
binding a subunits with high affinity, pre- 
venting binding of the DNA target se- 
quence. It is also possible that the SMMHC 
protein contributes a domain that results 
in inappropriate transcriptional regulation 
by the a /P  complex. Finally, the CBFP- 
SMMHC dimers may acquire some new 
activity in transcriptional regulation. 

The elucidation of these two genes as " 
the fusion partners in an inversion leading 
to a common form of adult leukemia should 
also allow the development of a mouse 
model and a sensitive RT-PCR test for 
specific diagnosis and assessment of residual 
disease after treatment. Complete elucida- 
tion of the mechanisms by which CBFP- 
SMMHC transforms a particular hemato- 
poietic lineage may eventually lead to new 
and more effective therapies for this rela- 
tively common form of adult leukemia. 
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Localization of an Exchangeable GTP Binding Site 
at the Plus End of Microtubules 

T. J. Mitchison 
Microtubule polarity arises from the head-to-tail orientation of a-p tubulin heterodimers in 
the microtubule lattice. The identity of the polypeptide at each end of the microtubule is 
unknown, but structural models predict that the p-tubulin end contains an exchangeable 
guanosine triphosphate (GTP) binding site. When GTP-coated fluorescent beads were 
incubated with microtubules, they bound specifically to plus ends, suggesting that tubulin 
is oriented in microtubules with p-tubulin toward the plus end. 

Microtubules are polar polymers of the 
 rotei in tubulin. In most cells. the minus 
ends of microtubules are attached to an 
organizing center near the cell center, 
whereas the more peripheral plus ends grow 
and shrink by dynamic instability ( I ) .  Tu- 
bulin is a heterodimer of a- and P-tubulin 
subunits, which are 36 to 42% identical in 
sequence and have similar structures (2). 

The tubulin polypeptides are arranged 
head-to-tail i n  the heterodimer and the 
heterodimers are arranged head-to-tail in 
the microtubule lattice (3), creating a polar 
lattice. So far it has not been determined 
which subunit type is exposed at the plus 
end and which is exposed at the minus end 
of microtubules. 

The polypeptides a- and p-tubulin each 
bind one molecule of guanine nucleotide - 
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ably and is referred to as the N site. The 
binding site on p-tubulin exchanges rapidly 
with free nucleotide in the tubulin het- 
erodimer and is referred to as the E site. On 
the polymerization of tubulin into microtu- 
bules, E site GTP is hydrolyzed to guano- 
sine diphosphate (GDP), which is bound 
nonexchangeably (4). Combining the 
structural and biochemical data leads to a 
model in which the p-tubulin end of a 
microtubule should have an exchangeable 

GTP binding site (3, and this property 
could be used to infer the orientation of the 
dimer in the microtubule. 

To detect the small number of E sites 
that might be exposed at one end of a 
microtubule, we covalently coated 30-nm 
fluorescent beads with GTP by means of a 
reaction with the ribose ring (6 ) .  When a 
fivefold excess of these GTP-coated beads 
was incubated with taxol-stabilized micro- 
tubules (7), many microtubules bound a 

Fig. 1. Binding of nucleotide-coated beads (yellow dots) to taxol-stabilized, tetramethylrhodamine- 
labeled microtubules (red lines) visualized by fluorescence microscopy. (A) Typical field with 
GTP-coated beads. (B) Typical field with ATP-coated beads. (C and D) Examples of GTP-coated 
beads bound to polarity-marked microtubules. The plus end of each microtubule is to the right, 
distinguished by its longer, dimly labeled segment. (E and F) Examples of GTP-coated beads 
bound to polarity-marked microtubules prepared in the presence of NEM-tubulin to inhibit 
minus-end growth. The plus end of each microtubule is to the right, distinguished by its dimly 
labeled segment. (G and H) Examples of axonemes elongated with tubulin and incubated with 
GTP-coated beads. The axoneme is marked with an arrowhead. It tends to bind beads nonspecif- 
ically. Microtubules with plus ends distal are pointing rightward and upward, distinguished by their 
greater length. Note the binding of beads to many plus ends. Microtubules with minus ends distal 
are pointing downward. No beads are bound to minus ends. Scale bar, 10 pm in (A) and (B); 5 km 
in (C) through (F); 15 pm in (G) and (H). 
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bead at only one end (Fig. 1A). Adenosine 
triphosphate (ATP)-coated beads did not 
associate with microtubules under the same 
conditions (Fig. 1B). Random fields of mi- 
crotubules were scored for bead binding 
under various conditions (Table 1). With 
GTP-coated beads, 54% of microtubules 
bound a single bead at one end, and 38% 
bound no beads. Only 1% bound a bead at 
both ends. Increasing the concentration of 
beads 10-fold increased the fraction of mi- 
crotubules binding beads at a single end to 
79%. The fraction binding beads at both 
ends increased to 3%, probably as a result of 
increased nonspecific association, as bind- 
ing to the side also increased. Given the 
limited resolution of light microscopy, it 
was not possible to discriminate between 
beads bound to the end from beads bound 
on the side near the end. Very little binding 
at microtubule ends was detected with 
ATP-coated or nucleotide-free beads. The 
inclusion of free GTP (1 mM) inhibited 
end binding to background levels, whereas 
the inclusion of free ATP (1 mM) caused 
only a slight reduction in end binding. The 
binding sites on the ends of microtubules 
are therefore GTP specific, suggesting that 
E sites are exposed at one end of the 
microtubule lattice. 

