
Genetic Algorithms: Principles of
Natural Selection Applied to

computation
Stephanie Forrest

A genetic algorithm is a form of evolution that occurs on a computer. Genetic algorithms
are a search method that can be used for both solving problems and modeling evolu-
tionary systems. With various mapping techniques and an appropriate measure of
fitness, a genetic algorithm can be tailored to evolve a solution for many types of
problems, including optimization of a function or determination of the proper order of a
sequence. Mathematical analysis has begun to explain how genetic algorithms work and
how best to use them. Recently, genetic algorithms have been used to model several
natural evolutionary systems, including immune systems.

Evolution by natural selection is one of the
most compelling themes of modem science,
and it has revolutionized the wav we think
about biological systems. There is a form of
evolution, called a genetic algorithm, that
takes place in a computer. In genetic algo-
rithms, selection operates on strings of bi-
nary digits stored in the computer's memo-
ry, and over time, the functionality of these
strings evolves in much the same way that
natural populations of individuals evolve.
Although the computational setting is
highly simplified compared with the natural
world, genetic algorithms are capable of
evolving surprisingly complex and interest-
ing structures. These structures, called in-
dividuals, may represent solutions to prob-
lems, strategies for playing games, visual
images, or simple computer programs.

The Darwinian theory of evolution de-
picts biological systems as the product of
the ongoing process of natural selection.
Likewise, genetic algorithms allow engi-
neers to use a computer to evolve solutions
over time, instead of designing them by
hand. Because almost any method, theory,
or technique can be encoded on a comput-
er, this implies an approach to problem-
solving that can be, at least partially, auto-
mated by a computer. More specifically,
computer science has long been interested
in how the design, development, and de-
bugging of computer programs could be
automated, and genetic algorithms provide
one avenue toward this goal.

The very name genetic algorithm is
puzzling because the first word refers to a
biological science and the second word is
borrowed from computer science. An al-
gorithm is a step-by-step procedure for
accomplishing some specific task-sorting
numbers, formatting text on a page, or

The author is in the Department of Computer Science,
University of New Mexico, Albuquerque. NM 87131-

diagnosing car problems. Many algorithms
can be readily implemented as computer
programs. Thus, an algorithm is the gen-
eral description of a procedure, and a
program is its realization as a sequence of
instructions to a computer. Genetic algo-
rithms are loosely based on ideas from
population genetics; they feature popula-
tions of genotypes (an individual's genetic
material) stored in memory, differential
reproduction of these genotypes, and vari-
ations that are created by processes anal-
ogous to the biological processes of muta-
tion and crossover.

Although genetic algorithms are known
primarily as a problem-solving method,
they can also be used to study evolution
itself and to model dynamic systems. Many
systems that evolve over time can be mod-
eled with a genetic algorithm, including
biological systems (such as ecologies, im-
mune systems, and genetic systems) and
social systems (such as economies and po-
litical systems). This second, and quite
different, use of genetic algorithms suggests
a computational view of evolution in which
the mechanisms of natural selection, inher-
itance, and variation serve primarily to
transmit and process information. One in-
teresting question is whether data produced

by a highly idealized model such as a genet-
ic algorithm can provide useful insights
about natural evolutionary systems.

Genetic Algorithm Overview

The basic idea of a genetic algorithm is " "
very simple. First, a population of individ-
uals is created in a computer (typically
stored as binary strings in the computer's
memory), and then the population is
evolved with use of the principles of vari-
ation, selection, and inheritance. There
are many ways of implementing this sim-
ple idea, and I will describe the one
invented by Holland (1, 2) (Fig. 1).

The idea of using selection and variation
to evolve solutions to problems goes back at
least to Box (3), although this work did not
make use of a computer. In the late 1950s
and earlv 1960s. there were several inde-
pendent efforts to incorporate ideas from
evolution in computation. Of these, the
best known are those by Holland (4), Fogel
et al. (S), and Rechenberg (6, 7). Rechen-
berg emphasized the importance of selec-
tion and mutation as mechanisms for solv-
ing difficult real-valued optimization prob-
lems. Fogel et al. developed similar ideas for
evolving intelligent agents in the form of
finite state machines. Holland emphasized
the adaptive properties of entire popula-
tions and the importance of recombination
mechanisms such as crossover.

In its simplest form, each individual in the
population consists of a string of binary digits
(bits). Genetic algorithms often use more
complex representations, including diploid
(8, 9) and multiple chromosomes (9) and
higher cardinality alphabets (1 0-1 2). Howev-
er, the binary case is both the simplest and the
most general. By analogy with biological sys-
terns, the string of bits is referred to as the
"genotype." Each individual consists only of
its genetic material, which is organized into
one (haploid) chromosome. Each bit position
(set to 1 or 0) represents one gene. The term
"bit string" refers to both genotypes and the
individuals that they define. There are a
variety of techniques for mapping bit strings to
different problem domains.

Fig. 1. Operation of the
genetic algorithm. A
population of three indi-
viduals is shown. Each is
assigned a fitness value
by the function F. On the
basis of these fitnesses,
the selection phase as-
signs the first individual F(00111)=

F(11100)= (001 11) zero copies, the ~ (0 1 0 1 0) =
second (1 11000) two,
and the third (01010) one copy. After selection, the genetic operators are applied probabilistically;
the first individual has its first bit mutated from a 1 to a 0, and crossover combines the second two
individuals into two new ones. The resulting population is shown in the box labeled T,,,,

SCIENCE VOL. 261 13 AUGUST 1993

The initial population of individuals is
usually generated randomly, although it
need not be. Each individual is tested em-
pirically in an "environment" and is as-
signed a numerical evaluation of its merit
bv a fitness function F . The environment
can be almost anything-another computer
simulation. interactions with other individ-
uals in the population, actions in the phys-
ical world (by a robot, for example), or a
human's subjective judgment (1 3, 14). The
fitness function returns a single number
(usually, higher numbers are assigned to
fitter individuals). This constraint is some-
times relaxed so that the fitness function
returns a vector of numbers (15). The
fitness function determines how each gene
(bit) of an individual will be interpreted
and, thus, what specific problem the popu-
lation will evolve to solve. The fitness
function is the primary place in which the
traditional genetic algorithm is tailored to a
specific problem.

