
Microprocessors: From
Desktops to Supercomputers

Forest Baskett and John L. Hennessy
Continuing improvements in integrated circuit technology and computer architecture have
driven microprocessors to performance levels that rival those of supercomputers-at a
fraction of the price. The use of sophisticated memory hierarchies enables microprocessor-
based machines to have very large memories built from commodity dynamic random
access memory while retaining the high bandwidth and low access time needed in a
high-performance machine. Parallel processors composed of these high-performance
microprocessors are becoming the supercomputing technology of choice for scientific and
engineering applications. The challenges for these new supercomputers have been in
developing multiprocessor architectures that are easy to program and that deliver high
performance without extraordinary programming efforts by users. Recent progress in
multiprocessor architecture has led to ways to meet these challenges.

T h e past 10 years have seen phenomenal
growth in the performance of low-cost com-
puters that are based on microprocessor
technology. Continuing progress in inte-
grated circuit technology and computer ar-
chitecture will support further rapid im-
provement in the performance of micropro-
cessors. Just as they have become the dom-
inant force in low-cost computing, micro-
processors are becoming the major building
block for scientific supercomputers. Future
supercomputer-class machines will be par-
allel computers that use tens to hundreds of
high-performance microprocessors.

There are three major challenges to the
creation of high-performance, cost-effective
computers. First, the rapid growth in micro-
processor performance must be sustained.
Second, parallel computer architectures that
are easy to program and provide scalable cost
performance (that is, system performance
can be increased by the purchase of more
processors) must be developed. Third, algo-
rithms and software that can effectively use
these machines must be created.

Here, we begin with a brief review of the
trends in integrated circuit technology, the
fundamental building block for micropro-
cessors; this review focuses on the technol-
ogy trends rather than their underlying
mechanisms, which are beyond the scope of
this paper. Then we turn to the architec-
ture of current microprocessors and advanc-
es in both computational and memory sys-
tems. Alternative approaches for building
multiprocessor systems with high-perfor-
mance microprocessors, the implications of

important scientific methods on the archi-
tecture, and some of the programming is-
sues for these parallel machines are then
explored, and we conclude with the pros-
pects for continuing growth in computer
performance as well as the impact of this
growth on users.

Trends in Integrated
Circuit Technology

For the last 30 years, improvements in
integrated circuit technology increased the
performance and capability of computer
systems. During this time, continuous re-
ductions in the sizes of both transistors and
wires have allowed an increase in the num-
ber of devices that can be put on a single
silicon die. Since 1982, the minimum fea-
ture size has decreased from 2 pm to be-
tween 0.6 and 0.8 pm. This means that the
same size die can now contain roughly 10
times as many transistors as before. Further-
more, improvements in manufacturing
technology have allowed the die sizes to
increase because the number of flaws is now

F. Baskett is senior vice president of research and
development at Silicon Graphics Computer Systems,
Inc., Mountain View, CA 94039. J. L. Hennessy is
professor of electrical engineering and computer sci-
ence at Stanford University, Stanford, CA 94305, and
chief architect at Silicon Graphics Computer Systems,
Inc.

I -I I
1978 1982 1986 1990 1994

Year of introduction

Fig. 1. Growth in the amount of transistors per
microprocessor over time for newly introduced
microprocessors.

much lower; the maximum economical die
size has increased from roughly 0.5 to 1.5
cm on a side. This increase has yielded an
additional growth of about a factor of 8 in
the number of devices per die. For example,
a typical microprocessor in 1982 contained
about 35,000 devices, whereas recently an-
nounced microprocessors contain approxi-
mately 3.5 million (Fig. 1). Decreases in
the size of devices and lengths of wires also
lead to faster transistors and faster intercon-
nections, which thus lead to improvements
in the speed of the chip. Although a linear
decrease in feature size can yield a nearly
linear increase in speed, a linear improve-
ment in feature size yields a quadratic re-
duction in transistor area and hence a
quadratic increase in the number of devices
that fit on a single chip. Thus, the chip
architect is motivated to find ways to im-
prove performance that take advantage of
this increase in transistor count as well as
the faster transistors.

The imoact of these imorovements in
density is most easily seen in memory tech-
nology. Such technology has two main
types: dynamic random access memory
(DRAM) and static random access memory
(SRAM). DRAM uses fewer transistors per
bit of memory (one transistor for DRAM
versus four to six for SRAM) and thus has a
higher density. Improvements in memory
technolorn have led to a factor of 4 im- -,

provement in density every 3 years, which
has in turn led to tremendous increases in
the number of bits per chip (Fig. 2). Be-
cause of their higher density, DRAMs are
cheaper per bit than SRAMs. In fact, be-
cause DRAMs have become the primary
technology for building main memories,
they have the additional benefit of high
volume. Thus, they cost typically six to ten
times less per bit than SRAMs. This means
that for large main memories on comouters -
ranging from personal computers (PCs) to
supercomputers, DRAM is the technology

I DRAM

I
1978 1981 1984 1987 1990 1993

Year of Introduction

Fig. 2. Growth in the number of bits on a single
memory chip for both DRAM and SRAM tech-
nologies. Since the first DRAMs were intro-
duced in the early 1970s, memory densities
have increased by a factor of 4 every 3 years.

864 SCIENCE VOL. 261 13 AUGUST 1993

of choice for building main memory. Prices
per bit from DRAM have decreased at
roughly the same rate as density has in-
creased because the asymptotic cost per
memory chip has remained roughly con-
stant. currently, the commodity price for
DRAMs is about $25 per megabyte, which
means that each l-megabit chip is selling
for about $3. By 1995, this price is expected
to drop to less than $10 per megabyte.

