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Neurobiologists from Sherrington to Hebb 
(1 ) have struggled with the problem of how 
perception, cognition, and memory are 
coded by assemblies of neurons within the 
cerebral cortex of the brain. We can now 
simultaneously monitor the activity of hun- 
dreds of neighboring cells (2) and have 
identified functional properties of ensem- 
bles of neurons in the cortex and hippo- 
campus (3-7). In this issue of Science, Wil- 
son and McNauehton ( 8 )  reDort one of the - . .  . 
first of these studies on the hippocampus, a 
phylogenetically old part of the brain that 
is a final stage of information processing for 
some kinds of memory. They are able to 
monitor the activity of neural ensembles 
and show that, when it comes to functional 
coding, many neurons are better than one. 
These kinds of studies-plus insights from 
computational neuroscience-are begin- 
ning to show how the hierarchical organi- 
zation of the cerebral cortex can be coupled 
with distributed coding. We may soon un- 
derstand the nature of representation in the 
"thinking" parts of the brain. 

A comprehensive understanding of rep- 
resentation by neural ensembles will re- 
quire reconciliation of two extreme views 
of information coding in the cortex. One 
view espouses a systematic organization 
com~osed of a hierarchv of "filters" or "de- 
tectors" that encode simple stimulus fea- 
tures and com~lex events bv the activitv of 
single neuron' (9). A cont;asting view'es- 
pouses a fully distributed representation 
that encodes each item by distinct spatio- 
temporal activity patterns of homogeneous 
arrays of neurons (1 0). These opposing views 
may in fact be reconcilable; in the brain, 
both are employed to different extents at 
successive stages of information processing 
(see fieure). 

~viYdence in support of the idea that the 
brain codes information with feature detec- 
tors followed closely the development of 
the extracellular microelectrode in the late 
1950s. This technology unexpectedly re- 
vealed that cortical firing patterns could 
readily be related to recognizable dimen- 
sions of stimuli and actions ( I  I). Many 
such observations, perhaps most widely pro- 
moted by Hubel and Wiesel's studies on the 
visual cortex, revealed an organized topo- 
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graphical mapping of features and a hierar- 
chy of filtering stages in which the simple 
features of objects detected at early stages 
are combined into complex percepts by 
later processing. By extrapolation, the indi- 
vidual cells at the latest processing stage 
should represent unique complex objects. 
This notion has been exemplified by the 
hypothetical "grandmother cell," a cell ac- 
tivated only by the image of one's grand- 

need for ensemble coding. However, al- 
though this scheme is attractive in its sim- 
plicity and organization, it has never been 
fullv accepted, if onlv because of the obvi- 
ous'requiiement for an unrealistically large 
number of "pontifical" cells to represent all 
the uniaue ex~eriences of a lifetime. Seri- 
ous considerations of these findings have 
generally taken the hierarchy only to "car- 
dinal" cells that encode higher order di- 
mensions or categorical elements of stimuli, 
with complex images encoded by the com- 
posite activity of a set of such cells (9). 

Alternatively, scrutinized from the per- 
spective of distributed representation, the 
data from neurons at each processing stage 
are also consistent with what one might 
observe by sampling elements of neural 
ensembles. Thus, early in processing, each 

Model of the stages of cortical and hippocampal processing. At early stages, highly organized 
sets of small neuronal ensembles (single cortical columns of about 500 pm) detect specific simple 
features. At late stages, larger ensembles [for example, 1- to 4-mm clusters of face cells in the infer- 
otemporal cortex (13)] identify complex images. In the hippocampus, these are represented broad- 
ly along with parallel inputs from other cortical systems. The hippocampus acts as a single, very 
large neural ensemble (15 mm long in primates) that encodes relations among distinct percepts. 

mother. Indeed, neurons in the inferotem- feature is ca~tured bv not one but several 
poral cortex, the highest visual area, are 
maximally responsive to highly specific vi- 
sual patterns-the image of a monkey's 
hand (1 2) and, in literal support of grand- 
mother cells, particular faces (13). In the 
hippocampus, the final products of many 
neocortical processing streams converge. 
Here, neurons are activated by highly spe- 
cific and elaborate confieurations of stimuli 

cells withinAfunctio;ally defined columns 
of the cortex. Also, most inferotemporal 
cells do not meet the extreme expectation 
of specificity; they respond at least some- 
what to many visual patterns (15). The 
principle of topography is also compro- 
mised in higher cortical areas and replaced 
by an as yet unclear organization that is re- 
flected in clustering of similar features in " " 

and events, such as the constellation of large groups of neighboring cells (13). In 
cues defining the place the animal occupies the hippocampus, the principles of specific- 
and the movements made in that place, or ity and topography are even further modi- 
the spatial or temporal arrangement of dis- fied; hippocampal neurons can have equal 
criminative cues and responses in a training specificity but dramatically different selec- 
situation (14). Thus individual hippocam- tivity in different behavioral situations in 
~ a l  neurons can be even more selective the same environment (16) and in the . , 