We used three different assays to deter- 
mine which microtubule end has exposed E 
sites. (i) Polarity-marked microtubules were 
made in which the plus end is distinguished 
by its faster growth rate and appears as the 
longer, dimly labeled segment emanating 
from a brightly labeled seed (8). GTP beads 
bound to the plus ends of these microtu- 
bules in 95% of the cases scored (Fig. 1, C 
and D) (9). (ii) Polarity-marked microtu- 
bules were made in the presence of N-eth- 
ylmaleimide (NEM)-modified tubulin, 
which inhibits polymerization from minus 
ends (8). GTP beads bound to the end of 
the dimly labeled segment (Fig. 1, E and 
F) , again indicating plus-end binding. (iii) 
GTP beads were added to microtubules 
elongated from ciliary axonemes (1 0). The 
faster growth rate of plus ends resulted in a 
cluster of 5 to 15 long microtubules ema- 
nating from the plus end of the axoneme 
and a cluster of shorter microtubules from 
the minus end (Fig. 1, G and H). In this 

Fig. 2. Microtubules with GTP-coated beads 
bound to their ends visualized by negative- 
stain electron microscopy. Scale bar, 100 nm. 
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Table 1. Statistics of beads bound to microtubules under different conditions. For each condition 
200 microtubules were scored in random microscope fields. The numbers show the percentage of 
microtubules in each category that had a bead bound to one end, beads bound to both ends, 
beads bound on the side, or no bound beads. The total is more than 100 because a microtubule 
could have beads bound both to an end and the side. Competing nucleotide was added to 1 mM 
during incubation with beads. Microtubule number concentration during incubation with beads was 
approximately 1 n M  in all cases, Bead concentration was 5 nM except for the row labeled GTP* in 
which it was 50 n M .  

- - 

Microtubules bound to beads 
Nucleo- 
tide on Competing 

beads nucleotide One Both Side None 
end (%) ends (%) ?A) P/.) 

GTP 54 1 9 38 
GTP* 79 3 16 25 
ATP 5 0 12 83 
None 1 0 4 95 
GTP GTP 2 0 0 98 
GTP ATP 48 0 2 52 

assay 97% of the GTP beads scored bound 
to plus ends (1 I). 

To distinguish end binding from near- 
end binding, we visualized microtubules 
with GTP-coated beads by negative-stain 
electron microscopy (12). We observed 
GTP beads bound to the very end of the 
microtubule (Fig. 2). In some cases small 
clusters containing two to four beads were 
observed bound, which explains the varia- 
tion in fluorescence intensity of beads ob- 
served by light microscopy. 

To test whether a- or P-tubulin poly- 
peptide binds GTP exchangeably at micro- 
tubule ends, we incubated taxol-stabilized 
microtubules with labeled GTP under con- 
ditions in which binding was predominant- 
ly to terminal sites, and we cross-linked the 
GTP to the polypeptide by 260-nm irradi- 
ation (1 3 ) .  Of the covalently bound GTP, 
99% was attached to p-tubulin, and less 
than 1% was attached to a-tubulin. Thus, 
the exchangeable GTP-binding sites ex- 
posed at the ends of microtubules are on 
P-tubulin, as was found for soluble tubulin 
(14), and are presumably the same E sites 
previously identified in the heterodimer. 

These results show that exchangeable 
GTP binding sites on P-tubulin are exposed 
at the plus ends of microtubules. The simplest 

Minus 
end 

internretation of this result for microtubule 
structure is that tubulin dimers are oriented in 
the lattice with j3-tubulin toward the plus 
end, so that the E site on P-tubulin is exposed 
at that end (Fig. 3). More complex structural 
models could be considered, but a definitive 
description of the microtubule lattice will 
require high-resolution structural analysis. 

