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A genetic algorithm is a form of evolution that occurs on a computer. Genetic algorithms 
are a search method that can be used for both solving problems and modeling evolu- 
tionary systems. With various mapping techniques and an appropriate measure of 
fitness, a genetic algorithm can be tailored to evolve a solution for many types of 
problems, including optimization of a function or determination of the proper order of a 
sequence. Mathematical analysis has begun to explain how genetic algorithms work and 
how best to use them. Recently, genetic algorithms have been used to model several 
natural evolutionary systems, including immune systems. 

Evolution by natural selection is one of the 
most compelling themes of modem science, 
and it has revolutionized the wav we think 
about biological systems. There is a form of 
evolution, called a genetic algorithm, that 
takes place in a computer. In genetic algo- 
rithms, selection operates on strings of bi- 
nary digits stored in the computer's memo- 
ry, and over time, the functionality of these 
strings evolves in much the same way that 
natural populations of individuals evolve. 
Although the computational setting is 
highly simplified compared with the natural 
world, genetic algorithms are capable of 
evolving surprisingly complex and interest- 
ing structures. These structures, called in- 
dividuals, may represent solutions to prob- 
lems, strategies for playing games, visual 
images, or simple computer programs. 

The Darwinian theory of evolution de- 
picts biological systems as the product of 
the ongoing process of natural selection. 
Likewise, genetic algorithms allow engi- 
neers to use a computer to evolve solutions 
over time, instead of designing them by 
hand. Because almost any method, theory, 
or technique can be encoded on a comput- 
er, this implies an approach to problem- 
solving that can be, at least partially, auto- 
mated by a computer. More specifically, 
computer science has long been interested 
in how the design, development, and de- 
bugging of computer programs could be 
automated, and genetic algorithms provide 
one avenue toward this goal. 

The very name genetic algorithm is 
puzzling because the first word refers to a 
biological science and the second word is 
borrowed from computer science. An  al- 
gorithm is a step-by-step procedure for 
accomplishing some specific task-sorting 
numbers, formatting text on a page, or 
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diagnosing car problems. Many algorithms 
can be readily implemented as computer 
programs. Thus, an algorithm is the gen- 
eral description of a procedure, and a 
program is its realization as a sequence of 
instructions to a computer. Genetic algo- 
rithms are loosely based on ideas from 
population genetics; they feature popula- 
tions of genotypes (an individual's genetic 
material) stored in memory, differential 
reproduction of these genotypes, and vari- 
ations that are created by processes anal- 
ogous to the biological processes of muta- 
tion and crossover. 

Although genetic algorithms are known 
primarily as a problem-solving method, 
they can also be used to study evolution 
itself and to model dynamic systems. Many 
systems that evolve over time can be mod- 
eled with a genetic algorithm, including 
biological systems (such as ecologies, im- 
mune systems, and genetic systems) and 
social systems (such as economies and po- 
litical systems). This second, and quite 
different, use of genetic algorithms suggests 
a computational view of evolution in which 
the mechanisms of natural selection, inher- 
itance, and variation serve primarily to 
transmit and process information. One in- 
teresting question is whether data produced 

by a highly idealized model such as a genet- 
ic algorithm can provide useful insights 
about natural evolutionary systems. 

Genetic Algorithm Overview 

The basic idea of a genetic algorithm is " " 
very simple. First, a population of individ- 
uals is created in a computer (typically 
stored as binary strings in the computer's 
memory), and then the population is 
evolved with use of the principles of vari- 
ation, selection, and inheritance. There 
are many ways of implementing this sim- 
ple idea, and I will describe the one 
invented by Holland (1, 2) (Fig. 1). 

The idea of using selection and variation 
to evolve solutions to problems goes back at 
least to Box (3), although this work did not 
make use of a computer. In the late 1950s 
and earlv 1960s. there were several inde- 
pendent efforts to incorporate ideas from 
evolution in computation. Of these, the 
best known are those by Holland (4), Fogel 
et al. (S), and Rechenberg (6, 7). Rechen- 
berg emphasized the importance of selec- 
tion and mutation as mechanisms for solv- 
ing difficult real-valued optimization prob- 
lems. Fogel et al. developed similar ideas for 
evolving intelligent agents in the form of 
finite state machines. Holland emphasized 
the adaptive properties of entire popula- 
tions and the importance of recombination 
mechanisms such as crossover. 

In its simplest form, each individual in the 
population consists of a string of binary digits 
(bits). Genetic algorithms often use more 
complex representations, including diploid 
(8, 9) and multiple chromosomes (9) and 
higher cardinality alphabets (1 0-1 2). Howev- 
er, the binary case is both the simplest and the 
most general. By analogy with biological sys- 
terns, the string of bits is referred to as the 
"genotype." Each individual consists only of 
its genetic material, which is organized into 
one (haploid) chromosome. Each bit position 
(set to 1 or 0) represents one gene. The term 
"bit string" refers to both genotypes and the 
individuals that they define. There are a 
variety of techniques for mapping bit strings to 
different problem domains. 