However, DRAM does come with a
disadvantage: it is much slower than
SRAM. This speed difference arises both
from internal differences between SRAM
and DRAM and from the standard, low-
cost package that DRAMs use; to reduce
cost, this package uses fewer pins, which
thus leads to slower access time. But low
cost and high density, not speed of access,
have been the focus of DRAM technology
development. For example, since 1980
DRAM access times have decreased by
somewhat over a factor of 3, whereas
DRAM density has increased by a factor of
over 250. Furthermore, microprocessor
clock cycle times, which in 1980 were
similar to DRAM access times, have im-
proved by over a factor of 100. The situa-
tion is somewhat better for SRAM technol-
ogy, where speed of access is emphasized in
addition to low cost and high density. The
large and growing gap between the rate at
which the basic memory technology
(DRAM) can perform an access and the
rate at which modern processors can request
accesses has led to major challenges in
building faster machines. However, as we
will discuss later, computer designers have
used the concept of memory hierarchies to
overcome this memory access limitation.

High-Performance Microprocessors

In designing high-performance micropro-
cessors, designers take advantage of the
improvements in technology both to in-
crease the clock rate at which the processor

1 ! : : : : : : : : 1
1977 1982 1985 1988 1992

Year of introduction
Fig. 3. Improvement in clock rate over time for
Cray supercomputers and high-performance
multiprocessors.

ooerates and to increase the amount of
work done per clock cycle, which is typi-
cally measured by the cycles per instruction
(CPI). The instruction execution rate is
equal to the ratio of the clock rate to the
CPI and determines the oerformance of an
architecture (though of course the number
of instructions reauired bv different archi-
tectures also affects the relative perfor-
mance of those architectures). For a given
architecture, we can maximize performance
by increasing the clock rate and decreasing
the CPI. Of course, the clock rate and the
CPI often trade off against one another: By
doing more work in a clock cycle we can
lower the CPI (because the number of clock
cycles required will be less), but the clock
rate may decrease by an equal factor, yield-
ing no performance benefits. Thus, the
challenge is to increase clock rate without
increasing CPI and to decrease the CPI -
without decreasing the clock rate.

Clock rate increases have been achieved
both through the use of better technology
that offers shorter switching delays and
shorter connections between switches as
well as through better computer architec-
tures that reduce the number of switchine "
elements that must be traversed in a clock
cycle (Fig. 3). Over the last 10 years, for
instance, the clock rate of microprocessors
has increased by a factor of 50; a combina-
tion of improved device speed and reduced
wiring delays accounts for about 40% of this
improvement, and improved architecture

Fig. 4. A typical five-stage pipeline (A) and a
five-stage pipeline issuing two instructions (1
and 2) every clock cycle (B). In (A), every
instruction passes through five stages: (i) IF
(instruction fetch), retrieving the instruction
from memory; (i i) ID (instruction decode), de-
termining what the instruction is; (iii) AE (arith-
metic execution), performing an arithmetic op-
eration (that is, for an add instruction or to
compute a data address); (iv) DA (data ac-
cess), accessing memory to retrieve a data
item; and (v) WR (write result), writing the
instruction result somewhere (for example, into
a register). In (B), a multiple-issue machine is
de~icted with two ~ i~e l ines that can execute

accounts for the rest. This improvement by
a factor of 50 in microprocessor clock rates
over the last 10 years compares to a factor of
3 improvement in traditional supercom-
puter clock rates in the same time frame.
The result is that current microprocessor
clock rates are nearly equal to those of
supercomputers (Fig. 3) ; assuming current
rates of improvement, microprocessor clock
rates should exceed supercomputer clock
rates in 1994 or 1995.

This rapid improvement in microproces-
sor performance as a result of architectural
enhancements really started in the early
1980s. Before that, much of the emphasis
in microprocessor design was on function-
ality enhancement, such as increasing word
size (for example, from 16 to 32 bits) or
adding more instructions. Designers focused
on qualitative measures of an architecture.
In the early 1980s, performance started to
become a major goal and researchers fo-
cused on quantitative metrics such as in-
struction execution rate and instruction
counts. This led to the rapid incorporation
of sophisticated architectural techniques
that previously were used primarily in large
mainframes and supercomputers. The intro-
duction of microprocessors with simpler
instruction sets (called reduced instruction
set computers or RISCs) allowed these ar-
chitectural techniques to be incorporated
more easily.

Architectural Techniques in
State-of-the-Art Microprocessors

To increase clock rate and to decrease CPI,
designers can make use of reduced feature
size to build smaller and faster processors.
Simultaneously, designers can take advan-
tage of the even larger increase in device
count to build machines that accomplish
more per clock cycle. For scientific compu-
tation, a good way to measure how much
work is getting done in a clock cycle is to
measure the number of floating point oper-
ations (FLOPs) per clock cycle. As the
number of FLOPs per clock cycle increases,
the CPI will fall and performance will
increase.

Designers increase the number of FLOPs
per clock cycle by implementing architec-
tural techniques that take advantage of
parallelism among the instructions. There
are two basic ways in which this can be
done:

1) Pipelining. Here, instructions are
overlapped in execution and a new opera-
tion is started every clock cycle, even
though it takes several clock cycles for one
operation to complete. A typical five-stage
pipeline is shown in Fig. 4A; such an
organization has a throughput that is up to
five times greater than that of a machine , ,

two instructions every clock cycle. without such a pipeline.

SCIENCE VOL. 261 13 AUGUST 1993 865

2) Multiple issue. Here, several instruc-
tions or operations are started on the same
clock cvcle. and the instructions can be , ,

executed in parallel. A typical pipeline that
can issue two instructions in parallel is
shown in Fig. 4B. If the instruction pair is
restricted to be one inteeer instruction and -
one floating point instruction, a multiple-
issue pipeline can be built with the addition
of only a small amount of logic. Processors
that implement multiple issue automatical-
ly, without changing the instruction set,
are called superscalar processors.

In either case, the overlapping instruc-
tions must be independent of one anoth-
er-therwise. thev cannot be executed
correctly at the same time. In most ma-
chines, this independence property is
checked by the hardware, though many
compilers help out by trying to create inde-
pendent instruction sequences that can be
overlapped by the hardware.

