1991-1992 winter would (i) 
extend the last day of NAT from 27 January 
to 9 February, (ii) increase by 10% the 
vortex coverage by NATs in midwinter, (iii) 
decrease vortex processing time scales by 
days, (iv) almost double the time spent by a 
piece of the vortex as a PSC, from 2.9 to 5.5 
days, and (v) lead to the formation of a large 
region of ice particles on 18 January where 
none would have existed under current con- 
ditions, which would increase the denitrifi- 
cation of the vortex. 
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Chemical Loss of Ozone in the Arctic Polar Vortex 
in the Winter of 1991 -1 992 

R. J. Salawitch, S. C. Wofsy, E. W. Gottlieb, L. R. Lait, 
P. A. Newman, M. R. Schoeberl, M. Loewenstein, J. R. Podolske, 
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D. W. Fahey, D. Baumgardner, J. E. Dye, J. C. Wilson, 
K. K. Kelly, J. W. Elkins, K. R. Chan, J. G. Anderson 

In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapo- 
lated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the 
Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) 
in the winter of 1991-1 992. The analysis indicates removal of 15 to 20 percent of ambient 
ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. 
Observations during AASE II define rates of removal of chlorine monoxide attributable to 
reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of 
hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide 
declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were 
inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed 
in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double. 

Loss rates for 0, were estimated for the 
lower stratosphere during AASE I1 in 
1991-1992. We computed distributions of 
reactive chlorine (Cl* = [ClO] + 2 x 
[(ClO),]) and bromine (Br* = [BrO] + 
[BrCl]) (where brackets denote concentra- 
tion) along the flight track of the ER-2 
airplaneSby assimilating in situ observa- 
tions of C10 and BrO with a simple 

model. Relations between potential vor- 
ticity (PV) and potential temperature 
(a), meteorological tracers (1, 2),  and 
Cl* and Br* were developed to compute 
0, loss rates for the north polar region, 
accounting for the influence of insolation, 
temperature, and pressure as air circulates 
around the polar vortex (3, 4). Seasonal 
changes observed for C10 (51, NO (6), . . 
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bridge, MA 021 38. dimer, (Clo),, followed by photolysis 
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Fig. 1. Observations and reconstructions for 20 
January 1992. (A) Observed mixing ratios of 
CIO and HCI, inferred mixing ratios for CI* and 
CI,, and (B) the 24-hour mean loss rates for 
ozone, computed using Eq. 4 and CI* shown in 
(A). The total recombination rate and contribu- 
tions from the CIO-CIO, Br0-CIO, and CIO-0 
catalytic cycles (reactions 1 ,  2, and 3) are 
shown. All measurements taken along the ER-2 
flight track, plotted against universal time 
(GMT). Corresponding latitudes are indicated 
at the top of the figure. 

C10 + C10 + M + (ClO), + M (1) 

(ClO), + hv + ClOO + C1 

ClOO + C1 + 0, 

2(C1 + 0, + C10 + 0,) 

Net: 20, + 30 ,  

catalyzes the recombination of two 0, mol- 
ecules with the use of one photon (with 
energy hv) (1 5). Thermal decomposition of 
(CIO), short-circuits this cycle, regenerat- 
ing C10 without producing C1 atoms or 
recombining 0,. 

2) The reaction of BrO and C10 and 
the photolysis of BrCl 

BrO + C10 + C1 + Br + 0, (2a) 

+ Br + OClO (2b) 

+ BrCl + 0, (2c) 

BrCl + hv + Br + C1 

Br + 0, + BrO + 0, 

Net (2a, 2c): 20, + 302 

also catalyzes recombination of 0, (13). 
Photolysis of OClO produces 0 atoms; 
therefore, reaction 2b does not destroy 0, 
(16)- 

3) The reaction sequence 
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