Once all individuals in the population
have been evaluated, their fitnesses are used
as the basis for selection. Selection is im-
plemented by eliminating low-fitness indi-
viduals from the population, and inheri-
tance is implemented by making multiple
copies of high-fitness individuals. Genetic
operators such as mutation (flipping indi-
vidual bits) and crossover (exchanging sub-
strines of two individuals to obtain two

u

offspring) are applied probabilistically to
the selected individuals to ~roduce a new
population (or generation) of individuals.
The term "crossover" is used here to refer to
the exchange of homologous substrings be-
tween individuals, although the biological
term "crossing over" generally implies ex-
change within an individual. New genera-
tions can be produced either synchronous-
ly, so that the old generation is completely
replaced, or asynchronously, so that gener-
ations overlap.

By transforming the previous set of good
individu'als to a new one, the operators
eenerate a new set of individuals that have -
a better than average chance of also being
good. When this cycle of evaluation, selec-
tion, and genetic operations is iterated for
many generations, the overall fitness of the
population generally improves, and the in-
dividuals in the population represent im-
moved "solutions" to whatever ~roblem
was posed in the fitness function.

There are many details left unspecified
by this description. For example, selection
can be performed in any of several ways: It
could arbitrarily eliminate the least fit 50%
of the population and make one copy of all
the remaining individuals, it could replicate
individuals in direct proportion to their
fitness. or it could scale the fitnesses in anv
of several ways and replicate individuals in
direct proportion to their scaled values (a

more typical method). Likewise, the cross-
over operator can pass on both offspring to
the new generation, or it can arbitrarily
choose one to be passed on; the number of
crossovers can be restricted to one per pair,
two per pair, or N per pair. These and other
variations of the basic algorithm have been
discussed extensivelv (2, 16-20). , , .

This computational definition of evolu-
tion has the advantage that mathematics
and simulation can both be used to ask
various questions: Does the population
evolve a stable set of individuals? Does it
always evolve the most fit individuals pos-
sible? If so, why? If not, why not? Does the
population ever converge on one genotype?
Does it always converge? How long does it
take to converge? How do various parame-
ters (such as population size, crossover rates,
mutation rates, and so on) affect the rate of
evolution? How do various changes to the
details of the algorithm affect the rate of
evolution? Research in genetic algorithms
seeks to answer these questions, both math-
ematically and through simulation.

Genetic Algorithms for
Solving Problems

The simple computation procedure de-
scribed above can be applied in many dif-
ferent ways to solve a wide range of prob-
lems. In the design of a genetic algorithm to
solve a specific problem, there are always
two major decisions: (i) specifying the map-
ping between binary strings and candidate
solutions (commonlv referred to as the reD-
resentation problem), and (ii) defining a
concrete measure of fitness. In some cases,
the best representation and fitness function
are obvious, but in many cases, they are
not, and in all cases, the particular repre-
sentation and fitness function that are se-
lected will determine the ultimate success
of the genetic algorithm on the chosen
~roblem.

Possibly the simplest representation is a
feature list in which each bit, or gene,
represents the presence or absence of a
single feature. This representation is useful
for learning pattern classes defined by a
critical set of features. For example, in an
operations research problem, Packard used
a genetic algorithm to search for correla-
tions between certain office decision proce-
dures and the efficiency of that office (21).
He described 19 different decision proce-
dures (the independent variables) associat-
ed with different offices of an organization
and defined a quantitative measure for the
output (efficiency) of each office (the depen-
dent variable). The genetic algorithm was
then used to search for combinations of
procedures that correlated strongly with ei-
ther high-efficiency or low-efficiency offices.
The feature list approach to this problem

assigns one bit to represent the presence or
absence of each different decision procedure,
and fitness is assigned to those individuals
whose feature settings correspond to high-
(or low-) efficiency offices (Packard's system
used a more complicated representation than
that described here, but the principle was
the same).

Of the many other representations that
have been investigated, three will be dis-
cussed in detail: numerical encodings for
function optimization, random-key encod-
ings for ordering problems, and computer
programs for automated programming. The
first is by far the most frequently used in real
applications. It is well understood and non-
controversial. The second two representa-
tions illustrate the possibilities of genetic
algorithms, but they were developed more
recently and are still largely unproven. For
an overview of other representation tech-
niques, see (22).

Function optimization. Perhaps the most
obvious application of genetic algorithms,
pioneered by DeJong (23), is multiparame-
ter function optimization. Many problems
can be formulated as a search for some
optimal value, where the value is a compli-
cated function of its input parameters. In
some cases, the parameter settings that lead
to the greatest (or least) value of the func-
tion are of interest. In other cases, the
exact optimum is not required, just a near
optimum, or even a value that represents a
slight improvement over the previously best
known value.