Many machines combine these two
techniques. For example, vector machines
allow a single vector instruction to specify a
number of FLOPs that are executed in a
"~ioelined" fashion. When vector instruc-

A .

tions are executed in parallel, multiple
FLOPs can be completed in a single clock
cycle. Microprocessors have used pipelining
for about 10 years, though the earlier ma-
chines used little pipelining in the floating
point units because transistor counts did
not allow it. Pipelined floating point units
became the norm in microprocessors about
5 years ago. In the last few years, several
superscalar microprocessors have appeared.
The result of this evolution has been a
steady increase in the number of FLOPs per
clock cycle.

Such improvements in integrated circuit
technology have enabled microprocessors
to perform almost as well as conventional
supercomputers. To illustrate this in several
different ways, we examined the increase in
floating point instruction throughput over
time. Figure 5 shows the improvement in
the peak number of FLOPs per second that
Cray supercomputers and high-performance
microprocessors have achieved. By compar-
ison, improvement in the number of FLOPs
per clock cycle can be shown with the use
of a computational kernel for measurement
(Fig. 6).

Additionally, improvement in device
speed and integration allows the entire
central processing unit (CPU) core to be
placed on a single chip, which makes in-
terconnections faster and allows micropro-
cessor clock rates to approach, and in the
near future surpass, the clock rates of high-
end vector supercomputers. Furthermore,
rapid improvements in density have al-
lowed microprocessor architects to incorpo-
rate many of the techniques used in large
machines for increasing throughput per clock

cycle, such as multiple functional units.
Another important advance in micro-

processor technology has been the develop-
ment of microprocessors with 64-bit address
spaces. With a 64-bit architecture, the
processor can easily accommodate the data
requirements of large-scale scientific appli-
cations. In fact, this architectural capability
means that microprocessors with 64-bit ad-
dressing can access more memory than any
existing mainframes or supercomputers.

Of course, microprocessors have an
enormous price advantage over conven-
tional supercomputers. Because of this and
their ability to access large memories, mi-
croprocessors are becoming the computing
engines of choice for all levels of comput-
ing. Later, we will show how this technol-
ogy can be used to build scalable multipro-
cessors that offer performance equal to and
better than conventional vector supercom-
puters for less money.

RlSC microprocessors

1-
1977 1980 1983 1986 1989 1992

Year of introduction

Fig. 5. Peak floating point execution rates
(FLOPs) for Cray supercomputers and RlSC
microprocessors. These rates are the maximum
floating point rates and, in general, are not
attainable by any real program. Nonetheless,
this measurement provides insight into the
growth of floating point performance, because
application performance tends to track these
peak rates.

$ 3.. Supercomputers
U)

2.5.. .- r

r Y
E g 1.5.. .-
Bo
m 1- .- r
G

1977 1980 1983 1986 1989 1992
Year of introduction

Fig. 6. Floating point operations (FLOPs) exe-
cuted per clock cycle, with 1000 x 1000 Lin-
pack as the benchmark (5). This graph shows
the floating point throughput improvement inde-
pendent of any clock rate improvements.

Meeting the Demands for Memory

To maintain a high instruction throughput
rate, a system must be able to satisfy mem-
ory requests at a high rate; that is, it must
provide sufficient memory bandwidth. Ad-
ditionally, the memory system should have
a low access latency (that is, a small delay
per memory access). If there is not sufficient
memory bandwidth, the processor will stall
because it cannot get the data or instruc-
tions it needs. If the averaee access time (or "

latency) is high, then the processor will
stall because it will run out of thines to do -
while waiting for a memory access to be
com~leted. Thus. the ideal memorv svstem , .
for a high-performance processor would
provide 100% of the instruction and data
bandwidth required by the processor at as
low an access latency as possible. Of course,
the memory should also be extremely large.
Modern computers achieve this set of seem-
ingly impossible goals by using a memory
hierarchy that takes advantage of the typi-
cal access patterns of programs.

In scientific and engineering applica-
tions, the access patterns for instructions
and data are fairly specialized, which allows
optimization of the memory system accord-
ingly. For example, for many scientific ap-
plications the program is much smaller than
the data. Furthermore, the program exhib-
its high locality of reference (or locality, for
short)-that is, only a small portion of the
program is heavily used during any given
interval. This localitv. called tem~oral lo- , .
cality, arises because the program often
consists of nested loops that execute the
same instructions many times. Temporal
locality can be exploited by trying to keep
recentlv accessed instructions in a dace
where they can be fetched quickly.

There is often tem~oral localitv in the
data accesses, even i i t h very laige data
sets. An additional form of localitv seen in
instruction and data accesses is spatial lo-
cality. Spatial locality refers to the tenden-
cy to make use of instruction or data ele-
ments that are close together in memory at
the same time. For example, many pro-
grams access all the elements in a row or
column of a matrix seauentiallv or consider
points in a mesh that are accessed in some
sequential order. Spatial locality can be
exploited by retrieving memory words that
are close to a word that is requested in
parallel with the requested word, with the
hope that the processor will need the near-
by words soon. To take advantage of spatial
locality, accesses to nearby data items must
also be close together in time. These local-
ity properties do not come from any inher-
ent property of computation but are based
on extensive observations of how programs
behave. A good way to visualize locality is
to think of a plot of the memory addresses

SCIENCE VOL. 261 13 AUGUST 1993

accessed by a program versus time. The
presence of clustering in such a plot repre-
sents locality; the challenge for the comput-
er architect is to take advantage of this
clustering.