Fig. 1. Operation of the 
genetic algorithm. A 
population of three indi- 
viduals is shown. Each is 
assigned a fitness value 
by the function F. On the 
basis of these fitnesses, 
the selection phase as- 
signs the first individual F(00111)= 

F(11100)= (001 11) zero copies, the ~ ( 0 1 0 1 0 )  = 
second (1 11000) two, 
and the third (01010) one copy. After selection, the genetic operators are applied probabilistically; 
the first individual has its first bit mutated from a 1 to a 0, and crossover combines the second two 
individuals into two new ones. The resulting population is shown in the box labeled T,,,, 
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The initial population of individuals is 
usually generated randomly, although it 
need not be. Each individual is tested em- 
pirically in an "environment" and is as- 
signed a numerical evaluation of its merit 
bv a fitness function F .  The environment 
can be almost anything-another computer 
simulation. interactions with other individ- 
uals in the population, actions in the phys- 
ical world (by a robot, for example), or a 
human's subjective judgment (1 3, 14). The 
fitness function returns a single number 
(usually, higher numbers are assigned to 
fitter individuals). This constraint is some- 
times relaxed so that the fitness function 
returns a vector of numbers (15). The 
fitness function determines how each gene 
(bit) of an individual will be interpreted 
and, thus, what specific problem the popu- 
lation will evolve to solve. The fitness 
function is the primary place in which the 
traditional genetic algorithm is tailored to a 
specific problem. 

Once all individuals in the population 
have been evaluated, their fitnesses are used 
as the basis for selection. Selection is im- 
plemented by eliminating low-fitness indi- 
viduals from the population, and inheri- 
tance is implemented by making multiple 
copies of high-fitness individuals. Genetic 
operators such as mutation (flipping indi- 
vidual bits) and crossover (exchanging sub- 
strines of two individuals to obtain two 

u 

offspring) are applied probabilistically to 
the selected individuals to ~roduce a new 
population (or generation) of individuals. 
The term "crossover" is used here to refer to 
the exchange of homologous substrings be- 
tween individuals, although the biological 
term "crossing over" generally implies ex- 
change within an individual. New genera- 
tions can be produced either synchronous- 
ly, so that the old generation is completely 
replaced, or asynchronously, so that gener- 
ations overlap. 

By transforming the previous set of good 
individu'als to a new one, the operators 
eenerate a new set of individuals that have - 
a better than average chance of also being 
good. When this cycle of evaluation, selec- 
tion, and genetic operations is iterated for 
many generations, the overall fitness of the 
population generally improves, and the in- 
dividuals in the population represent im- 
moved "solutions" to whatever ~roblem 
was posed in the fitness function. 

There are many details left unspecified 
by this description. For example, selection 
can be performed in any of several ways: It 
could arbitrarily eliminate the least fit 50% 
of the population and make one copy of all 
the remaining individuals, it could replicate 
individuals in direct proportion to their 
fitness. or it could scale the fitnesses in anv 
of several ways and replicate individuals in 
direct proportion to their scaled values (a 

more typical method). Likewise, the cross- 
over operator can pass on both offspring to 
the new generation, or it can arbitrarily 
choose one to be passed on; the number of 
crossovers can be restricted to one per pair, 
two per pair, or N per pair. These and other 
variations of the basic algorithm have been 
discussed extensivelv (2, 16-20). , , .  

This computational definition of evolu- 
tion has the advantage that mathematics 
and simulation can both be used to ask 
various questions: Does the population 
evolve a stable set of individuals? Does it 
always evolve the most fit individuals pos- 
sible? If so, why? If not, why not? Does the 
population ever converge on one genotype? 
Does it always converge? How long does it 
take to converge? How do various parame- 
ters (such as population size, crossover rates, 
mutation rates, and so on) affect the rate of 
evolution? How do various changes to the 
details of the algorithm affect the rate of 
evolution? Research in genetic algorithms 
seeks to answer these questions, both math- 
ematically and through simulation. 

Genetic Algorithms for 
Solving Problems 

The simple computation procedure de- 
scribed above can be applied in many dif- 
ferent ways to solve a wide range of prob- 
lems. In the design of a genetic algorithm to 
solve a specific problem, there are always 
two major decisions: (i) specifying the map- 
ping between binary strings and candidate 
solutions (commonlv referred to as the reD- 
resentation problem), and (ii) defining a 
concrete measure of fitness. In some cases, 
the best representation and fitness function 
are obvious, but in many cases, they are 
not, and in all cases, the particular repre- 
sentation and fitness function that are se- 
lected will determine the ultimate success 
of the genetic algorithm on the chosen 
~roblem. 