As a simple example, consider the func-
tion f(x, y) = Y ~ 2 - x4. This function is
solvable analytically, but if it were not, a
genetic algorithm could be used to find the
values x and y that produce the maximum
f(x, y) in a particular region of R2. The
most straightforward method of representa-
tion (Fig. 2) is to assign regions of the bit
string to represent each parameter (vari-

0 0 1 1 1 1 Bit string (Gray coded)
Degray

1 5 Base 10

Fig. 2. Bit-string encoding of multiple real-
valued parameters. An arbitrary string of six
bits is interpreted in the following steps: (i)
segment the string into two regions with the first
three bits resewed for x and the second three
bits for y; (i i) interpret each three-bit substring
as a Gray code and map back to the corre-
sponding binary code (see Table 1); (i i i) map
each three-bit substring from its binary code to
its decimal equivalent; (iv) substitute the two
decimal values for xand y in the fitness function
F; and (v) return F(x y) as the fitness of the
original string.

SCIENCE VOL. 261 13 AUGUST 1993

able). Once the order in which the param-
eters are to appear is determined (in the
figure, x appears first and y appears second),
the next step is to specify the domain for x
and y (that is, the range of values for x and
y that are candidate solutions). Also, be-
cause x and y can be real-valued in this
example, the parameters will be discretized.
The precision of the solution is determined
by how many bits are used to represent each
parameter. In the example, 3 bits are as-
signed for x and 3 for y, although 10 is a
more typical number. For simplicity, x and
y will vary between 0 and 7.

With this representation, the genetic
algorithm generates a random population of
bit strings, decodes each bit string into the
corresponding decimal values for x and y,
applies the fitness function [f(x, y) = yx2 -
x4] to the decoded values, selects the most
fit individuals [those with the highest f(x,
y)] for copying and variation, and then
repeats the process. The population will
eventually converge on a set of bit strings
that represents an optimal or near optimal
solution. However, there will always be
some variation in the population because of
mutation.

There are different ways of mapping
between bits and decimal numbers, so an
encoding must also be chosen. The tradi-
tional binary encoding has the drawback
that in some cases all the bits must be
changed in order to increase a number by 1.
For example, the bit pattern 011 translates
to 3 in decimal, but 4 is represented by 100
(see Table I). This can make it difficult for
an individual that is close to an optimum to
move even closer by mutation. Also, mu-
tations in high-order bits (the leftmost bits)
are more significant than mutations in low-
order bits. This can violate the idea that bit
strings in successive generations will have a
better than average chance of having high
fitness because mutations may often be dis-
ruptive. A different encoding, called Gray
coding, addresses the first of these prob-
lems. Gray codes have the property that
incrementing or decrementing any number
by 1 is always a one-bit change (Table I).
Gray codes can be defined for numbers of
any size, although the table shows only
values for three-bit numbers. In practice,

Table 1. Gray codes for three-bit numbers

Decimal Binary code Gray code

Gray-coded representations are often more
successful for multiparameter function opti-
mization applications.

There are a number of other representa-
tion tricks that are often used for function
optimization, including logarithmic scaling
(interpreting bit strings as the logarithm of
the true parameter value), dynamic encod-
ing (24, 25) (a technique that allows the
number and interpretation of bits allocated
to a particular parameter to vary throughout
a run), variable-length representations (26,
27), delta coding (28) (the bit strings ex-
press a distance away from some previous
partial solution), and a multitude of nonbi-
nary encodings (29, 30).

Although a function of two variables
was used as an examole. the strength of

& , -
the genetic algorithm lies in its ability to
manioulate manv oarameters. This meth-
od has been used {or hundreds of applica-
tions (2, 16, 19, 20, 3 l) , including air-
craft design, the tuning of parameters for
algorithms that detect and track multiple
signals in an image, and the location of
regions of stability in systems of nonlinear
difference eauations.

Ordering problems. Another common
problem involves finding an optimal order-
ing for a sequence of N items. Examples
include a tour of cities that minimizes the
distance travelled (the Travelling Salesman
problem), packing boxes into a bin to
minimize wasted space (the bin-packing
problem), graph-coloring problems, and
DNA fragment assembly. The computa-
tional complexity of these problems is
thought to increase exponentially as N
increases.

For example, in the Travelling Salesman
problem, suppose there are four cities-1,
2, 3, and +-each with a unique bit-string
encoding. A natural way to represent tours
would be to list the permutations, so that 3
2 1 4 would be one candidate tour and 4 1
2 3 would be another. This representation
is problematic for the genetic algorithm
because crossovers between these two can-
didates do not necessarily produce legal
tours. For example, a cross between posi-
tions two and three in the example pro-
duces the individuals 3 2 2 3 and 4 1 1 4,
both of which are illegal tours because not
all of the cities are visited and some are
visited more than once.

Two general methods have been pro-
posed to address this representation prob-
lem: (i) designing specialized crossover op-
erators that produce only legal tours and (ii)
adopting a different representation. Of
these, the use of specialized operators has
been the prevalent method for successful
applications of genetic algorithms to order-
ing problems such as the Travelling Sales-
man problem [for example, see (32)l. Fol-
lowing the second approach, a number of

representations have been proposed (29,
33-35), including the random-key method
(36-38). Because specialized crossover op-
erators tend to be problem-specific, I will
discuss the random-kev method as an ex-
ample of a general representation method
for ordering problems. This method has
been applied with limited success to the
Travelling Salesman problem and with
more success to scheduling, routing, re-
source allocation, and assignment prob-
lems (38). Although it is not well justified
theoretically and has not been widely
adopted within the genetic algorithm
community, it is an imaginative encoding
and illustrates the wide range of represen-
tations that are possible.