Given the presence of locality in mem-
ory accesses and the trade-off between
SRAMs and DRAMs of speed versus cost,
how can a memory system be organized so
that it meets the demand of a high-perfor-
mance CPU and also takes advantage of
low-cost DRAM technology? The answer
lies in using a hierarchy of memories with
the memories closest to the CPU being -
composed of smaller, faster, but more ex-
pensive memory technology. A memory
hierarchy is managed so that the most
recently used data are kept in the memories
closer to the CPU; these memories, which
hold copies of data in the levels further
away from the CPU, are called caches. The
lowest level of the memory hierarchy is
built with the lowest cost (and lowest per-
formance) memory technology, namely
DRAMs. A tv~ical structure in a memorv , L

hierarchy and some typical sizes and access
times are shown in Fig. 7. The registers and
often the first-level cache are today con-
tained on the microprocessor. The goal of
this organization is to allow most memory
accesses to be satisfied from the fastest
memory, while still allowing most of the
memory to be built from the lowest cost
technology. Temporal locality (clustering
on the time axis) is exploited in such a
structure, because newly accessed data
items are kept in the top levels of the
hierarchy. Spatial locality (clustering on
both the time and address axes) is exploited
by moving blocks consisting of multiple
words with adjacent addresses from a lower
level to an upper level when a request
cannot be satisfied in the upper level.

A memory hierarchy achieves both high

Size Microprocessor chip Access time

64 to 256 words <I cycle

8K words 1 10 2 cycles

256K words 5 to 15 cycles

4G words Memory 40 to 100 cycles

Fig. 7. A typical memory hierarchy, showing the
increase in size and in access time through
levels of the hierarchy. Although not shown
here, bandwidth is also usually higher in the
upper levels of the hierarchy.

bandwidth and low latencv of access. The
former is accomplished by satisfying most
requests from the fastest memory that can
support a high access rate. Similarly, the
top level of the hierarchy also has the
lowest access time, which thus leads to low
overall latency. Today, machines ranging
from low-end PCs to high-speed multipro-
cessors use caches as the most cost-effective
method to meet the memory demands of
fast CPUs.

Vector supercomputers also use a mem-
ory hierarchy, but most such machines do
not contain caches. Instead, most vector
supercomputers contain a small set of high-
bandwidth, low-latency vector registers and
provide explicit instructions to move data
from the main memory to the vector regis-
ters in a hieh-bandwidth bulk transfer. The

LJ

goal in such a design is to be able to move
an arbitrary vector from memory to the
CPU as fast as possible. Moving an entire
vector takes advantage of spatial locality.
Once the vector is loaded into the CPU,
the compiler will try to keep it in a vector
register to take advantage of temporal lo-
cality. Because there are not many vector
registers (8 to 64 typically), only a small
number of vectors can be kept close to the
CPU.

There are important differences between
these two approaches. Because the vector
registers are relatively small, many data
accesses in a vector machine need to go to
the main memory. A memory hierarchy
with caches can provide a much lower
average latency because most accesses will
go to the top level of the hierarchy, which
has a much shorter access time than the
main memory. A major benefit of the short-
er access time is that the processor can be
kept busier because it does not have to wait
for the memory. To minimize the long
latency of memory access in a vector super-
computer, many such machines construct
their main memory from SRAM. This re-
duces the time to access this large memory
and makes it easier to provide high band-
width. This approach, however, is much
more expensive, as SRAM is 6 to 10 times
more expensive per bit than DRAM. Thus,
memory systems in vector supercomputers
are often as much as 10 times more expen-
sive per bit than the memory systems of
micro~rocessor-based machines with cache-
based memory hierarchies. Another impor-
tant advantage of a memory hierarchy is
that its hardware manages the caches auto-
matically, whereas use of vector registers
requires assistance from the compiler or the
programmer.

The major disadvantage of a cache
memory hierarchy is that it typically pro-
vides lower bandwidth to the main memory
(the lowest level of the hierarchy). This
means that programs that do not exhibit

good locality will be penalized. Although
this has been a major drawback, recent
progress in algorithms and compiler tech-
nology has led to the development of meth-
ods for improving the locality of access for
arrays, which are the primary data structure
in scientific programs. Most important sci-
entific algorithms can be adapted in this
way, although automatically applying these
techniques within a compiler has been ac-
complished to date only for a narrower set
of problems. One technique, called block-
ing, is able to significantly reduce the num-
ber of requests to the main memory, making
caches work extremely well. The idea be-
hind blocking is to restructure the compu-
tation so that the memory accesses are
clustered in both the time and address
dimensions. For example, matrix multiply
is blocked by transforming a straightforward
version of the operation into a version that
operates on submatrices, which thus com-
putes partial results. Another technique,
called prefetching, tries to reduce or elimi-
nate the penalties encountered when the
data items accessed by a program will not fit
in the cache. With prefetching, the com-
piler determines that certain data items not
in the cache will be needed in the future
and signals the memory hierarchy to fetch
these items into the cache before they are
actually needed. The fact that caches are
typically larger and have a more general
purpose than vector registers makes cache-
based memory hierarchies more efficient
over a larger range of computing problems
that the vector register-based systems, even
though the vector machines often have a
faster access to the main memory.

Parallel Processing with
Microprocessors

As microprocessors become the dominant
type of processor for science and engineer-
ing computations, with system costs typi-
cally more than 10 times lower than the
costs of conventional supercomputers, it is
natural to ask if multiple microprocessors
can be used in parallel for single problems
to further increase speed and to make pos-
sible new and more ambitious applications.
Research over the last 10 years has demon-
strated this potential in most of the appli-
cation areas of science and engineering.

There are four major computational
methods in use within the range of disci-
plines that study the physical world from
the smallest atomic distances to the largest
galactic distances. The multipole methods
have recently revolutionized computational
dynamics at the atomic, molecular, and
galactic levels (I) , though these techniques
are also applicable at other scales. The
three other classes of solution techniques
are direct matrix methods, iterative meth-

SCIENCE ' VOL. 261 13 AUGUST 1993

ods on discrete grids, and spectral methods.
For each of these four computational

methods, parallel versions have been suc-
cessfully developed and are being used.
Parallel versions of spectral methods such as
the fast Fourier transform have been in use
for many years. Multipole methods, which
treat clusters of particles and summarize the
effects of one cluster on the other with the
moments of the cluster, are naturally paral-
lelized because each cluster is treated in
parallel. Iterative methods on discrete grids
can be parallelized by dividing the grids into
subgrids that are processed in parallel, and
neighboring subgrids can communicate the
new values of boundary points after each
iteration. Parallel versions of multigrid and
adaptive multigrid techniques are also being
developed. Obtaining good performance on
direct methods was extremely challenging,
not because of the lack of parallelism but
because of the high cost of data communi-
cation. However, the development of
blocking (or tiling) techniques has over-
come the communication problem, leading
to highly parallel versions of many common
linear algebra methods.