Possibly the simplest representation is a 
feature list in which each bit, or gene, 
represents the presence or absence of a 
single feature. This representation is useful 
for learning pattern classes defined by a 
critical set of features. For example, in an 
operations research problem, Packard used 
a genetic algorithm to search for correla- 
tions between certain office decision proce- 
dures and the efficiency of that office (21). 
He described 19 different decision proce- 
dures (the independent variables) associat- 
ed with different offices of an organization 
and defined a quantitative measure for the 
output (efficiency) of each office (the depen- 
dent variable). The genetic algorithm was 
then used to search for combinations of 
procedures that correlated strongly with ei- 
ther high-efficiency or low-efficiency offices. 
The feature list approach to this problem 

assigns one bit to represent the presence or 
absence of each different decision procedure, 
and fitness is assigned to those individuals 
whose feature settings correspond to high- 
(or low-) efficiency offices (Packard's system 
used a more complicated representation than 
that described here, but the principle was 
the same). 

Of the many other representations that 
have been investigated, three will be dis- 
cussed in detail: numerical encodings for 
function optimization, random-key encod- 
ings for ordering problems, and computer 
programs for automated programming. The 
first is by far the most frequently used in real 
applications. It is well understood and non- 
controversial. The second two representa- 
tions illustrate the possibilities of genetic 
algorithms, but they were developed more 
recently and are still largely unproven. For 
an overview of other representation tech- 
niques, see (22). 

Function optimization. Perhaps the most 
obvious application of genetic algorithms, 
pioneered by DeJong (23), is multiparame- 
ter function optimization. Many problems 
can be formulated as a search for some 
optimal value, where the value is a compli- 
cated function of its input parameters. In 
some cases, the parameter settings that lead 
to the greatest (or least) value of the func- 
tion are of interest. In other cases, the 
exact optimum is not required, just a near 
optimum, or even a value that represents a 
slight improvement over the previously best 
known value. 

As a simple example, consider the func- 
tion f(x, y) = Y ~ 2  - x4. This function is 
solvable analytically, but if it were not, a 
genetic algorithm could be used to find the 
values x and y that produce the maximum 
f(x, y) in a particular region of R2. The 
most straightforward method of representa- 
tion (Fig. 2) is to assign regions of the bit 
string to represent each parameter (vari- 

0 0 1 1 1 1 Bit string (Gray coded) 
Degray 

1 5 Base 10 

Fig. 2. Bit-string encoding of multiple real- 
valued parameters. An arbitrary string of six 
bits is interpreted in the following steps: ( i )  
segment the string into two regions with the first 
three bits resewed for x and the second three 
bits for y; ( i i )  interpret each three-bit substring 
as a Gray code and map back to the corre- 
sponding binary code (see Table 1); ( i i i )  map 
each three-bit substring from its binary code to 
its decimal equivalent; (iv) substitute the two 
decimal values for xand y in the fitness function 
F; and (v) return F(x y) as the fitness of the 
original string. 
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able). Once the order in which the param- 
eters are to appear is determined (in the 
figure, x appears first and y appears second), 
the next step is to specify the domain for x 
and y (that is, the range of values for x and 
y that are candidate solutions). Also, be- 
cause x and y can be real-valued in this 
example, the parameters will be discretized. 
The precision of the solution is determined 
by how many bits are used to represent each 
parameter. In the example, 3 bits are as- 
signed for x and 3 for y, although 10 is a 
more typical number. For simplicity, x and 
y will vary between 0 and 7. 

With this representation, the genetic 
algorithm generates a random population of 
bit strings, decodes each bit string into the 
corresponding decimal values for x and y, 
applies the fitness function [f(x, y) = yx2 - 
x4] to the decoded values, selects the most 
fit individuals [those with the highest f(x, 
y)] for copying and variation, and then 
repeats the process. The population will 
eventually converge on a set of bit strings 
that represents an optimal or near optimal 
solution. However, there will always be 
some variation in the population because of 
mutation. 

There are different ways of mapping 
between bits and decimal numbers, so an 
encoding must also be chosen. The tradi- 
tional binary encoding has the drawback 
that in some cases all the bits must be 
changed in order to increase a number by 1. 
For example, the bit pattern 011 translates 
to 3 in decimal, but 4 is represented by 100 
(see Table I). This can make it difficult for 
an individual that is close to an optimum to 
move even closer by mutation. Also, mu- 
tations in high-order bits (the leftmost bits) 
are more significant than mutations in low- 
order bits. This can violate the idea that bit 
strings in successive generations will have a 
better than average chance of having high 
fitness because mutations may often be dis- 
ruptive. A different encoding, called Gray 
coding, addresses the first of these prob- 
lems. Gray codes have the property that 
incrementing or decrementing any number 
by 1 is always a one-bit change (Table I). 
Gray codes can be defined for numbers of 
any size, although the table shows only 
values for three-bit numbers. In practice, 

Table 1. Gray codes for three-bit numbers 

Decimal Binary code Gray code 

Gray-coded representations are often more 
successful for multiparameter function opti- 
mization applications. 