The random-kev method divides the bit
string into N segments of k bits, where N is
the number of cities in the tour and 2k > >
N. Because the number of bits used for each
segment can encode many more numbers
than there are cities, the binary code for
each segment can be interpreted as a ran-
dom number. For examole. if three bits are . ,

assigned to each segment then any bit string
can be decoded into a sequence of integers
between zero and seven (ties are resolved
randomly). A randomly generated bit string
might yield the following sequence: 5 3 1 7.
Now, these keys are decoded to a tour by
identifying the position of the smallest ele-
ment. The smallest element is 1 and it is in
the third oosition. so citv 3 becomes the
first city on the tour. This method produces
the tour 3 2 1 4 for the example string (Fig.
3) -

The random-key encoding has the ad-
vantage that any bit string represents a legal
tour, which eliminates the need for special-
ized crossover operators. However, domain-
independent representations such as this
are not always successful on hard combina-

Example Travelling
Salesman problem

3 2
+
4 Ordering

F(101011001111) =Tour Length(3,2,1,4) = 7

Fig. 3. The random-key representation for or-
dering problems. The example shows four cit-
ies (represented as nodes in the graph). Labels
on the arcs denote the distance between cities.

SCIENCE VOL. 261 13 AUGUST 1993

torial problems, such as the Travelling
Salesman problem. When combined with
domain-specific knowledge, the algorithms
can be quite effective on problems of this
class (34, 39).

Automatic programming. Genetic algo-
rithms have recentlv been used to evolve a
special kind of computer program (12).
These programs are written in a subset of
the programming language Lisp. Lisp pro-
grams can naturally be represented as trees
(Fig. 4). Populations of random program
trees are generated and evaluated as in the
standard genetic algorithm. All other de-
tails are similar to those described for
binary genetic algorithms with the excep-
tion of crossover. Instead of exchanging
substrings, genetic programs exchange
subtrees between individual program trees.
This modified form of crossover appears to
have many of the same advantages as
traditional crossover (such as preserving
partial solutions).

Genetic programming has the potential
to be extremely powerful because Lisp is a
general-purpose programming language and
genetic programming eliminates the need
to devise a chromosomal representation. In
practice, however, genetic programs are
built from subsets of Lisp tailored to partic-
ular problem domains, and at this point
considerable skill is required to select just
the right subset for a particular problem.
Although the method has been tested on a
wide variety of problems, it has not been
used extensively in real applications.

The genetic programming method is
particularly intriguing because its solutions
are so different from human-designed pro-
grams for the same problem. Humans try to
design elegant and general computer pro-
grams, whereas genetic programs are often
needlessly complicated, not revealing the
underlying algorithm. For example, a hu-
man-designed program for computing cos
2x might I?e 1 - 2sin2x, expressed in Lisp as

Expression x 2 + 3xy+ y2

ii
LISP (+ (* x x) (* 3 x y) (* y y))

Fig. 4. Tree representation of computer pro-
grams. The displayed tree corresponds to the
expression x2 + 3xy + y2. Operators for each
expression are displayed as a root, and the
operands for each expression are displayed as
children.

(-1 (* 2 (* sin (sin x)))), but genetic
programming discovered (9, p. 241)

(sin (- (- 2 (* x 2))
(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1)))))))))))

For anyone who has studied computer pro-
gramming, this is apparently a major draw-
back because the evolved programs are in-
elegant, redundant, inefficient, difficult for
a human to read, and do not reveal the
underlying structure of the algorithm. How-
ever, genetic programs do resemble the
kinds of ad hoc solutions that evolve in
nature through gene duplication, mutation,
and modifying structures from one purpose
to another. There is some evidence that the
"junk" components of a genetic program
sometimes turn out to be useful components
in other contexts. Thus, if the genetic
programming endeavor is successful, it
could revolutionize software design.

Mathematical Analysis of
Genetic Algorithms

Although there are many problems for
which the genetic algorithm can evolve a
good solution in reasonable time, there are
also problems for which it is inappropriate
(such as problems in which it is important
to find the exact global optimum). It would
be useful to have a mathematical character-
ization of how the genetic algorithm works
that is predictive. Research on this aspect
of genetic algorithms has not produced
definitive answers. The domains for which
one is likely to choose an adaptive method
such as the genetic algorithm are precisely
those about which we typically have little
analytical knowledge; they are complex,
noisy, or dynamic (changing over time).
These characteristics make it virtually im-
possible to predict with certainty how well a
particular algorithm will perform on a par-
ticular problem, especially if the algorithm
is nondeterministic, as is the case with the
genetic algorithm. In spite of this difficulty,
there are fairly extensive theories about
how and why genetic algorithms work in
idealized settings.

Analysis of genetic algorithms begins
with the concept of a search space. The
genetic algorithm can be viewed as a pro-
cedure for searching the space of all possible
binary strings of a fixed length 1 (denoted as
(0, 1)'). Under this interpretation, the al-
gorithm is searching for points in the l-di-
mensional space (0, 1)' that have high
fitness. The search space is identical for all
problems of the same size (same 1), but the
locations of good points will generally dif-
fer. The surface defined by the fitness of
each point is sometimes referred to as the
fitness landscape. The longer the bit

strings, corresponding to higher values of 1,
the larger the search space is, growing
exponentially with the length of 1. For
problems with a sufficiently large 1, it is not
feasible for any algorithm to examine more
than a small fraction of the search space.
For example, 1 = 64 defines a search space
that is too large to search exhaustively with
current computer technology. Because only
a small fraction of a search space this size
can be examined, it is unreasonable to
expect an algorithm to locate the global
optimum in the space. A more reasonable
goal is to search for good regions of the
search space corresponding to regularities in
the problem domain. Holland (1) intro-
duced the notion of a "schema" to explain
how genetic algorithms search for regions of
high fitness. Schemas are theoretical con-
structs used to ex~lain the behavior of
genetic algorithms and are not processed
directly by the algorithm. The following
description of schema processing is excerpt-
ed from (40).