Because parallelism seems readily avail-
able, what must be addressed next is what
type of parallel processors will prove most
useful for these applications. From a dis-
tance, all existing large-scale parallel ma-
chines look essentially the same: they con-
sist of processor-memory pairs connected
together by an interconnection network,
which is used for interprocessor communi-
cation. Such a machine is called a distrib-
uted memory machine. There also exist
machines with a single centralized memory,
which typically use a single bus to connect
all the processors and the memory. These
bus-based machines have been extremely
successful with up to a few tens of proces-
sors, although the use of a single centralized
memory and a bus interconnect does not
allow such,machines to have larger numbers
of processors. Nonetheless, this bus-based
organization will be the architecture of
choice for small processor counts for several
more years.

Two features that are crucial in deter-
mining the effectiveness and ease of use of a
parallel processor are the method used for
interprocessor communication and the or-
ganization and performance of the inter-
connection network. The communication
mechanism and network are critical be-
cause communication is far more expensive
than computation. In current machines,
communication delays can be from 100 to
10,000 processor clock cycles. Although
improvements in the absolute communica-
tion time are likely (especially at the high
end of the scale), ongoing processor en-
hancements are likely to mean that com-
munication will continue to cost at least

100 processor clock cycles on high-perfor-
mance machines. To understand how to
optimize this expensive communication in
both the application and the architecture,
it is necessary to understand the communi-
cation characteristics of the major compu-
tational methods.

Requirements of Parallel
Applications

For a parallel machine with P processor-
memory pairs, the parallel characteristics of
each of the four computational methods are
summarized in Table 1. For problems of size
N (where N is the number of unknowns),
direct methods have substantial communica-
tions requirements because every submatrix
must be communicated to a subset of the
processors, but the computational require-
ments dwarf the communication require-
ments for large problems. The spectral meth-
ods have the highest ratio of communication
to computation and thus present the most
difficulties for efficient implementation.
(Spectral methods also use complex and
costly communication patterns, which poses
additional challenges to implementation.)

Our focus in this paper is on the appli-
cation of parallel processing to single, large-
scale problems (where N is large) that tax
the computational power of the fastest sin-
gle-processor machines currently available
(that is, such large-scale problems might
run for many hours or even days on such
machines). To obtain significant perfor-
mance advantages for such problems, a
reasonable number of processors needs to be
used. With large numbers of processors, the
communication-to-computation ratio (Ta-
ble 1) will be an important factor when the
higher cost of communication is accounted
for. Thus, machines with high-latency,
low-bandwidth communication mecha-
nisms, such as a local area network inter-

connection, will not perform very well in
such applications.

Communication is also characterized by
the frequency and amount of data commu-
nicated among parallel processes. In some
methods, data is communicated less fre-
quently but in large quantities; methods
with this characteristic are called coarse-
grained. Other methods communicate in a
less structured fashion with smaller amounts
of data communicated more often; this type
of communication is called fine-grained. Of
course. the distinction between fine- and
coarse-grained computation is not rigid,
and different im~lementations of a method
may have different granularity. Nonethe-
less, the distinction is important in evalu-
ating the communication mechanism. To
the extent that a program favors more
fine-grained communication, a communi-
cation structure that achieves high band-
width only when communicating large
blocks of data will not be efficient. Small-
scale multiprocessors have been effective at
handling fine-grained communication, be-
cause the processors can be closely coupled
and the communication has low latency
(that is, a small delay until completion).
Large-scale machines have been better
matched to coarse-grained parallelism be-
cause the overhead of initiating communi-
cation has been much higher (by factors of
100 to 1000) than on small-scale machines.

One potentially attractive approach to
building parallel processors is to use work-
stations connected on a local area network,
often called a workstation cluster. This
approach, however, has proved suitable
only for applications where the parallel
computations are so coarse-grained as to be
essentially independent. A classic example
of such a computation is a problem that
involves many independent simulations.
For this type of application, the workstation
cluster is extremely cost effective because a

Table 1. A comparison, for four major solution techniques, of the scaling of computation required,
parallelism available, necessary communication, and the ratio between communication and
computation. Pis the number of processors; N is a measure of the size of the problem. For direct
methods, N is the number of unknowns; for iterative methods, N represents the size of one side of
the grid. For both multipole and spectral methods, N is the number of sample points.

Ratio of Method Pr&lrn Computation Parallelism Communication communication to
needed available required computation

Direct N2 N3 N2 N 2 x * V'F
N

Iterative N2 N2 N2 N X * V'F
-

N
Multipole N N t o N x logN N V'i7-G V ' E F

N
Spectral N N x log N N N x log P log P

-
log N

SCIENCE VOL. 261 13 AUGUST 1993

high-speed communications network is not
required. If one tried to use a workstation
cluster for the type of problems shown in
Table 1, the performance would be very
poor except for problems where the ratio of
problem size to number of workstations was
very large. Although a cluster might oper-
ate efficiently in such a situation, the small
number of processors compared to the large
computational requirement would mean
that the time to complete the run would be
very long. Currently, both the lower band-
width of typical local area networks and
their high communication latency limit
workstation clusters to a narrow class of
parallel applications. This class can be ex-
panded in some cases with methods that are
more coarse-grained, although this often
requires substantial programmer effort. Ef-
fectively executing large, single parallel ap-
plications with the methods listed in Table
1 requires higher bandwidth, lower latency
interconnection technology.

