
rates, temperatures, and conditions, of a 
batterv with a solid sulfur cathode. a 
polysulfide interface, and an aluminum an- 
ode. Typical open circuit voltages are 1.28 
to 1.30 V. Under moderate to high rate 
conditions [I-ohm load over a "DM cell 
configuration (24)], the discharge time of 
15 to 18 hours (Fig. 3) is over twice the 
6.5-hour discharge obtainable in conven- 
tional alkaline batteries (6) and an increase 
of 30% compared with the previously de- 
scribed aluminum-polysulfide cell (9). The 
measured specific energy capacity of the 
Al-S battery (I-ohm discharge) is 220 
Wehourkg on the basis of active materials. 
Highly concentrated anolytes induce ca- 
thodic polarization losses (Fig. 3), a phe- 
nomenon that one can minimize by increas- 
ing cell temperature, increasing the ionic 
strength, or substituting disulfide for tetra- 
sulfide in the catholyte interface. 

The measured specific energy of 220 
W-hourkg of this cell can only provide an 
approximate comparison with the capacities 
of aqueous batteries in a more mature state of 
development. Conventional aqueous batter- 
ies typically achieve an experimental specific 
energy of 10 to 25% of the theoretical. The 
mechanically rechargeable Zn-air battery is 
considered to have a high measured specific 
energy of up to 110 W-hourkg, and alkaline 
batteries with low discharge rates (Zn- 
Mn02) have a specific energy of up to 95 
W-hourkg (2, 5). 

A further increase in Al-S power and 
specific energy may be accessible with a 
recently described Al-redox, mechanically 
rechargeable flow cell configuration with a 
high power density in which solvent may be 
recycled while electrolyte flows into and 
through the cell (25). The solid sulfur cath- 
odes can support the requisite current den- 
sities for this configuration (Fig. 2, inset). 
This configuration, as modeled with an Al- 
ferricyanide battery, took advantage of the 
high currents sustainable for the reduction of 
ferricyanide (up to 0.5 A/cm2 on planar 
electrocatalysts, and in excess of 2 A/cm2 on 
porous electrocatalysts) and permitted better 
utilization of anode materials (25). Replace- 
ment of ferricvanide with a solid sulfur cath- 
ode may considerably enhance the energy 
capacity of this configuration. 
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Altered Growth and Cell Walls in a 
Fucose-Deficient Mutant of Arabidopsis 

Wolf-Dieter Reiter," Clint C. S. Chapple,$ Chris R. Somerville 
A biochemical screening procedure was developed to identify mutants of Arabidopsis 
thaliana in which the polysaccharide composition of the cell wall was altered. Over 5000 
ethyl methanesulfonate-mutagenized plants were analyzed by this method, leading to the 
identification of 38 mutant lines. One complementation group of mutants was completely 
deficient in L-fucose, a constituent of pectic and hemicellulosic polysaccharides. These 
mutant plants were dwarfed in growth habit, and their cell walls were considerably more 
fragile than normal. 

T h e  primary cell wall of higher plants 
determines cell shape and size during plant 
growth and development. Cell walls also 
provide mechanical support for plant tissues 
and organs and are intimately involved in a 
multitude of biological processes, such as 
cell-cell recognition and interaction. de- 

u 

fense responses, and tropic responses ( I ) .  
Plant cell walls are primarily composed of 
the polysaccharide components cellulose, 
hemicelluloses, and pectins (2). Cellulose 
microfibrils cross-linked by xyloglucan mol- 
ecules are believed to serve as major load- 
bearing elements within the wall; however, 

the precise functions of the noncellulosic 
cell wall polysaccharides are poorly under- 
stood. To elucidate the roles of individual 
cell wall polysaccharides and to clone genes 
involved in their svnthesis. we have taken a 
genetic approach by screening mutagenized 
Arabidopsis plants for altera:io~s in their 
polysaccharide composition. One- particu- 
larly informative class of mutant lines 
lacked fucose in their cell wall polysaccha- 
rides. Plants in this class had changes in 
their growth habit and in the mechanical 
properties of their walls. 