than inferotemporal cells; one cell might be same situation following subtle changes in 
most responsive to grandmother in a par- the environment (1 7). 
ticular place during a particular family oc- Topographically, the hippocampus is 
casion. Taken to this extreme, the organiz- similar to higher cortical areas in that it 
ing principles of specificity, topography, represents similar items in clusters of cells, 
and hierarchy would seem to obviate the but cells coding for unrelated items overlap, 
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suggesting an  even more complex organiza- 
tional scheme (7). The  combination of 
complex specificities and a breakdown of 
systematic topography and hierarchy is fully 
consistent with simulations of neural en- 
semble performance. Thus, sparse coding of 
complex features and clustered organization 
are seen in massively parallel artificial net- 
works (18), suggesting that these properties 
arise even in ensembles that are specifically 
designed as homogeneous cell assemblies. 

Furthermore, real brain cell ensembles 
appear to utilize population activity in cod- 
ing processes (19). For example, Georgop- 
oulos and his colleagues (5) have shown 
that the population vector computed by 
amassing the data from several neurons in a 
single region of primary motor cortex pre- 
dicts arm movement direction better than 
data from any single neuron. A simple in- 
terpretation of these findings is that, at 
least in the primary motor cortex, indi- 
vidual cells are coarsely tuned and their 
summed activity predicts precise perform- 
ance; similarly, the phenomenon of percep- 
tual hyperacuity (sensory judgment better 
than that of any single detector) can be ex- 
plained by the summed activity of groups of 
cells within modules of the sensory cortex 
(20). Similar approaches have been used in 
the inferotemporal cortex (6). Both a 
Georgopoulos-like analysis of perceptual di- 
mensions uncovered in a multidimensional 
scaling and Gerstein's (21) gravitational 
analysis, which does not assume the exist- 
ence of continuous dimensions, indicated 
clear face and pattern recognition by popu- 
lation responses that were superior to that 
by individual cells. 

Previous ensemble analyses on the hip- 
pocampus have revealed widespread tempo- 
ral correlations in the activity of the hippo- 
campal cell population (4) and nontopo- 
graphic but clustered organization of func- 
tionally similar cells (7). Wilson and Mc- 
Naughton (8) have employed a strategy 
similar to that used in the studies on pri- 
mate neocortex and have combined trajec- 
tory vectors computed from the spatial cod- 
ing properties of simultaneously recorded 
hippocampal principal cells. These com- 
bined vectors that take into account the 
activity of about a 100-neuron population 

are better predictors than information from 
single cells. Furthermore, the consistency of 
spatial firing and accuracy of the popula- 
tion prediction increased after initial explo- 
ration of a novel environment, while the pop- 
ulation code for an adjacent familiar envi- 
ronment was unchanged. These results pro- 
vide an elegant example of plasticity in hip- 
pocampal spatial coding (1 7), and they of- 
fer our very first glimpse of the deciphering 
of a population code in the hippocampus. 

Taken together, the findings from em- 
pirical and computational research are con- 
sistent with an  emerging, albeit speculative, 
view that different combinations of oreani- 

u 

zational specificity and distributed repre- 
sentation mav underlie neuronal ensemble 
coding at progressive stages of cortical pro- 
cessing (see figure). According to this 
scheme, early stages of sensory and motor 
feature analysis involve many parallel, to- 
pographically organized, functional mod- 
ules, each composed of a small homoge- 
neous cell assembly carrying the distributed 
representation for a particular feature. In 
contrast, late stages of cortical processing 
may require a nontopographically arranged 
set of larger functional modules where neu- 
ral ensembles combine these features to 
'identify distinct percepts. Finally, as a re- 
sult of the massive convergence of afferent 
inbut and extensive associational connec- 
tions (22), the hippocampus may embody a 
single, very large functional module that 
supports a distributed representation of re- 
lations among perceptually distinct items 
(14). The  findings of Wilson and Mc- 
Nauehton are entirelv consistent with this 
framiwork,-indicating' that the same neural 
space in the hippocampus can encode 
many items and telling us that hippocam- 
~ a l  re~resentation involves the r a ~ i d  stabi- 
lization of ensemble activity. These charac- 
teristics of memorv re~resentation in the , . 
hippocampus might reflect the changing of 
synaptic weights in the cell assembly in a 
way meaningful for behavior. Such an en- 
semble neurophysiological correlate could 
be used to bridge the gap between the mod- 
els of synaptic plasticity and real learning 
and memory (23), leading to a comprehen- 
sive understanding of brain mechanisms of 
complex representation. 
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