A scheina is a template, defined over the
alphabet (0, 1, *), that describes a pattern
of bit strings in the search space (0, I)' (the
set of strings of length 1). For each of the 1
bit positions, the template either specifies
the value (allele) at that position (the allele
is 1 or 0) or indicates by the symbol *
(referred to as "don't care") that either
value is allowed.

For example, the two strings A and B
have several bits in common. We can use
schemas to describe the patterns these two
strings share.

A bit string x that matches the pattern of
a schema s is said to be an instance of s; for
example, A and B are both instances of the
schemas shown above. In schemas, a 1 or 0
is referred to as a defined bit; the order of a
schema is the number of defined bits in that
schema; and the defining length of a schema
is the distance between the leftmost and
rightmost defined bits in the string (for exam-
ple, the defining length of **0** 1 is 3) .

Fig. 5. Schemas define hyperplanes in the
search space.

SCIENCE VOL. 261 13 AUGUST 1993

Schemas define hyperplanes in the
search space (0, 1)'. Figure 5 shows four
hyperplanes, corresponding to the schemas
0**** I****, *0***, and *I***. Any

9

point in the space is simultaneously an
instance of two of these schemas. For ex-
ample, the point shown in Fig. 5 is an
instance of both I**** and *0*** (and also
of lo***).

The fitness of any bit string in the
population gives some information about
the average fitness of the 2' different sche-
mas of which it is an instance, so an explicit
evaluation of a population of M individual
strings is also an implicit evaluation of a
much larger number of schemas. This is
referred to as implicit parallelism. At the
explicit level, the genetic algorithm search-
es through populations of bit strings, but
the genetic algorithm's search can also be
interpreted as an implicit schema sampling
process. Feedback from the fitness function,
combined with selection and recombina-
tion, biases the sampling procedure over
time away from those schemas that give
negative feedback (low average fitness) and
toward those that give positive feedback
(high average fitness). Ultimately, the
search procedure should identify regulari-
ties, or patterns, in the environment that
lead to high fitness, and because the space
of possible patterns is larger than the space
of possible individuals (3' versus 29, implic-
it parallelism is potentially advantageous.

An important theoretical result about
genetic algorithms is the Schema Theorem
(1, 2), which states that the observed best

Generation

Fig. 6. Schema frequencies in the population
over time for three schemas
s, = llllllllllllllll****************

................................
s,= ****************llllllllllllllll

................................
S3=********************************

11111111111111111111111111111111
(each schema is 64 bits long and is displayed over
two lines). The function plotted was a "royal road"
function (63), for which the optimum value is the
string of all 1's.

schemas are expected to receive an expo-
nentially increasing number of samples in
successive generations. Figure 6 illustrates
the rapid convergence on fit schemas by the
genetic algorithm. This strong convergence
property of the genetic algorithm is a two-
edged sword. On the one hand, the fact
that the genetic algorithm can close in on a
fit part of the space very quickly is a
powerful property; on the other hand, be-
cause the genetic algorithm always operates
on finite size populations, there is inherent-
ly some sampling error in the search, and in
some cases the genetic algorithm can mag-
nify a small sampling error, causing prema-
ture convergence on local optima (2).

According to the building blocks hy-
pothesis (1, 2), the genetic algorithm ini-
tially detects biases towards higher fitness in
some low-order schemas (those with a small
number of defined bits) and converges on
this part of the search space. Over time, it
detects biases in higher order schemas bv "

combining information from low-order
schemas bv means of crossover and eventu-
ally converges on a small region of the
search space that has high fitness. The
building blocks hypothesis states that this
process is the source of the genetic algo-
rithm's power as a search and optimization
method. If this hypothesis about how ge-
netic algorithms work is true, then cross-
over is of primary importance, and it dis-
tinguishes genetic algorithms from other
similar methods, such as simulated anneal-
ing and greedy algorithms. A number of
authors have questioned the adequacy of
the building blocks hypothesis as an expla-
nation for how genetic algorithms work
(41, 42), and there are several active re-
search efforts studying schema processing in
genetic algorithms. Nevertheless, the ex-
olanation of schemas and recombination
presented here stands as the most common
account of why genetic algorithms perform
as they do.

The building blocks hypothesis suggests
an analogy between the way genetic algo-
rithms work and Fourier analysis, in which
an arbitrary curve can be approximated by
the sum of sines and cosines of progressively
higher freauencies. Walsh functions are a -
complete orthogonal set' of basis functions
that provide a representation similar to Fou-
rier transforms (43), and Bethke applied
Walsh functions to the study of schema
processing in genetic algorithms (44). He
developed the Walsh-Schema transform, in
which discrete versions of Walsh functions
are used to calculate schema average fit-
nesses efficientlv. He then used this trans-
form to characterize functions as easy or
hard for the genetic algorithm to optimize.
Bethke's work was further developed and ex-
plicated by Goldberg (45), Tanese (46), Hol-
land (47), and Forrest and Mitchell (40).