There are a number of other representa- 
tion tricks that are often used for function 
optimization, including logarithmic scaling 
(interpreting bit strings as the logarithm of 
the true parameter value), dynamic encod- 
ing (24, 25) (a technique that allows the 
number and interpretation of bits allocated 
to a particular parameter to vary throughout 
a run), variable-length representations (26, 
27), delta coding (28) (the bit strings ex- 
press a distance away from some previous 
partial solution), and a multitude of nonbi- 
nary encodings (29, 30). 

Although a function of two variables 
was used as an examole. the strength of 

& ,  - 
the genetic algorithm lies in its ability to 
manioulate manv oarameters. This meth- 
od has been used {or hundreds of applica- 
tions (2, 16, 19, 20, 3 l ) ,  including air- 
craft design, the tuning of parameters for 
algorithms that detect and track multiple 
signals in an image, and the location of 
regions of stability in systems of nonlinear 
difference eauations. 

Ordering problems. Another common 
problem involves finding an optimal order- 
ing for a sequence of N items. Examples 
include a tour of cities that minimizes the 
distance travelled (the Travelling Salesman 
problem), packing boxes into a bin to 
minimize wasted space (the bin-packing 
problem), graph-coloring problems, and 
DNA fragment assembly. The computa- 
tional complexity of these problems is 
thought to increase exponentially as N 
increases. 

For example, in the Travelling Salesman 
problem, suppose there are four cities-1, 
2, 3, and +-each with a unique bit-string 
encoding. A natural way to represent tours 
would be to list the permutations, so that 3 
2 1 4 would be one candidate tour and 4 1 
2 3 would be another. This representation 
is problematic for the genetic algorithm 
because crossovers between these two can- 
didates do not necessarily produce legal 
tours. For example, a cross between posi- 
tions two and three in the example pro- 
duces the individuals 3 2 2 3 and 4 1 1 4, 
both of which are illegal tours because not 
all of the cities are visited and some are 
visited more than once. 

Two general methods have been pro- 
posed to address this representation prob- 
lem: (i) designing specialized crossover op- 
erators that produce only legal tours and (ii) 
adopting a different representation. Of 
these, the use of specialized operators has 
been the prevalent method for successful 
applications of genetic algorithms to order- 
ing problems such as the Travelling Sales- 
man problem [for example, see (32)l. Fol- 
lowing the second approach, a number of 

representations have been proposed (29, 
33-35), including the random-key method 
(36-38). Because specialized crossover op- 
erators tend to be problem-specific, I will 
discuss the random-kev method as an ex- 
ample of a general representation method 
for ordering problems. This method has 
been applied with limited success to the 
Travelling Salesman problem and with 
more success to scheduling, routing, re- 
source allocation, and assignment prob- 
lems (38). Although it is not well justified 
theoretically and has not been widely 
adopted within the genetic algorithm 
community, it is an imaginative encoding 
and illustrates the wide range of represen- 
tations that are possible. 

The random-kev method divides the bit 
string into N segments of k bits, where N is 
the number of cities in the tour and 2k > > 
N. Because the number of bits used for each 
segment can encode many more numbers 
than there are cities, the binary code for 
each segment can be interpreted as a ran- 
dom number. For examole. if three bits are . , 

assigned to each segment then any bit string 
can be decoded into a sequence of integers 
between zero and seven (ties are resolved 
randomly). A randomly generated bit string 
might yield the following sequence: 5 3 1 7. 
Now, these keys are decoded to a tour by 
identifying the position of the smallest ele- 
ment. The smallest element is 1 and it is in 
the third oosition. so citv 3 becomes the 
first city on the tour. This method produces 
the tour 3 2 1 4 for the example string (Fig. 
3) - 

The random-key encoding has the ad- 
vantage that any bit string represents a legal 
tour, which eliminates the need for special- 
ized crossover operators. However, domain- 
independent representations such as this 
are not always successful on hard combina- 

Example Travelling 
Salesman problem 

3 2 
+ 
4 Ordering 

F(101011001111) =Tour Length(3,2,1,4) = 7 

Fig. 3. The random-key representation for or- 
dering problems. The example shows four cit- 
ies (represented as nodes in the graph). Labels 
on the arcs denote the distance between cities. 
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torial problems, such as the Travelling 
Salesman problem. When combined with 
domain-specific knowledge, the algorithms 
can be quite effective on problems of this 
class (34, 39). 

Automatic programming. Genetic algo- 
rithms have recentlv been used to evolve a 
special kind of computer program (12). 
These programs are written in a subset of 
the programming language Lisp. Lisp pro- 
grams can naturally be represented as trees 
(Fig. 4). Populations of random program 
trees are generated and evaluated as in the 
standard genetic algorithm. All other de- 
tails are similar to those described for 
binary genetic algorithms with the excep- 
tion of crossover. Instead of exchanging 
substrings, genetic programs exchange 
subtrees between individual program trees. 
This modified form of crossover appears to 
have many of the same advantages as 
traditional crossover (such as preserving 
partial solutions). 