An important side benefit has emerged
from the development of parallel methods.
Newly developed parallel methods have
naturally emphasized an arrangement
where one processor would work on one
submatrix, subgrid, cluster of data ele-
ments, or subarray. This arrangement
(sometimes called locality of computa-
tion) is necessary (and natural) to limit
the amount of communication required to
support the parallel computation. This
locality of computation also results in
better locality of reference to the data.
Thus, these parallel methods with im-
proved locality often use the memory hi-
erarchy more efficiently. In fact, the im-
proved locality of the parallel version of-
ten leads to shorter execution time when
that version is run on a single processor
because of the improved performance of

Fig. 8. Three typical interconnection networks.
(A) Bus: a zero-dimensional interconnect. (B)
Ring: a one-dimensional interconnect. (C)
Mesh: a two-dimensional interconnect.

the memory hierarchy. This speedup also
represents an important lesson for those
who have developed computational meth-
ods on vector-style supercomputers. In
many of those methods, locality of refer-
ence is at odds with the efficient use of
vector registers and the high-bandwidth
memory systems to which they are con-
nected. As a result, vector supercomputer
applications do not necessarily port effi-
ciently to parallel microprocessors without
restructuring data accesses to improve lo-
cality of reference.

lnterconnection Technologies for
Parallel Processors

Interconnection technology for parallel pro-
cessors has taken a wide variety of forms.
These different forms emphasize trade-offs in
cost, bandwidth scalability, and efficiency.
For example, in smaller scale multiproces-
sors, cost and bandwidth per processor tend
to be crucial. In larger scale machines, total
system bandwidth becomes crucial, and a
designer may favor scalability of communi-
cations bandwidth over local, per processor
bandwidth and cost. Interconnection
schemes that scale well tend to sacrifice per
processor bandwidth and are most costly,
whereas schemes that are inexpensive often
do not scale. Looking at the range of current
machines and the fundamental properties of
interconnection networks, it appears quite
difficult to design interconnection schemes
that satisfy all the desired goals.

Another important trade-off is band-
width versus latency of communication for
small data items. Lower communications
latency means that a machine can take
advantage of finer grained parallelism. In
addition, lower communication latency
usually eases the job of the programmer,
because less effort is required to hide or
overlap the communication delays. Recent
trends in interconnection technology have

Table 2. lnterconnection networks of different
dimensions connecting P processor nodes.
The bandwidth measures show how bandwidth
scales with processor count (P); the last col-
umn shows how the number of wires (a good
measure of cost) scales with the number of
processors. C, constant.

Inter- Wire Maxi- Bisec- count
connec- mum tion

tion system band- per sions
network band- width data

width bit

Bus 0 C C 1

Ring 1 P C P
2D mesh 2 P 4P

3D mesh 3 K 6 P

SCIENCE VOL. 261 13 AUGUST 1993

tended to favor smaller communication
units (called packets), which has led, as we
shall discuss later, to a situation where the
method used to communicate (rather than
the interconnection technology) is often
the major source of delay.

Possibly the most important trade-off in
designing an interconnection network in-
volves bandwidth and cost. Bandwidth can
be measured with two different metrics:
how the bandwidth scales in the best case
when communication is localized and how
it scales when the network is used for a
random communication pattern. The for-
mer is measured by computing the maxi-
mum aggregate bandwidth under ideal con-
ditions (typically, nearest neighbor commu-
nication). The latter is typically measured
by computing the bisection bandwidth,
which is the bandwidth available across a
bisection of the processors into two equal
parts. One simple way to assess) cost is to
count the number of wires, because wires
are one of the most expensive parts of an
interconnection network and their cost is
proportional to that of other costly parts,
such as network ports.

Figure 8 shows three of the most com-
mon interconnection networks in use to-
day. The dimension of a network refers to
the number of dimensions through which
data can flow at once. For example, in a bus
communication is broadcast on the bus and
all data flows through a single point. In
contrast, meshes can be expanded into
more dimensions; for example, the upcom-
ing Cray T3D uses a three-dimensional
mesh. With the exception of the bus inter-
connect, which is not scalable because the
bandwidth does not increase as the number
of processors increases, all of the intercon-
nection networks in Fig. 8 are indirect
networks. This means that each node in the
network contains a processor, and data is
routed through the nodes to reach other
processors. There are also direct networks
where the intermediate nodes between the
source and destination are all switches
(such as small crossbars) and are not pro-
cessing nodes also. Such direct networks are
more complex and more costly than indir
rect networks but have the advantage that
bandwidth, especially bisection bandwidth,
tends to scale better. Table 2 shows how
communication bandwidth and the number
of wires scale with the number of processors
in some of these indirect networks. It is
clear that different networks may be more
appropriate for different system sizes, be-
cause the trade-offs between cost and scal-
ability are substantial.

The Communication Method
Conceptually, microprocessor-based multi-
processors seem to be in great shape: The
technology for building these machines is

progressing rapidly as is the understanding
of parallel solution methods. The question
of how processors should communicate data
is one of the most important remaining
questions, because the communication
method affects both the programming mod-
el and the cost of communication. The
importance of the programming model can-
not be overstated: Many multiprocessors
have gone unused not because they had
major flaws in the processors or the inter-
connection, but because they were simply
too difficult to program. The major choices
for the communication method are shared
memory and message passing.

The primary advantage of message pass-
ing is that it is simple and cheap to build.
Little or no additional hardware is required
beyond the processors, memory, and inter-
connection network. For this reason, most
of the large-scale multiprocessors to date
have used this communication model. From
the programmer's viewpoint, message pass-
ing has the severe drawback of forcing the
programmer to partition a program into
separate processes that communicate ex-
plicitly by sending messages rather than
implicitly through memory.

In contrast, the shared memory model
(more appropriately called the shared-ad-
dress space model) allows the programmer
to directly reference data in any of the
physically distributed memories, indepen-
dent of the location of the data. The
programmer does not have to partition the
data and insert messages to get the program
to run, although locality of reference is
important for good performance. Fortunate-
ly, the task of improving locality is also
simpler with a shared memory model and
appropriate hardware support.