As an example of the relevance of sche-
mas to function optimization, consider the
function shown in Fig. 7. The function is
defined over the integers on the interval [0,
311 (here, 1 = 5), so the x axis represents
the bit string argument (input to the func-
tion), and the y axis shows the function's
value, or fitness. In this example, the x
value will always be between 0 and 31. For
example, the string 10000 would be inter-
preted as 16, and 01000 would be interpret-
ed as 8. Likewise, the schema O**** (dot-
ted line) includes all points less than 16,
the schema I**** (also indicated with a
dotted line) includes all points greater than
or equal to 16, and the schema *O***
(dashed lines) specifies the integers on the
intervals [0, 71 and [16, 231. With this
example, it is easy to see how an individual
that was an instance of the schema 0""""
could be combined through crossover with
an instance of the schema *O*** to yield an
instance of 00***, which corresponds to
the most fit region of the space (shaded
region). .That is, 0**** and *0*** are
partial solutions.

Schema analysis can be used to predict
which fitness landscapes are well suited for
genetic algorithms and which are not.
Goldberg expanded the work of Bethke by
introducing the term "deception" and char-
acterizing genetic algorithm difficulty in
terms of deception. In deceptive functions,
low-order schemas lead the genetic algo-
rithm "away" from good high-order sche-
mas. For example, the following might be
the most fit order 1 schemas: 0*****,
*O****, **O***, and so on; but the point
11 11 11 might turn out to be the global
optimum. The concept of deception and its

Fig. 7. The example function is indicated by
solid line. The dashed and dotted lines indicate
the range of the noted schemas. The hatched
region is the most fit region of the space.

SCIENCE VOL. 261 13 AUGUST 1993

implications for the performance of genetic
algorithms have been a major area of re-
search in recent vears.

There are several other approaches to
the mathematical analvsis of the behavior
of genetic algorithms: kodels developed for
population genetics (48, 49), algebraic
models (50), signal-to-noise analysis (51),
landscape analysis, (52), and methods
based on Probably Approximately Correct
(PAC) learning (53).

Genetic Algorithms for
Making Models

Genetic algorithms have been used as mod- -
els of a wide variety of dynamic processes,
including induction in psychology (54 ,
natural evolution in ecosystems (55), evo-
lution in immune systems (56), and imita-
tion in social systems (57, 58). Making
computer models of evolution is somewhat
different from many conventional models
because the models are highly abstract. The
data produced by these models are unlikely
to make exact numerical predictions. Rath-
er. thev can reveal the conditions under , ,
which certain qualitative behaviors are
likely to rise: diversity of phenotytes in
resource-rich (or -poor) environments,
cooperation in competitive nonzero-sum
games, and so forth. Thus, the models
described here are being used to discover
qualitative patterns of behavior, and in
some cases, critical parameters in which
small changes have drastic effects on the -
outcomes. Such modeling is common in
nonlinear dynamics and in artificial intelli-
gence but is much less accepted in other
disciplines. Both of the following examples,
ecological modeling and immune systems,
represent exploratory research projects that
are currently under active investigation but
have not as yet produced concrete results.
For examples of more mature modeling
projects, see (54, 57, 59).

Modeling ecological systems. The Echo
system (55) shows how genetic algorithms
can be used to model ecologies. The major
differences between Echo and standard ge-
netic algorithms are (i) there is no explicit
fitness function. (ii) individuals have local , . ,
storage (they consist of more than their
genome); and (iii) the genetic representa-
tion is based on a higher cardinality alpha-
bet than binarv strines. In Echo. fitness -
evaluation takes place implicitly; that is,
individuals in the population (called
agents) are allowed to make copies of them-
selves anytime they acquire enough "re-
sources" to replicate their genome. Differ-
ent resources are modeled by different let-
ters of the alphabet (say A, B, C, D), and
genomes are constructed out of those same
letters. However, these resources can exist
independently of the agent's genome, ei-

ther free in the environment or stored
internally by the agent. Agents acquire
resources by interacting with other agents
through trade and combat. Echo thus relax-
es the constraint that an ex~licit fitness
function must return a numerical evalua-
tion of each agent. This "endogenous" fit-
ness function is much closer to the way
fitness is assessed in natural settings. In
addition to trade and combat, a third form
of interaction between agents is "mating."
Mating provides opportunities for agents to
exchange genetic material through cross-
over, thus creating hybrids. Mating, to-
gether with mutation, provides the mecha-
nism by which new types of agents evolve.

Populations in Echo exist on a two-
dimensional grid of sites. Many agents can
"cohabit" one site and agents can migrate
between sites. Each site is the source of
certain renewable resources. On each time
step of the simulation, a fixed amount of
resources at a site becomes available to the
agents located at that site. Different sites
mav ~roduce different amounts of different , .
resources. For example, one site might pro-
duce ten A's and five B's each time steo.
and its neighbor might produce five A;s;
zero B's, and five C's. The idea is that an
agent will do well (reproduce often) if it is
located at a site whose renewable resources
match well with its genomic makeup.

In preliminary simulations, the Echo
system has demonstrated surprisingly com-
plex behaviors (including something re-
sembling a biological arms race in which
two competing species develop progres-
sively more complex offensive and defen-
sive combat strategies), ecological depen-
dencies among different species, and sen-
sitivity (in terms of the number of different
phenotypes) to differing levels of renew-
able resources. Although the Echo system
is largely untested, it does show how the
fundamental ideas of genetic algorithms
can be incorporated into a system that
captures important features of natural eco-
logical systems.

Immune systems. In another recent proj-
ect, the genetic algorithm is used to model
certain aspects of the immune system, spe-
cifically, clonal selection and the evolution
of the antibody V-region gene libraries (56,
60. 61). The models are based on an ab- , ,

stract universe of binary strings in which
interactions among strings represent molec-
ular binding (62). The binding affinity be-
tween real antigens and real antibodies is
primarily determined by molecular shape
and electrostatic surface charge, both of
which are complementary when the mole-
cules have high affinity. In the artificial
model, binding takes place when an anti-
body bit string and an antigen bit string
have complementary binary patterns. Bind-
ing between these idealized antibodies and

antigens is defined by a matching function
that rewards more specific matches over less
specific ones; this constraint is related to
the immune system's ability to distinguish
self from other because recoenition of other -
must be fairly specific in order to avoid
recognizing self.