From an ethyl methanesulfonate-muta- 
genized population of Arabidopsis plants 

Department of Energy Plant Research Laboratory, 
Michigan State University, East Lansing, MI 48824. (3), 5200 were screened for in 
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genetic changes in cell wall polysaccharide 
composition would be detectable as alter- 
ations in the relative amounts of the 
constituent monosaccharides. After sever- 
al rounds of screening and selection (5), 
we obtained 38 mutant lines that showed 
heritable changes in cell wall composi- 
tion. Most of these lines showed substan- 
tial changes in the relative amounts of one 
or more cell wall-derived monosaccha- 
rides, but not below 50% of wild-type 
amounts of any of the sugar monomers. 
However, five lines were almost complete- 
ly devoid of L-fucose in shoot-derived cell 
wall material. This monosaccharide is a 
constituent of pectic and hemicellulosic 
cell wall polysaccharides (2) and is present 
in some glycoproteins (6). In Arabidopsis, 
L-fucose accounts for -0.5% of the dry 
weight of cell wall material (7). 

F, piogeny obtained from crosses be- 
tween the five fucose-deficient lines had the 
same low fucose content as the parental 
lines, indicating that they carried allelic 
mutations at a locus that we have designat- 
ed murl. In crosses to wild-type plants, the 
fucose deficiency segregated essentially 3: 1 
(8), indicating that it represented a single 
recessive Mendelian trait. After four back- 
crosses to wild-type plants (9), two mutant 
lines carrying the independently derived 
alleles murl-1 and murl-2 were chosen for 
further studv. 

Both murl lines typically contained less 
than 2% of the wild-type amount of fucose 
in aerial parts of the plant body (10); 
however, the fucose content in total root 
polysaccharides was only reduced by about 
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Fig. 1. Relative fucose content of leaves and 
roots from wild-type (VVT) and murl plants 
grown in the presence (filled bars) or absence 
(open bars) of L-fucose. The fucose content is 
given as the percentage of total neutral cell wall 
monosaccharides (excluding glucose). Error 
bars are standard deviations with a samDle size , -~ - 

of six. Plants were grown under continuous 
fluorescent light (70 to 100 pE m-2 S-l) at 23'C 
on MS plates (28) with or without 10 mM 
L-fucose. Leaves and roots were harvested 
from individual plants in late rosette stages and 
analyzed for the monosaccharide composition 
of their walls with the use of the standard 
screening procedure (4 ) ,  except that five rather 
than two ethanol extractions were performed. 

40% (Fig. 1). Mutant plants grown axen- 
ically in the presence of 10 mM L-fucose 
contained essentially wild-type amounts of 
fucose in both root- and leaf-derived cell 
wall material (Fig. I), suggesting that the 
mutant phenotype was caused by an in- 
ability to synthesize L-fucose in the shoot 
(1 1) and a reduced ability to synthesize 
L-fucose in the root, although more com- 
plex explanations cannot be ruled out. 

Mutant plants grown in pots under con- 
tinuous light conditions were distinguished 
from wild-type plants by a dwarfed growth 
habit characterized by shorter petioles, 
shorter internodes, decreased height, and 
reduced apical dominance (Fig. 2). The 
degree of dwarfing was variable within mu- 
tant populations, and extremely stunted 
plants were occasionally observed. This 
phenotypic variability may be due to some 
nonuniformity in the microenvironment of 
individual plants such as differences in soil 
conditions. All of the morphological phe- 
notypes of the mutant plants were found in 
both independently derived murl - 1 and 
murl-2 lines, indicating that both fucose 
deficiency and altered morphology were 
caused by the murl mutation (1 2). Mutant 
plants grown axenically in the presence of 
L-fucose were phenotypically indistinguish- 
able from wild-type plants (Fig. 3), con- 
firming that the lack of fucose caused the 
alterations in shoot growth. 

Fig. 2. Growth habits of wild-type and murl 
plants. Wild-type plant (A), and murl plants 
showing moderate (B) and extremely dwarfed 
(C) growth habits. Plants were grown at 23°C 
under continuous light (70 to 100 pE m-2 S-l) 

in pots as described (26). 

The dwarfed appearance of the murl 
plants closely resembled the morphology 
of mutants affected in the synthesis or 
perception of the growth regulators auxin 
(1 3) and gibberellin (1 4). When sprayed 
with gibberellin A, or the synthetic auxin 
2,4-dichlorophen~x~ acetic acid, murl 
plants persisted in the dwarfed growth 
habit, suggesting that the alterations in 
morphology were not caused by deficien- 
cies of these ~hvtohormones. Further- . , 
more, the cgl mutant of Arabidopsis, which 
lacks fucose in glycoproteins because of its 
inability to process N-linked glycans (1 5), 
is morphologically indistinguishable from 
wild-type plants, suggesting that the ab- 
normal growth habit of the murl plants is 
not caused by changes in glycoprotein 
fucosylation. 