Genetic programming has the potential 
to be extremely powerful because Lisp is a 
general-purpose programming language and 
genetic programming eliminates the need 
to devise a chromosomal representation. In 
practice, however, genetic programs are 
built from subsets of Lisp tailored to partic- 
ular problem domains, and at this point 
considerable skill is required to select just 
the right subset for a particular problem. 
Although the method has been tested on a 
wide variety of problems, it has not been 
used extensively in real applications. 

The genetic programming method is 
particularly intriguing because its solutions 
are so different from human-designed pro- 
grams for the same problem. Humans try to 
design elegant and general computer pro- 
grams, whereas genetic programs are often 
needlessly complicated, not revealing the 
underlying algorithm. For example, a hu- 
man-designed program for computing cos 
2x might I?e 1 - 2sin2x, expressed in Lisp as 

Expression x 2 +  3xy+ y2 

ii 
LISP (+ (* x x ) ( * 3 x y ) ( * y y ) )  

Fig. 4. Tree representation of computer pro- 
grams. The displayed tree corresponds to the 
expression x2 + 3xy + y2. Operators for each 
expression are displayed as a root, and the 
operands for each expression are displayed as 
children. 

(-1 (* 2 (* sin (sin x)))), but genetic 
programming discovered (9, p. 241) 

(sin (- (- 2 (* x 2)) 
(sin (sin (sin (sin (sin (sin (* (sin (sin 1)) 

(sin (sin 1))))))))))) 

For anyone who has studied computer pro- 
gramming, this is apparently a major draw- 
back because the evolved programs are in- 
elegant, redundant, inefficient, difficult for 
a human to read, and do not reveal the 
underlying structure of the algorithm. How- 
ever, genetic programs do resemble the 
kinds of ad hoc solutions that evolve in 
nature through gene duplication, mutation, 
and modifying structures from one purpose 
to another. There is some evidence that the 
"junk" components of a genetic program 
sometimes turn out to be useful components 
in other contexts. Thus, if the genetic 
programming endeavor is successful, it 
could revolutionize software design. 

Mathematical Analysis of 
Genetic Algorithms 

Although there are many problems for 
which the genetic algorithm can evolve a 
good solution in reasonable time, there are 
also problems for which it is inappropriate 
(such as problems in which it is important 
to find the exact global optimum). It would 
be useful to have a mathematical character- 
ization of how the genetic algorithm works 
that is predictive. Research on this aspect 
of genetic algorithms has not produced 
definitive answers. The domains for which 
one is likely to choose an adaptive method 
such as the genetic algorithm are precisely 
those about which we typically have little 
analytical knowledge; they are complex, 
noisy, or dynamic (changing over time). 
These characteristics make it virtually im- 
possible to predict with certainty how well a 
particular algorithm will perform on a par- 
ticular problem, especially if the algorithm 
is nondeterministic, as is the case with the 
genetic algorithm. In spite of this difficulty, 
there are fairly extensive theories about 
how and why genetic algorithms work in 
idealized settings. 

Analysis of genetic algorithms begins 
with the concept of a search space. The 
genetic algorithm can be viewed as a pro- 
cedure for searching the space of all possible 
binary strings of a fixed length 1 (denoted as 
(0, 1)'). Under this interpretation, the al- 
gorithm is searching for points in the l-di- 
mensional space (0, 1)' that have high 
fitness. The search space is identical for all 
problems of the same size (same 1), but the 
locations of good points will generally dif- 
fer. The surface defined by the fitness of 
each point is sometimes referred to as the 
fitness landscape. The longer the bit 

strings, corresponding to higher values of 1, 
the larger the search space is, growing 
exponentially with the length of 1. For 
problems with a sufficiently large 1, it is not 
feasible for any algorithm to examine more 
than a small fraction of the search space. 
For example, 1 = 64 defines a search space 
that is too large to search exhaustively with 
current computer technology. Because only 
a small fraction of a search space this size 
can be examined, it is unreasonable to 
expect an algorithm to locate the global 
optimum in the space. A more reasonable 
goal is to search for good regions of the 
search space corresponding to regularities in 
the problem domain. Holland (1) intro- 
duced the notion of a "schema" to explain 
how genetic algorithms search for regions of 
high fitness. Schemas are theoretical con- 
structs used to ex~lain the behavior of 
genetic algorithms and are not processed 
directly by the algorithm. The following 
description of schema processing is excerpt- 
ed from (40). 

A scheina is a template, defined over the 
alphabet (0, 1, *), that describes a pattern 
of bit strings in the search space (0, I)' (the 
set of strings of length 1). For each of the 1 
bit positions, the template either specifies 
the value (allele) at that position (the allele 
is 1 or 0) or indicates by the symbol * 
(referred to as "don't care") that either 
value is allowed. 