One population of antibodies and one of
antigens are constructed, each from bit
strings. Antigens are "presented" to the
antibody population one at a time, and
hieh-affinitv antibodies have their fitness
u

increased. The antibody population is then
evolved by the genetic algorithm on the
basis of its success at matching antigens.

This model has been used to studv both
the ability of the genetic algorithm ;o de-
tect common patterns (schemas) in a noisy
environment and its ability to maintain
diversity within its population (56). Both of
these capabilities are important because
natural immune systems are able to recog-
nize an enormous number of foreign mole-
cules with limited resources.

In one set of exoeriments. the model
evolved an antibody type, represented as a
population of similar antibodies, that
matched multiple antigens through the
identification of a common schema. This
problem is analogous to the problem the
immune system faces in identifying bacteria
that, although different in detail, may use a
similar polysaccharide in the construction
of their cell walls. In a second set of
experiments, we studied the model's ability
to maintain coveraee of the mace of anti- -
gens while under the selective pressure of
the genetic algorithm, as required by clonal
selection. By matching an antigen with
multiple antibodies and then giving the
fitness score to the best matching antibody,
the algorithm allowed a stable population
to evolve that contained reoresentatives of
different antibodies. In a third set of exper-
iments, investigators used bit strings to
represent the genetic encoding of V-region
libraries and studied the evolution of these
libraries under the genetic algorithm (61).
The experiments showed that the model
evolves a set of highly dissimilar library
entries, even when started with completely
homoeeneous entries and when a verv small

u

fraction of the repertoire of possible anti-
bodies is exoressed at anv one time. These
preliminary results suggest that the genetic
algorithm can be used to model evolution
in the immune system.

Future Prospects

The idea of using evolution to solve difficult
problems and to model natural phenomena
is promising. The genetic algorithms de-
scribed here are the first steps in this direc-
tion. Necessarily, they have abstracted out
much of the richness of biology, and in the

SCIENCE VOL. 261 13 AUGUST 1993

future, we can expect a wide variety of
evolutionary systems based on the princi-
ples of genetic algorithms but less closely
tied to these specific mechanisms. For ex-
ample, more elaborate representation tech-
niques, including those that use complex
genotype-to-phenotype mappings, and in-
creased use of nonbinary alphabets, can be
expected. Endogenous fitness functions,
similar to the one described for Echo, may
become more common, as well as dynamic
and coevolutionary fitness functions. More
generally, biological mechanisms of all
kinds are being incorporated into computa-
tional systems, including viruses, parasites,
and immune svstems.

From an algorithmic perspective, genet-
ic algorithms join a broader class of stochas-
tic methods for solving problems. An im-
portant area of future research is to under-
stand carefully how these algorithms relate
to one another and which algorithms are
best for which problems.

REFERENCESANDNOTES

1 . J. H. Holland, Adaptation in Natural and Artificial
Systems (Univ. of Michigan Press, Ann Arbor, MI,
1975; reprinted by MIT Press, Cambridge, MA,
1992).

2. D-E: Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning (Addison-
Wesley, Reading, MA, 1989).

3. G. E. P. Box, J. R. Stat. Soc. Ser. C 6, 81 (1957).
4. J. H. Holland, J. Assoc. Comput. Mach. 3, 297

(1 962).
5. L. J. Fogel, A. J. Owens, M. J. Walsh, Artificial

lntelligence Through Simulated Evolution (Wiley,
New York, 1966).

6. 1. Rechenberg, "Cybernetic solution path of an
experimental problem," Royal Aircraft Establish-
ment Transl. No. 1122, B. F. Toms, Transl. (Min-
istry of Aviation, Royal Aircraft Establishment,
Farnborough, Hants., United Kingdom, 1965).

7. T. Back and H. P. Schwefel, Evol. Comput. 1, 1
(1 993)

8. R. E. Smith and D. E. Goldberg, ComplexSyst. 6,
251 (1992).

9. W. D. Hillis, Physica D 42, 228 (1990).
10. L. Davis and S. Coombs, in Proceedings of the

Second lnternational Conference on Genetic Al-
gorithms, J. J. Grefenstette, Ed. (Erlbaum, Hills-
dale, NJ, 1987), pp. 252-256.

11. D. E. Glbver, in Genetic Algorithms and Simulated

Annealing, L. Davis, Ed. (Pitman, London, and
Morgan Kaufrnann, Los Altos, CA, 1987), pp.
1232.

12. J. R. Koza, Genetic Programming (MIT Press,
Cambridge, MA, 1992).

13. R. Dawkins, in Artificial Life, C. G. Langton, Ed.
(Addison-Wesley, Redwood City, CA, 1989), pp.
201-220.

14. K. Sims, Comput. Graphics 25, 319 (July 1991).
15. J. D. Schaffer, in Proceedings of an lnternational

Conference on Genetic Algorithms and Their Ap-
plications, J. J. Grefenstette, Ed. [Naval Center for
Applied Research on Artificial Intelligence (NCA-
RAI), Washington, DC, and Texas Instruments,
Dallas, TX, 19851, pp. 93-100.

16. L. Davis, Ed., Handbook of Genetic Algorithms
(Van Nostrand Reinhold, New York, 1991).

17. J. J. Grefenstette, Ed., Proceedings of an Interna-
tional Conference on Genetic Algorithms and their
Applications (NCARAI, Washington, DC, and Tex-
as Instruments, Dallas, TX, 1985).