Durine routine handline of the murl - - 
plants we noted that the elongating parts 
of the inflorescences were auite fragile. - 
Load-extension curves of such segments 
(16) indicated that the force required to 
tear segments of comparable diameter was 
more than twofold reduced in mutant 
plants in comparison to wild-type; the 
energy required for breakage was reduced 
by a factor of 5 (Fig. 4A). Scanning elec- 

internode number 

Fig. 3. Cumulative internode lengths of wild- 
type plants (circles) and murl plants (triangles) 
grown in the presence (filled symbols) or ab- 
sence (open symbols) of L-fucose. Plants were 
initially grown at 23°C on 19.2 mesh nylon nets 
on the surface of MS plates (28) with or without 
10 mM L-fucose. Fifteen days after planting, the 
plates were placed at 10°C for 12 days, then 
the nylon nets carrying the plants were trans- 
ferred to 10-liter flasks containing 50 g of perlite 
and 2 liters of 0 . 5 ~  concentrated nutrient solu- 
tion (26) with or without 5 mM L-fucose. Nylon 
nets (19.2 mesh) supported by air-filled poly- 
propylene tubes were used as rafts to provide 
buoyancy. Plants were grown for 8 weeks at 
10°C with continuous air supply and illumina- 
tion. Cumulative internode lengths in the non- 
growing basal parts of the plants were deter- 
mined by measurement of the lengths between 
the first (that is, oldest) silique on the main 
inflorescence and each of the seven subse- 
quent siliques. All plants were evaluated (at 
least 24 plants per flask) and averages were 
calculated. The experiment was repeated once 
with the same results. 
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tron microsco~v of the broken ends indicat- . , 
ed rupture exclusively within the walls; cell 
separation at the middle lamella was not 
observed (Fig. 5). The overall anatomy of 
the segments was not obviously altered, and 
the determination of wall thickness by quan- 
titation of cellulose (1 7) and total cell wall- 
derived monosaccharides (18) did not reveal . , 

significant differences between wild-type and 
mutant plants, indicating that the murl 
mutation did not reduce the amounts of 
polysaccharides in the cell walls but affected 
mechanical properties of the primary wall. 
When mutant plants were supplied with 
exogenous L-fucose, the apical regions of 
their inflorescences displayed the mechani- 
cal strength typical for wild-type plants (Fig. 
4B). The wall strength of the cgl mutant 
(N-linked glycan processing defect) ( 15) was 
not significantly different from that of wild- 
type plants (Fig. 4A), indicating that the 
weakened wall structure of the murl ~lants  
was not an indirect consequence of altered 
protein fucosylation. 

In dicotyledonous plants like Arabidop- 
sis, the most common fucose-containing 
cell wall polymers are rhamnogalactur- 
onan 11, a pectic component of unknown 
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Fig. 4. Forces and energies required to break 
the walls of the elongating regions of inflores- 
cence stems. Error bars are standard devia- 
tions with a sample size of 16 (A) or 25 (B). (A) 
Breaking forces and energies measured for 
wild-type (open bars), cgl (cross-hatched 
bars), and murl plants (filled bars). Plants were 
grown in pots as in Fig. 2. (B) Breaking forces 
and energies measured for wild-type (WT) and 
murl plants grown axenically in the presence 
(filled bars) or absence (open bars) of L-fucose. 
Axenic growth conditions were essentially as in 
Fig. 3, except that the perlite was omitted and 
the growth temperature was continuously 23°C. 

function ( 19), and xyloglucan, a hemicel- 
lulose believed to coat and cross-link cel- 
lulose microfibrils (20). Xyloglucan seems 
to regulate extension growth on account 
of its susceptibility to endoglucanases (2 1) 
and endotransglycosylases (22) within the 
wall. Such specific degradation of xyloglu- 
can mav lead to wall-loosenine events u 

during extension growth. On the basis of 
energy calculations on xyloglucan con- 
formers, the fucose-containing side chain 
has been proposed to stabilize confor- 
mations that can efficiently bind to cel- 
lulose (23). In the murl mutants, alter- 
ations in xvloelucan cleavabilitv or in its , - 
interactions with cellulose may form the 
basis of the decreased wall strength; how- 
ever, the exact mechanism remains to be 
established. 

