mension that is about the same as the
tip-to-surface distance. The strong lateral
gradient in the electric field tends to pull
the atoms to the area under the tip (2).
This is the origin of the force between the
STM tip and the Sb atoms.

As a further test of the above explana-
tion, let us estimate the energies involved.
By assuming a typical polarizability of the
order of 10 A3 for the Sb atoms (16) and a
strength for the electric field of 0.5 V/A, we
obtain an energy decrease of the order of
~0.1 eV due to the STM tip. This value is
of the same order of magnitude as typical
energy barriers for atomic motion on a solid
surface, in support of the above explanation
based on the field polarization effect (17).

The reversible rotation of the Sb dimers
by the STM tip exhibits the features of a
memory cell, in which the two orientations
of each dimer represent “0” and “1,” re-
spectively. With improved control and sta-
bility of the STM tip position, it may be
possible to move the Sb dimers to form, for
instance, a linear chain of “bits” and to
“switch” any of them by voltage pulses. The
value stored in these nonvolatile memory
cells can be read out by the same STM tip.
Because the speed of read-write access is
determined by the slow scanning speed of
the STM, this type of memory device may
be limited to archival memory. The den-

Fig. 5. The STM tip—induced displacements of
two rotated dimers (in the sequence a through
d). The two rotated dimers on the right move
toward each other step by step until they be-
come nearest neighbors. The two final state
dimers on the left do not move.

.

sity of this memory device is significantly
higher than that of the current devices,
because the size of each bit is only several
angstroms.

Compared to other possible ways of
making atomic-scale memories, dimer rota-
tion offers an advantage in terms of reliabil-
ity because the rotation process is gentle
and the chance for damaging either the tip
or the surface is low. The fact that the
dimer orientations are stable at room tem-
perature provides a practical advantage in
operation.
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Multiple lon Association in Supercritical Aqueous
Solutions of Single Electrolytes

Eric H. Oelkers* and Harold C. Helgeson

Solute speciation in supercritical aqueous alkali metal halide solutions plays an impor-
tant role in various industrial and natural processes, for example, corrosion of metals,
solvent extraction, crystal growth, metamorphism, and the formation of hydrothermal ore
deposits. To better characterize such speciation, degrees of formation of polyatomic
clusters of sodium and chlorine ions have been computed with the aid of dissociation
constants generated from Monte Carlo calculations which are consistent with both
supercritical conductance measurements and electrostatic theory. The calculations
indicate that the solute in alkali-halide solutions is successively dominated by increas-
ingly complex polyatomic clusters as the solute molality increases at pressures and
temperatures where the dielectric constant of water is <15.

Much of what is known about solute spe-
ciation in supercritical aqueous electrolyte
solutions comes from high-temperature
measurements of the specific conductances
of dilute (<0.1 molal) alkali metal halide
solutions (1). These low concentration
conductance data were originally interpret-
ed by assuming that monatomic ions and
diatomic neutral ion pairs are the only
solute species in solution and that the
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activity coefficients of neutral ion pairs can
be regarded as unity in dilute solutions.
Although valid at molalities <0.1, these
assumptions have, due to a lack of experi-
mental data, been applied to more concen-
trated solutions (2). However, recent ad-
vances in high-temperature solution chem-
istry indicate that this practice is inconsis-
tent with reality and that serious error may
result from failure to take into account
formation of polyatomic clusters in concen-
trated supercritical electrolyte solutions.
The dielectric constant of the solvent
controls to a large extent the degree to
which solute species associate in aqueous
electrolyte solutions (3). The dielectric
constant (€) of H,O at 25°C and 1 bar is



~178, but it decreases to ~15 or less at low
pressures and high temperatures in the
supercritical region (4). The latter value is
similar in magnitude to those of organic
solvents at 25°C and 1 bar. The stoichi-
ometries of polyatomic ion clusters in
solutions of single electrolytes in a number
of solvents with low dielectric constants (e
<15) have been investigated experimen-
tally at temperatures <25°C at 1 bar (5).
These studies have shown that association
of the solute species in such solvents
increases with increasing solute concen-
tration from single ions and diatomic neu-
tral ion pairs in dilute solutions to triple,
quadruple, quintuple, and successively
larger clusters at higher concentrations.
Hence in supercritical, single electrolyte
solutions at temperatures and pressures
where the dielectric constant of H,O is of
the order of 15 or less, these same higher
order polyatomic clusters would be expect-
ed to successively predominate with in-