For example, the two strings A and B 
have several bits in common. We can use 
schemas to describe the patterns these two 
strings share. 

A bit string x that matches the pattern of 
a schema s is said to be an instance of s; for 
example, A and B are both instances of the 
schemas shown above. In schemas, a 1 or 0 
is referred to as a defined bit; the order of a 
schema is the number of defined bits in that 
schema; and the defining length of a schema 
is the distance between the leftmost and 
rightmost defined bits in the string (for exam- 
ple, the defining length of **0** 1 is 3) .  

Fig. 5. Schemas define hyperplanes in the 
search space. 
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Schemas define hyperplanes in the 
search space (0, 1)'. Figure 5 shows four 
hyperplanes, corresponding to the schemas 
0**** I****, *0***, and *I***. Any 

9 

point in the space is simultaneously an 
instance of two of these schemas. For ex- 
ample, the point shown in Fig. 5 is an 
instance of both I**** and *0*** (and also 
of lo***). 

The fitness of any bit string in the 
population gives some information about 
the average fitness of the 2' different sche- 
mas of which it is an instance, so an explicit 
evaluation of a population of M individual 
strings is also an implicit evaluation of a 
much larger number of schemas. This is 
referred to as implicit parallelism. At the 
explicit level, the genetic algorithm search- 
es through populations of bit strings, but 
the genetic algorithm's search can also be 
interpreted as an implicit schema sampling 
process. Feedback from the fitness function, 
combined with selection and recombina- 
tion, biases the sampling procedure over 
time away from those schemas that give 
negative feedback (low average fitness) and 
toward those that give positive feedback 
(high average fitness). Ultimately, the 
search procedure should identify regulari- 
ties, or patterns, in the environment that 
lead to high fitness, and because the space 
of possible patterns is larger than the space 
of possible individuals (3' versus 29, implic- 
it parallelism is potentially advantageous. 

An important theoretical result about 
genetic algorithms is the Schema Theorem 
(1, 2), which states that the observed best 

Generation 

Fig. 6. Schema frequencies in the population 
over time for three schemas 
s, = llllllllllllllll**************** 

................................ 
s,= ****************llllllllllllllll 

................................ 
S3=******************************** 

11111111111111111111111111111111 
(each schema is 64 bits long and is displayed over 
two lines). The function plotted was a "royal road" 
function (63), for which the optimum value is the 
string of all 1's. 

schemas are expected to receive an expo- 
nentially increasing number of samples in 
successive generations. Figure 6 illustrates 
the rapid convergence on fit schemas by the 
genetic algorithm. This strong convergence 
property of the genetic algorithm is a two- 
edged sword. On the one hand, the fact 
that the genetic algorithm can close in on a 
fit part of the space very quickly is a 
powerful property; on the other hand, be- 
cause the genetic algorithm always operates 
on finite size populations, there is inherent- 
ly some sampling error in the search, and in 
some cases the genetic algorithm can mag- 
nify a small sampling error, causing prema- 
ture convergence on local optima (2). 

According to the building blocks hy- 
pothesis (1, 2), the genetic algorithm ini- 
tially detects biases towards higher fitness in 
some low-order schemas (those with a small 
number of defined bits) and converges on 
this part of the search space. Over time, it 
detects biases in higher order schemas bv " 

combining information from low-order 
schemas bv means of crossover and eventu- 
ally converges on a small region of the 
search space that has high fitness. The 
building blocks hypothesis states that this 
process is the source of the genetic algo- 
rithm's power as a search and optimization 
method. If this hypothesis about how ge- 
netic algorithms work is true, then cross- 
over is of primary importance, and it dis- 
tinguishes genetic algorithms from other 
similar methods, such as simulated anneal- 
ing and greedy algorithms. A number of 
authors have questioned the adequacy of 
the building blocks hypothesis as an expla- 
nation for how genetic algorithms work 
(41, 42), and there are several active re- 
search efforts studying schema processing in 
genetic algorithms. Nevertheless, the ex- 
olanation of schemas and recombination 
presented here stands as the most common 
account of why genetic algorithms perform 
as they do. 

The building blocks hypothesis suggests 
an analogy between the way genetic algo- 
rithms work and Fourier analysis, in which 
an arbitrary curve can be approximated by 
the sum of sines and cosines of progressively 
higher freauencies. Walsh functions are a - 
complete orthogonal set' of basis functions 
that provide a representation similar to Fou- 
rier transforms (43), and Bethke applied 
Walsh functions to the study of schema 
processing in genetic algorithms (44). He 
developed the Walsh-Schema transform, in 
which discrete versions of Walsh functions 
are used to calculate schema average fit- 
nesses efficientlv. He then used this trans- 
form to characterize functions as easy or 
hard for the genetic algorithm to optimize. 
Bethke's work was further developed and ex- 
plicated by Goldberg (45), Tanese (46), Hol- 
land (47), and Forrest and Mitchell (40). 