The turnover of xyloglucan during ex- 
tension growth is believed to lead to the 
formation of a fucose-containing "oli- 
gosaccharin" fragment (XG9) that inhib- 
its auxin-induced elongation growth at 
nanomolar concentrations, thereby estab- 
lishing a feedback loop to prevent exces- 
sive cell wall extension (24). The anti- 
auxin activity of XG9 is dependent on the 
presence of the fucose residue (25). Con- 
sidering that the fucose-deficient murl 
plants show a dwarfed growth habit pre- 
sumably caused by a reduction in exten- 
sion growth, we believe that the oligosac- 
charin hypothesis needs to be reexamined, 
because in its current form this hypothesis 
would predict excessive rather than re- 
duced extension growth in the murl plants 
as a result of the probable absence or 
reduction of the auxin antagonist. Al- 
though the pleiotropic effects of the murl 
mutation interfere to some extent with an 
evaluation of the oligosaccharin hypothe- 
sis, our data do not support a pivotal role 
of this proposed feedback loop for plant 
development. 

In summary, the information gained by 
characterization of the fucose-deficient mu- 
tants illustrates the feasibility and utility of 
a genetic approach to the study of the 
synthesis, structure, and function of plant 
cell walls. 
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Group II lntron RNA Catalysis of Progressive 
Nucleotide Insertion: A Model for RNA Editing 

Manfred W. Mueller,* Martin Hetzer, Rudolf, J. Schweyen 
The self-splicing bll intron lariat from mitochondria of Saccharomyces cerevisiaecatalyzed 
the insertion of nucleotidyl monomers derived from the 3' end of a donor RNA into an 
acceptor RNA in a 3' to 5"direction in vitro. In this catalyzed reaction, the site specificity 
provided by intermolecular base pair interactions, the formation of chimeric intermediates, 
the polarity of the nucleotidyl insertion, and its reversibility all resemble such properties in 
previously proposed models of RNA editing in kinetoplastid mitochondria. These results 
suggest that RNA editing occurs by way of a concerted, two-step transesterification 
mechanism and that RNA splicing and RNA editing might be prebiotically related mech- 
anisms; possibly, both evolved from a primordial demand for self-replication. 

T h e  discovery of RNA molecules with 
enzymatic activities (ribozymes) and the 
diversity of the reactions that they catalyze 
have ~rovoked interest in theories that 
suggest that early replicating systems were 
probably made of RNA or an RNA-like 
derivative (1 -3). Zaug and Cech (4) dem- 
onstrated that RNA polymerization in a 
classical 5' to 3' polarity could be catalyzed 
by the self-splicing group I Tetrahymena 
intron. A pentamer of cytidylic acid (C5) is 
converted to cytidylic acids up to CjO by 
cleavage-ligation reactions (transesterifica- 
tion). vThevspecificity for pol;cytidylic acids 
relies on base pair interactions with the 
intron internal guide sequence (IGS). A 
parallel between the function of the IGS 
sequence in RNA splicing and the proposed 
role for the guide RNAs (gRNAs) in RNA 
editing in kinetoplastid mitochondria (5- 
1 1) has been recognized (1 2, 13). 

Theoretical considerations (1 3) and ex- > ,  

perimental evidence (12) suggest that post- 
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transcriptional uridine insertion and dele- 
tion occur by a series of splicing-like trans- 
esterification reactions (1 2, 13). The pos- 
tulated chimeric intermediate with the 
gRNA covalently joined to the 3' portion 
of the mRNA (12) has been identified in 
vitro (1 4, 15). Although formation of the 
gRNA-mRNA chimeric intermediate can 
also be explained by separate cleavage and 
ligation reactions (1 6), other findings (1 4, 
15) support the concerted transesterifica- 
tion model for uridine insertion in a 3' to 5' 
direction (1 2, 13) and suggest an evolution- 
ary analogy to the catalyti"c -mechanisms 
involved in RNA splicing (1 3). 

Like group I self-splicing, self-splicing of 
the mitochondria1 Saccharomyces group I1 
intron bI1 occurs by a two-step transesteri- 
fication mechanism (1 7-1 9). The excised 
lariat intervening sequence (IVS) RNA 
acts as a ribozyme by catalyzing transester- 
ification reactions with multiple turnover 
on ligated-exon RNA substrates in trans 
(20-23). This general recombinase and 3' 
terminal transferase activity of the group 11 
lariat IVS is illustrated in Fig. 1A. Selec- 
tion of the donor and acceptor RNA, and 
thereby specification of the transesterified 
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