creasing concentration. This hypothesis is
supported by revised interpretation of con-
ductance measurements (6), electrostatic
theory (7), and dissociation constants
generated from Monte Carlo calculations
(8, 9), all of which indicate that the solute
in electrolyte solutions consists predomi-
nately of monatomic ions and diatomic
neutral ion pairs only in the dilute con-
centration range at supercritical pressures
and temperatures when e of H,0 is <15.
Thermodynamic calculations indicate that
under these conditions the degree of di-
atomic neutral ion pair formation maxi-
mizes with increasing concentration at
~0.1 to 0.5 m (depending on the precise
pressure and temperature), where m is the
molality, and becomes small at higher
concentrations, where neutral and singly
charged polyatomic clusters (for example,
triple, quadruple, quintuple, and sextuple
clusters) predominate. The purpose of this
report is to present the results of these
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calculations for a representative electro-
lyte (NaCl) at solute concentrations <1m
at supercritical pressures and tempera-
tures, and to explore the implications of
sequential association to form higher order
clusters with increasing solute concentra-
tion above 1 m.

The degrees of formation () in NaCl
solutions of diatomic ion pairs (NaClI°)
and triple (Na,Cl* and NaCl,™), quad-
ruple (Na,CL,°), quintuple (Na3Clz+ and
Na,Cl;~), and sextuple (Na,CL,°) clusters

can be calculated from

o = Una+ (%) 1)

where UNat, ; refers to the number of moles
of Na* 1ons in 1 mol of the ith cluster, m
denotes the total molality of NaCl in
solution, and m, stands for the molality of
the subscripted cluster. The fraction of
NaCl present as Na* in solution (oy,+) is
then

Fig. 1. Distribution diagrams in-
dicating the degrees of forma-
tion of Na*, NaCl°, Na,Cl*,
NaCl,~, Na,CL® Na,Cl,*,
Na,Cl,~, and Na,Cl,° in NaCl
solutions at supercritical pres-
sures and temperatures (see
text). The curves in these dia-
grams divide any vertical line
drawn for a given value of my ¢,

into segments that are equal to
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j=0
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present in solution at the speci-
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ONa+

=1-Ya 2)
i=1

which is consistent with

]
& = o+ + 2 o 3
i=0

Distribution diagrams generated from
Egs. 1 to 3 are depicted in Figs. 1 and 2 for
Na*, NaCl° Na,Cl*, NaCl,~, Na,CL°,
Na,ClL,*, Na,Cl;~, and Na3C1 at various
constant pressures and temperatures (10—
15). The degrees of formation shown in
these figures indicate that neutral ion pairs
are less abundant than either single, triple,
or quintuple ions in 1 m NaCl solutions at
low pressures and high temperatures where
e of H,0 is <15. In contrast, triple ions
account for ~6% of the solute in 0.1 m
solutions at 600°C and 1 kbar, diminishing
to <1% at 0.01 m NaCl. Single ions and
diatomic neutral ion pairs predominate in a
maximum of solution at all temperatures
and pressures in 0.1 and 0.01 m NaCl
solutions. However, triple, quadruple,
quintuple, and sextuple clusters are all pre-
sent in appreciable concentrations in 1 m
NaCl solutions at 600°C, and the degrees
of formation of these species increase with
decreasing pressure from 4 to 1 kbar. The
degrees of formation of clusters of three or
more monatomic ions also increase with
increasing temperature at constant pres-
sure. The values of & and «; for the
diatomic neutral ion pairs shown in Figs. 1
and 2 maximize with increasing solute
concentration, which is also true of
g, c1,0 and oy, oy 0. Although it can be
seen in these figures that the degrees of
formation of the triple and quintuple ions
increase monotonically and become major
species with increasing NaCl concentra-
tion up to 1 m, they should maximize at
higher solute concentrations where higher
order charged clusters would be expected
to be the predominant solute species. This
behavior of electrolytes in solutions of low
dielectric constants with increasing con-
centration was anticipated by Kraus (16).
The paucity of conductance and spectro-
scopic data for concentrated electrolyte so-
lutions at supercritical temperatures and
pressures, together with interpretative ambi-
guities, makes it difficult to compute specia-
tion in alkali metal halide solutions at con-
centrations greater than 1 m. However,
circumstantial evidence of the nature of
speciation in these concentrated solutions
can be inferred from other data. For exam-
ple, consideration of supercritical solubility,
vapor pressure, density, and phase equilibri-
um data for 1:1 electrolyte solutions led
Valyashko (17) to conclude that insufficient
uncoordinated H,O dipoles were available
in these solutions to solvate the solute spe-