As an example of the relevance of sche- 
mas to function optimization, consider the 
function shown in Fig. 7. The function is 
defined over the integers on the interval [0, 
311 (here, 1 = 5), so the x axis represents 
the bit string argument (input to the func- 
tion), and the y axis shows the function's 
value, or fitness. In this example, the x 
value will always be between 0 and 31. For 
example, the string 10000 would be inter- 
preted as 16, and 01000 would be interpret- 
ed as 8. Likewise, the schema O**** (dot- 
ted line) includes all points less than 16, 
the schema I**** (also indicated with a 
dotted line) includes all points greater than 
or equal to 16, and the schema *O*** 
(dashed lines) specifies the integers on the 
intervals [0, 71 and [16, 231. With this 
example, it is easy to see how an individual 
that was an instance of the schema 0"""" 
could be combined through crossover with 
an instance of the schema *O*** to yield an 
instance of 00***, which corresponds to 
the most fit region of the space (shaded 
region). .That is, 0**** and *0*** are 
partial solutions. 

Schema analysis can be used to predict 
which fitness landscapes are well suited for 
genetic algorithms and which are not. 
Goldberg expanded the work of Bethke by 
introducing the term "deception" and char- 
acterizing genetic algorithm difficulty in 
terms of deception. In deceptive functions, 
low-order schemas lead the genetic algo- 
rithm "away" from good high-order sche- 
mas. For example, the following might be 
the most fit order 1 schemas: 0*****, 
*O****, **O***, and so on; but the point 
11 11 11 might turn out to be the global 
optimum. The concept of deception and its 

Fig. 7. The example function is indicated by 
solid line. The dashed and dotted lines indicate 
the range of the noted schemas. The hatched 
region is the most fit region of the space. 
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implications for the performance of genetic 
algorithms have been a major area of re- 
search in recent vears. 

There are several other approaches to 
the mathematical analvsis of the behavior 
of genetic algorithms: kodels developed for 
population genetics (48, 49), algebraic 
models (50), signal-to-noise analysis (51), 
landscape analysis, (52), and methods 
based on Probably Approximately Correct 
(PAC) learning (53). 

Genetic Algorithms for 
Making Models 

Genetic algorithms have been used as mod- - 
els of a wide variety of dynamic processes, 
including induction in psychology (54 ,  
natural evolution in ecosystems (55), evo- 
lution in immune systems (56), and imita- 
tion in social systems (57, 58). Making 
computer models of evolution is somewhat 
different from many conventional models 
because the models are highly abstract. The 
data produced by these models are unlikely 
to make exact numerical predictions. Rath- 
er. thev can reveal the conditions under , , 
which certain qualitative behaviors are 
likely to rise: diversity of phenotytes in 
resource-rich (or -poor) environments, 
cooperation in competitive nonzero-sum 
games, and so forth. Thus, the models 
described here are being used to discover 
qualitative patterns of behavior, and in 
some cases, critical parameters in which 
small changes have drastic effects on the - 
outcomes. Such modeling is common in 
nonlinear dynamics and in artificial intelli- 
gence but is much less accepted in other 
disciplines. Both of the following examples, 
ecological modeling and immune systems, 
represent exploratory research projects that 
are currently under active investigation but 
have not as yet produced concrete results. 
For examples of more mature modeling 
projects, see (54, 57, 59). 

Modeling ecological systems. The Echo 
system (55) shows how genetic algorithms 
can be used to model ecologies. The major 
differences between Echo and standard ge- 
netic algorithms are (i) there is no explicit 
fitness function. (ii) individuals have local , . ,  
storage (they consist of more than their 
genome); and (iii) the genetic representa- 
tion is based on a higher cardinality alpha- 
bet than binarv strines. In Echo. fitness - 
evaluation takes place implicitly; that is, 
individuals in the population (called 
agents) are allowed to make copies of them- 
selves anytime they acquire enough "re- 
sources" to replicate their genome. Differ- 
ent resources are modeled by different let- 
ters of the alphabet (say A, B, C, D), and 
genomes are constructed out of those same 
letters. However, these resources can exist 
independently of the agent's genome, ei- 

ther free in the environment or stored 
internally by the agent. Agents acquire 
resources by interacting with other agents 
through trade and combat. Echo thus relax- 
es the constraint that an ex~licit fitness 
function must return a numerical evalua- 
tion of each agent. This "endogenous" fit- 
ness function is much closer to the way 
fitness is assessed in natural settings. In 
addition to trade and combat, a third form 
of interaction between agents is "mating." 
Mating provides opportunities for agents to 
exchange genetic material through cross- 
over, thus creating hybrids. Mating, to- 
gether with mutation, provides the mecha- 
nism by which new types of agents evolve. 