18. . Proceedinos of the Second lnternational
Conference on ~ e ~ e t i c ~ l ~ o r i t h m s (Erlbaum, Hills-
dale, NJ, 1987).

19. J. D. Schaffer, Ed., Proceedings of the Third
lnternational Conference on ~ e i e t i c Algorithms
(Morgan Kaufmann, Los Altos, CA, 1989).

20. R. K. Belew and L. B. Booker, Eds., Proceedings
of the Fourth lnternational Conference on Genetic
Algorithms (Morgan Kaufmann, Los Altos, CA,
1991).

21. N. H. Packard, Complex Syst. 4 (no. 5) (1990).
22. L. B. Booker, R. L. Riolo, J. H. Holland, in Basic

Paradigms, Learning Representation Issues, and
Integrated Architectures, vol. 1 of Artificial lntelli-
gence and Neural Networks, V. Honavar and L.
Uhr, Eds. (Academic Press, Cambridge, MA, in
press).

23. K. A. DeJong, thesis, University of Michigan, Ann
Arbor, MI (1975).

24. C. G. Shaefer, in (lo) , pp. 50-58.
25. N. N. Schraudolph and R. K. Belew, Mach. Learn.

9, 9 (1991).
26. D. E. Goldberg, B. Korb, K. Deb, ComplexSyst. 3,

493 (1990).
27. Y. Davidor, Genetic Algorithms and Robotics

(World Scientific, River Edge, NJ, 1991).
28. D. Whitley, T. Starkweather, D. Shaner, in (16),

pp. 350372.
29. D. E. Goldberg, Complex Syst. 5, 139 (1991).
30. H. J. Antonisse and K. S. Keller, in (lo) , pp.

69-76.
31. D. E. Goldberg, Commun. ACM, in press.
32. H. Muhlenbein, M. Gorges-Schleuter, 0. Kramer,

Parallel Comput. 6, 65 (1 988).
33. D. Smith, in (15), pp. 202-206.
34. J. J. Grefenstette, R. Gopal, B. J. Rosmaita, D.

Van Gucht, ibid., pp. 160-1 68.
35. D. E. Goldberg and R. Lingle, Jr., ibid., pp.

154-1 59.
36. G. Syswerda, in (19).

37. J. D. Schaffer, R. A. Caruana, L. J. Eshelman, in
(79).

38. J. C. Bean, ORSA J. Comput., in press.
39. N. Ulder, E. Aarts, H. Bandelt, P. van Laarhoven,

E. Pesch, in Parallel Problem Solving from Nature,
H. P. Schwefel and R. Manner, Eds. (Springer-
Verlag, New York, 1991), pp. 109-1 16.

40. S. Forrest and M. Mitchell, Mach. Learn., in press.
41. J. J. Grefenstette and J. E. Baker, in (19).
42. D. B. Fogel and J. W. Atmar, Biol. Cybern. 63, 11 1

(1 990).
43. J. L. Walsh, Am. J. Math. 55, 5 (1 923).
44. A. D. Bethke, thesis, University of Michigan, Ann

Arbor, MI (1980).
45. D. E. Goldberg, Complex Syst. 3, 153 (1 989).
46. R. Tanese, thesis, University of Michigan, Ann

Arbor, MI (1989).
47. J. H. Holland, in Evolution, Learning, and Cogni-

tion, Y. C. Lee, Ed. (World Scientific, River Edge,
NJ, 1988).

48. L. B. Booker, in Foundations of Genetic Algo-
rithms 2, L. D. Whitley, Ed. (Morgan Kaufmann,
Los Altos, CA, 1993), pp. 29-44.

49. A. Bergman and M. W. Feldman, Physica D56,57
(1 992).

50. G. E. Liepins and M. D. Vose, J. Exp. Theor. Artif.
Intell. 2, 101 (1 990).

51. D. E. Goldberg, K. Deb, J. H. Clark, Complex
Syst. 6, 333 (1992).

52. B. Manderick, M. de Weger, P. Spiessens, in (20).
53. J. P. Ros, in (48), pp. 257-276.
54. J. H. Holland, K. J. Holyoak, R. E. Nisbett, P.

Thagard,' Induction: Processes of Inference,
Learning, and Discovery (MIT Press, Cambridge,
MA, 1986).

55. J. H. Holland, in Integrative Themes, G. Cowan, D.
Pines, D. Meltzer, Eds. (Addison-Wesley, Read-
ing, MA, in press).

56. S. Forrest, B. Javornik, R. E. Smith, A. Perelson,
Evol. Comput., in press.

57. R. Axelrod, Am. Polit. Sci. Rev. (December 1986),
D. 80.

58. -, in (11).
59. S. W. Wilson, Mach. Learn. 2, 199 (1987).
60. R. E. Smith, S. Forrest, A. S. Perelson, Evol.

Comput., in press.
61. R. Hightower, S. Forrest, A. S. Perelson, in Pro-

ceedings of the Second European Conference on
Artificial Life, in press.

62. J. D. Farmer, N. H. Packard, A. S. Perelson,
Physica D 22, 187 (1986).

63. S. Forrest and M. Mitchell, in (48), pp. 109-126.
64. The author acknowledges the National Science

Foundation (grant IRI-9157644), Sandia Universi-
ty Research Program (grant AE-1679), and the
Alfred P. Sloan Foundation (grant 81992-46).
Many people read and contributed comments on
the manuscript. In particular, I would like to thank
K. DeJong, D. Goldberg, J. Holland, and R.
Palmer. D. Mathews and L. Desjarlais prepared
the figures.