The shared memory model is a natural
extension of the uniprocessor programming
model and is therefore much more familiar
to programmers and more easily supported in
standard programming languages. It is also
the standard model for small-scale, bus-
based multiprocessors. Shared memory com-
munication can also be more efficient than
message passing because it can be completely
supported in hardware with the use of exist-
ing techniques of memory hierarchies.

Researchers and designers realized early
on that scalable parallel machines would
require memory to be distributed indepen-
dent of its logical sharing. With that real-
ization, it was quite natural to hook the
processors together with a communication
mechanism based on the input-output (110)
support already existing in the processor.
Thus, communications were treated like
110 and parallel processes communicated by
passing messages through the 110 channel.
Recent message-passing systems have great-
ly streamlined this communications path,
but existing systems all have a lot of over-

head involved in communications. This
overhead makes fine-grained communica-
tion very costly and forces the programmer
to work hard to avoid communication and
to organize any remaining communication
into large blocks.

Although shared memory models may be
easier to use, the challenge for the shared
memory model has been to find a method to
scale to large numbers of processors, orga-
nized with physically distributed memory.
In the last several years, we have learned
how to do this. The resulting architectural
approach, called distributed shared memory
(DSM), can be made to work with almost
any communications structure. When a
data access is attempted by a processor, the
memory system determines whether the
access is to a local memorv or to a remote
memory; if the access is remote, the mem-
ory module generates a request to get the
data from the remote memory. This request
is routed over the interconnection network
to the remote memory, where the data is
retrieved and then sent back to the request-
ing processor. Logically, the application has
access to all the memory in the machine,
and although remote accesses are more
expensive than local accesses, this hard-
ware-supported mechanism has a much
smaller overhead than message-passing
communication.

An idea closely related to DSM is distrib-
uted virtual memory (DVM) (2). Distribut-
ed virtual memorv makes use of standard
local area networks and virtual memory
hardware to create a shared memory among
physically separate machines, such as a clus-
ter of workstations. A major advantage of
DVM is that it unifies the software model for
multiprocessors and workstation clusters. Its
major drawback arises from the limitations of
the underlying hardware, which typically
provides limited bandwidth and has high
communication latency. Another difficulty
in using DVM is that the unit of communi-
cation, namely pages in virtual memory, is
mismatched to the communication needs of
most applications. In some cases, a page is
too large a unit, and in other cases, it is
important to optimize the page boundaries,
which are typically invisible to program-
mers, thus introducing highly machine-de-
pendent details into the program.

The amount of remote communication
in a DSM machine can be reduced by
caching. By simply allowing remote data to
be placed in the cache of a processor, one
can greatly reduce the access time for sub-
sequent accesses to this data. But the cach-
ing of data shared by multiple processors
does introduce a new problem: cache coher-
ence. Such a coherence problem arises be-
cause a shared data item mav be read and
written by a number of processors. The
system must ensure that the value read by a

processor is the most recent value written
for that item. In small-scale, bus-based
multiprocessors, this problem was solved
more than 10 years ago with a technique
called snoopy caches. In a bus-based sys-
tem, every processor can see every memory
access. It is therefore simple to have each
processor update its copy of a data item
when it sees the item is being changed by a
transaction on the shared bus. Because
caching is an attractive method to reduce
latency and because it would be unaccept-
able to burden the programmer with the
task of keeping caches coherent, the devel-
opment of snoopy caches was key to making
bus-based multiprocessors effective. Unfor-
tunately, the mechanism used in snoopy
caches is not scalable to large numbers of
Drocessors because it relies on communicat-
ing with every processor on any update of a
shared data item, whether a processor has a
copy of the item.

A major challenge in developing DSM
architectures has been to deal with the
cache coherence problem. DSM multipro-
cessors without cache coherence were de-
veloped early; however, these machines did
not prove popular largely because of their
inherent programming difficulty, which was
similar to that required by message-passing
architectures. Only in the last few years
have DSM machines been built that can
support cache coherency in a scalable fash-
ion with the use of an arbitrary intercon-
nection network. Furthermore. the cost of
the additional hardware needed to keep the
caches coherent is modest. The Stanford
DASH machine (3), for example, estimates
the added cost to be between 10 and 15%.
Although this is a noticeable cost incre-
ment, the benefits in improved programma-
bility and achieved efficiency have been
enormous.

This improvement in our understanding
of how to build scalable parallel processors
comes at a very propitious time. Technol-
ogy trends are making it less and less attrac-
tive to have centralized shared memory for
systems with even moderate numbers of
processors. But with this new understanding,
it is now possible to supply a single, shared
memory programming model independent of
the underlying interconnection technology,
the number of processors, and the physical
distribution of memory. Thus, architects
designing a new multiprocessor system can
treat the choice of interconnection technol-
ogy and topology as an engineering problem
and can expect parallel applications to run
well with few or no changes.

The shared memory programming model
is analogous to the virtual memory pro-
gramming model. Virtual memory is a good
thing as long as it is used appropriately;
likewise, shared memory is a good thing as
long as you use it intelligently. Locality of

SCIENCE . VOL. 261 . 13 AUGUST 1993

computation and locality of reference con-
tinue to be critical for efficient use of these
systems. To help the user there are pro-
gramming environments that contain a va-
riety of tools, some automatic, for develop-
ing better parallel applications in an incre-
mental fashion. It is possible to start with a
serial version of a method and slowly
change it into a good parallel method. The
parallel version can then be optimized to
improve locality and enhance performance.
This approach is in contrast to message-
passing systems, where great up-front efforts
are required just to implement parallel ver-
sions that simply run correctly and incre-
mental progress is rare. In addition, the
interconnection structure and communica-
tion characteristics in message-passing ma-
chines have been so critical to uerformance
that programs had to be developed and
tuned with one uarticular machine in mind.
Even porting message-passing programs
from one uarallel machine to another could
require a significant effort. A common story
is that of William Goddard, a colleague in
chemistry. His team spent 6 months trying
to develop a parallel version of a multipole
method on a message-passing machine.
They gave up and then spent 2 weeks
successfully developing an efficient parallel
version on a DSM system. Similar experi-
ences have been found for a variety of n
body applications (4).