Populations in Echo exist on a two- 
dimensional grid of sites. Many agents can 
"cohabit" one site and agents can migrate 
between sites. Each site is the source of 
certain renewable resources. On each time 
step of the simulation, a fixed amount of 
resources at a site becomes available to the 
agents located at that site. Different sites 
mav ~roduce different amounts of different , . 
resources. For example, one site might pro- 
duce ten A's and five B's each time steo. 
and its neighbor might produce five A;s; 
zero B's, and five C's. The idea is that an 
agent will do well (reproduce often) if it is 
located at a site whose renewable resources 
match well with its genomic makeup. 

In preliminary simulations, the Echo 
system has demonstrated surprisingly com- 
plex behaviors (including something re- 
sembling a biological arms race in which 
two competing species develop progres- 
sively more complex offensive and defen- 
sive combat strategies), ecological depen- 
dencies among different species, and sen- 
sitivity (in terms of the number of different 
phenotypes) to differing levels of renew- 
able resources. Although the Echo system 
is largely untested, it does show how the 
fundamental ideas of genetic algorithms 
can be incorporated into a system that 
captures important features of natural eco- 
logical systems. 

Immune systems. In another recent proj- 
ect, the genetic algorithm is used to model 
certain aspects of the immune system, spe- 
cifically, clonal selection and the evolution 
of the antibody V-region gene libraries (56, 
60. 61). The models are based on an ab- , , 

stract universe of binary strings in which 
interactions among strings represent molec- 
ular binding (62). The binding affinity be- 
tween real antigens and real antibodies is 
primarily determined by molecular shape 
and electrostatic surface charge, both of 
which are complementary when the mole- 
cules have high affinity. In the artificial 
model, binding takes place when an anti- 
body bit string and an antigen bit string 
have complementary binary patterns. Bind- 
ing between these idealized antibodies and 

antigens is defined by a matching function 
that rewards more specific matches over less 
specific ones; this constraint is related to 
the immune system's ability to distinguish 
self from other because recoenition of other - 
must be fairly specific in order to avoid 
recognizing self. 

One population of antibodies and one of 
antigens are constructed, each from bit 
strings. Antigens are "presented" to the 
antibody population one at a time, and 
hieh-affinitv antibodies have their fitness 
u 

increased. The antibody population is then 
evolved by the genetic algorithm on the 
basis of its success at matching antigens. 

This model has been used to studv both 
the ability of the genetic algorithm ;o de- 
tect common patterns (schemas) in a noisy 
environment and its ability to maintain 
diversity within its population (56). Both of 
these capabilities are important because 
natural immune systems are able to recog- 
nize an enormous number of foreign mole- 
cules with limited resources. 

In one set of exoeriments. the model 
evolved an antibody type, represented as a 
population of similar antibodies, that 
matched multiple antigens through the 
identification of a common schema. This 
problem is analogous to the problem the 
immune system faces in identifying bacteria 
that, although different in detail, may use a 
similar polysaccharide in the construction 
of their cell walls. In a second set of 
experiments, we studied the model's ability 
to maintain coveraee of the mace of anti- - 
gens while under the selective pressure of 
the genetic algorithm, as required by clonal 
selection. By matching an antigen with 
multiple antibodies and then giving the 
fitness score to the best matching antibody, 
the algorithm allowed a stable population 
to evolve that contained reoresentatives of 
different antibodies. In a third set of exper- 
iments, investigators used bit strings to 
represent the genetic encoding of V-region 
libraries and studied the evolution of these 
libraries under the genetic algorithm (61). 
The experiments showed that the model 
evolves a set of highly dissimilar library 
entries, even when started with completely 
homoeeneous entries and when a verv small 

u 

fraction of the repertoire of possible anti- 
bodies is exoressed at anv one time. These 
preliminary results suggest that the genetic 
algorithm can be used to model evolution 
in the immune system. 

Future Prospects 

The idea of using evolution to solve difficult 
problems and to model natural phenomena 
is promising. The genetic algorithms de- 
scribed here are the first steps in this direc- 
tion. Necessarily, they have abstracted out 
much of the richness of biology, and in the 
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future, we can expect a wide variety of 
evolutionary systems based on the princi- 
ples of genetic algorithms but less closely 
tied to these specific mechanisms. For ex- 
ample, more elaborate representation tech- 
niques, including those that use complex 
genotype-to-phenotype mappings, and in- 
creased use of nonbinary alphabets, can be 
expected. Endogenous fitness functions, 
similar to the one described for Echo, may 
become more common, as well as dynamic 
and coevolutionary fitness functions. More 
generally, biological mechanisms of all 
kinds are being incorporated into computa- 
tional systems, including viruses, parasites, 
and immune svstems. 

From an algorithmic perspective, genet- 
ic algorithms join a broader class of stochas- 
tic methods for solving problems. An im- 
portant area of future research is to under- 
stand carefully how these algorithms relate 
to one another and which algorithms are 
best for which problems. 
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