890

cies at concentrations in excess of 6 to 10 m.
At these and higher concentrations, strong
interionic bonding pervades the solute and
significantly alter the nature of molecular
interactions characteristic of the solutions at
lower concentrations. The physical proper-
ties of highly concentrated electrolyte solu-
tions at supercritical temperatures and pres-
sures are apparently similar to those of an
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ionic melt containing isolated H,O dipoles
(17). It follows that the conductances of
these concentrated solutions should be large,
even though they are highly associated. This
observation is consistent with the high ex-
perimental conductances reported by Hwang
et al. (18) for concentrated LiCl, LiBr, and
KClI solutions at 1, 2, and 3 kbar and
temperatures up to 600°C, but not with their

Pressure (bars)

Temperature (°C)

KEY

O Na,Ci* + NaCl

Fig. 2. Circular distribution diagrams for 0.01, 0.1, and 1.0 maqueous NaCl solutions at supercritical
pressures and temperatures (see text). The sectors in the diagrams represent degrees of formation

of the species shown in the key.
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Fig. 3. Schematic depiction of likely speciation in NaCl solutions at 600°C and 1 kbar as a function
of solute concentration from a dilute solution to a fused salt. The solute consists predominantly of
increasingly complex polyatomic clusters with increasing concentration, which results in a single

megacluster at saturation.
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conclusion that the high conductances indi-
cate complete dissociation.

The continuous change in the internal
structure of electrolyte solutions with in-
creasing concentration toward that of an
ionic melt is represented by the solubility
curve for halite as a function of temperature,
which is continuous with the melting curve
for the salt at pressures >400 bars (19). It
thus appears that the structure of a saturated
electrolyte solution at supercritical pressures
and temperatures, where € <15, may consist
of a single macroscopic cluster, a megaclus-
ter, of essentially all of the solute species in
solution. Such a cluster represents the cul-
mination of the sequential formation of suc-
cessively higher order clusters with increas-
ing concentration as the solution approaches
the state of a molten salt (Fig. 3).

Due to the paucity of experimental data,
the calculations summarized above should be
regarded as yielding provisional estimates
only. Nevertheless, it appears that specia-
tion in concentrated supercritical aqueous
single-electrolyte solutions may be more
complex than was generally thought to be
the case. Depending on the temperature and
pressure, speciation in these solutions may
be dominated by successively higher order
clusters at progressively higher solute con-
centrations. The presence of these poly-
atomic clusters may profoundly affect the
thermodynamic properties of concentrated
electrolyte solutions, as well as the solubili-
ties of minerals in these solutions at super-
critical pressures and temperatures.
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Protein Catalysis of the Retinal Subpicosecond
Photoisomerization in the Primary Process of
Bacteriorhodopsin Photosynthesis

Li Song, M. A. El-Sayed,* J. K. Lanyi

The rate of retinal photoisomerization in wild-type bacteriorhodopsin (wt bR) is compared
with that in a number of mutants in which a positively charged (Arg®2), a negatively charged
(Asp®® or Asp2'2), or neutral hydrogen bonding (Asp''® or Tyr'85) amino acid residue
known to be functionally important within the retinal cavity is replaced by a neutral,
non-hydrogen bonding one. Only the replacements of the charged residues reduced the
photoisomerization rate of the 13-cis and all-trans isomers present in these mutants by
factors of ~1/4 and ~1/20, respectively. Retinal photo- and thermal isomerization catalysis
and selectivity in wt bR by charged residues is discussed in terms of the known protein
structure, the valence-bond wave functions of the ground and excited state of the retinal,
and the electrostatic stabilization interactions within the retinal cavity.

Bacteriorhodopsin (bR), the other natural
photosynthetic system besides chlorophyll,
is a light-transducing protein present in the
purple membrane of Halobacterium halo-
bium. Since its discovery by Oesterhelt and
Stoeckenius (1) in 1971 and the demon-
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stration of its role in adenosine triphos-
phate (ATP) synthesis by Racker and Sto-
eckenius (2), numerous studies have been
carried out to unravel its structure and the
mechanism of its function (3). Not only is
bR an important natural solar energy con-
verter, but it is also becoming a potentially
important biomaterial for photonic applica-
tions (4, 5) with uses in holographic record-
ing, as ultrafast diodes, in neural networks,
associative memory, and it might possibly
be used as the “eyes of robots” (5).
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