What are the implications of this conclu- 
sion? First, knowing the orientation of tubu- 
lin in the microtubule lattice will help in 
understanding how the direction of motor 
protein movement is controlled (15). Sec- 
ond, the structure is relevant to the biology 
of microtubule ends. Minus ends interact 
with organizing centers in vivo, perhaps by 
binding to y-tubulin. Genetic data suggest 
that y-tubulin interacts with 6-tubulin (16), 
whereas the GTP-bead data suggest that the 
terminal polypeptide at the minus end is 
a-tubulin. If both conclusions are correct, 
then either y-tubulin does not bind to the 
terminal polypeptide, or else the minus end 
is terminated by a y-P dimer instead of an 
a-p dimer. Plus ends undergo dynamic in- 
stability in vivo, and their stability may be 
regulated by a cap of subunits with GTP 
bound to their E sites (1). The GTP-bead 
data demonstrate the existence of unique, 
terminal E sites on plus ends which appear 
not to hydrolyze GTP rapidly (1 7) and may 
contribute to'a GTP cap on the plus end. 
When microtubules are severed in the pres- 
ence of tubulin, the new plus ends shrink, 
whereas the new minus ends resume growth 
(18). This may reflect a requirement for 
GTP bound to the terminal E sites to stabi- 

Fig. 3. A simple model for a portion of the lize plus ends, whereas minus ends lack this 
microtubule lattice derived from binding of requ&ement 6) Terminal E sites need to be 
GTP-beads and Published structural data (3, considered in future models for the 
5). Nucleotide binding sites on p-tubulin (E nism of dynamic instability (19). sites) in internal lattice positions are nonex- 
changeable as a result' of interactions with 
neighboring dimers. These sites hydrolyze GTP REFERENCESANDNOTES 
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Amyotrophic Lateral Sclerosis and Structural 
Defects in Cu,Zn Superoxide Dismutase 

Han-Xiang Deng, Afif Hentati, John A. Tainer, Zafar Iqbal, 
Annarueber Cayabyab, Wu-Yen Hung, Elizabeth D. Getzoff, 

Ping Hu, Brian Herzfeldt, Raymond P. Roos, Carolyn Warner, 
Gang Deng, Edwin Soriano, Celestine Smyth, Hans E. Parge, 

Aftab Ahmed, Allen D. Roses, Robert A: Hallewell, 
Margaret A. Pericak-Vance, Teepu Siddique* 

Single-site mutants in the Cu,Zn superoxide dismutase (SOD) gene (SODI) occur in 
patients with the fatal neurodegenerative disorder familial amyotrophic lateral sclerosis 
(FALS). Complete screening of the SOD1 coding region revealed that the mutation Ala4 
to Val in exon 1 was the most frequent one; mutations were identified in exons 2, 4, and 
5 but not in the active site region formed by exon 3. The 2.4 A crystal structure of human 
SOD, along with two other SOD structures, established that all 12 observed FALS mutant 
sites alter conserved interactions critical to the p-barrel fold and dimer contact, rather than 
catalysis. Red cells from heterozygotes had less than 50 percent normal SOD activity, 
consistent with a structurally defective SOD dimer. Thus, defective SOD is linked to motor 
neuron death and carries implications for understanding and possible treatment of FALS. 

Amyotrophic lateral sclerosis (ALS) , also 
called motor neuron disease, Charcot's dis- 
ease, or Liou Gehrig's disease, is a progres- 
sive paralytic disorder that is usually fatal 
within 5 years of onset of symptoms (1). 
The paralysis is due to degeneration of large 
motor neurons of the brain and spinal cord; 
the underlying cause of the degeneration is 
not known (2). About 10% of ALS cases 

are familial. Familial ALS (FALS), clini- 
cally indistinguishable from sporadic ALS, 
is expressed as an age-dependent autosomal 
dominant trait (3, 4). SODJ, the gene 
encoding the cytosolic antioxidant enzyme 
Cu,Zn superoxide dismutase (SOD), was 
studied as a FALS candidate because, of (i) 
its proximity to a FALS locus mapped to 
chromosome 21q22.1 in a subset of FALS 
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families (5-7), (ii) decreased SOD activity 
in cerebrospinal fluid of some ALS patients 
(8) ,  (iii) the important function of SOD in 
free radical homeostasis (9), and (iv) the 
apparent role of free radicals in neurodegen- 
eration (10). For 7 of the 11 previously 
reported FALS families (5r6) the probabili 
ity of genetic linkage, based on heterogene- 
ity analysis (I I), to the region containing 
SODJ on chromosome 21 (7) was >90% ~, 
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