With the success of microprocessor
hardware, from the desktop to a new gen-
eration of supercomputers, we now also
have a single programming model capable
of spanning the entire range of micropro-
cessor-based computing systems. Further-
more, methods that emphasize computa-
tional locality so as to reduce communica-
tion also naturally lead to better locality in
data referencing patterns, which better uses
the memory hierarchy.

Future Trends and Implications

The rapid progress in microprocessor perfor-
mance since the early 1980s is likely to con-
tinue for at least five more years. Improve-
ments in integrated circuit technology prom-
ise not only improved clock rates but also
substantial growth in the number of transis-
tors per processor: microprocessors with clock
rates of 400 MHz and higher and over 5
million transistors are less than 5 years away.
Using these increased transistor counts, archi-
tects will employ a variety of techniques to
further increase the number of instructions
executed every cycle and to decrease losses
from the memory hierarchy and from ineffi-
cient use of pipelines. Together, the technol-
ogy and architectural enhancements should

drive an annual performance growth rate of at
least 50% and possibly closer to 100% (at least
for floating point programs) during the next
several years.

This ongoing rapid technology improve-
ment will further reinforce the role of the
microprocessor as the dominant computing
element. Furthermore, it has important de-
sign and economic implications for how
large-scale parallel processors are construct-
ed. The rapid performance growth of mi-
crourocessors leads to rauid obsolescence of
machines built from microprocessors. The
industrv and users have adauted to this
situation on the desktop by using 3-year
depreciation cycles for this rapidly evolving
technology as well as planning upgrades to
allow the basic hardware to be used for
more than one processor generation. For
large computing systems, however, the
common uractice has been deureciation
schedules of 5 years or even 7 years. If our
large computing systems are microprocessor
based, these systems will become obsolete
when the microprocessors inside them be-
come out of date in 3 years. Whereas most
large machines allow for expansion and
upgrade of memory and peripherals, the use
of microprocessor technology motivates de-
signs where the processor (and often the
caches) can also be upgraded. In a typical
microprocessor-based computing system,
the microprocessor and its cache or caches
account for approximately 25% of the total
cost, whereas the memory system, intercon-
nect, peripherals, cables, cabinets, fans,
and power supplies account for the remain-
ing 75%. A design that supports upgrading
to a newer urocessor model mav have some
additional initial cost, but it can have a
significantly longer useful life. Unfortunate-
ly, although it is possible to build a system
that will allow an upgrade that will double
or perhaps triple performance, it is difficult
and costly to design a system that will last
through more than one upgrade. One major
reason for this is that upgrading the inter-
connection technology is typically very dif-
ficult, and designing an interconnection
technology to support several upgrades usu-
ally becomes too costly.

Beyond 5 years, the prognosis for the
performance growth of microprocessors is
more hazy. The scope of the grchitectural
techniques being used to extract perfor-
mance from a single instruction stream has
not grown much in the past few years.
There also appear to be major engineering
limitations in our abilitv to build urocessors
that exploit unlimited amounts of instruc-
tion-level parallelism (the type of parallel-
ism exploited by pipelining and multiple
issue). If these limitations are not over-

come-a task that today looks quite diffi-
cult-performance growth for microproces-
sors may eventually be limited primarily by
technology-driven clock rate enhance-
ments. Such a situation will likelv lead to
performance growth rates of about 25 to
30% per year. Indeed, this is the growth
rate one could see if one looked at high-end
mainframes or supercomputers that have
exploited many of these architectural en-
hancements already.

Such a slowdown in the uerformance
growth of uniprocessors will further increase
the importance of multiprocessors, especial-
ly for scientific and engineering computa-
tions where parallelism is generally in abun-
dance. A major challenge for users of par-
allel computing has been the variety of
incompatible programming models and ar-
chitectures. Because parallel computing is
still maturing, the development of a single
programming model that can span multiple
generations of architectures as well as a -
range of processor counts is critical. Fortu-
nately, we have learned how to build large-
scale multiprocessors that support shared
memory, the model of choice for both
uniprocessors and small-scale multiproces-
sors. This advance should lead to a single
programming model supported on a wide
variety of different architectures.

Although a single programming model
greatly improves our ability to use these
new parallel machines and to reap the
benefits of a software investment, parallel
processing still presents challenges to scien-
tists and engineers who would take advan-
tage of it. In particular, it will be critical to
develop new parallel methods that exhibit
locality so that the machines can be used
efficiently. Users who understand the im-
portance of both parallelism and locality
will be able to use these cost-effective mul-
tiprocessors to perform computations much
more cheaply than would have been possi-
ble just a few years ago with conventional
supercomputers.

REFERENCES AND NOTES

1. L. Greengard and V. Rokhlin, J. Comput. Phys.
73, 325 (1 987).

2. K. Li, Proceedings of the International Conference
on Parallel Processing, St. Charles, IL, 15 to 19
August 1988, H. E. Sturgis, Ed. (Pennsylvania
State Univ. Press, State College, PA, 1988), vol. II,
pp. 94-1 01

3. D. Lenoski, J. Laudon, K. Gharachorloo,A. Gupta,
J. Hennessy, IEEE Comput. 25, 3 (1992).

4. J. P. Singh, thesis, Stanford University (1993).
5. J. Dongarra, "Performance of various computers

using standard linear equations software" (Tech-
nical Report, Computer Science Department, Uni-
versity of Tennessee, Knoxville, TN, 1992).

6. We thank the referee for insighfful and helpful com-
ments. We also thank J. Winget and J. P. Singh for
their careful reading and helpful comments.

SCIENCE . VOL. 261 . 13 AUGUST 1993 871

