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Continuing improvements in integrated circuit technology and computer architecture have 
driven microprocessors to performance levels that rival those of supercomputers-at a 
fraction of the price. The use of sophisticated memory hierarchies enables microprocessor- 
based machines to have very large memories built from commodity dynamic random 
access memory while retaining the high bandwidth and low access time needed in a 
high-performance machine. Parallel processors composed of these high-performance 
microprocessors are becoming the supercomputing technology of choice for scientific and 
engineering applications. The challenges for these new supercomputers have been in 
developing multiprocessor architectures that are easy to program and that deliver high 
performance without extraordinary programming efforts by users. Recent progress in 
multiprocessor architecture has led to ways to meet these challenges. 

T h e  past 10 years have seen phenomenal 
growth in the performance of low-cost com- 
puters that are based on microprocessor 
technology. Continuing progress in inte- 
grated circuit technology and computer ar- 
chitecture will support further rapid im- 
provement in the performance of micropro- 
cessors. Just as they have become the dom- 
inant force in low-cost computing, micro- 
processors are becoming the major building 
block for scientific supercomputers. Future 
supercomputer-class machines will be par- 
allel computers that use tens to hundreds of 
high-performance microprocessors. 

There are three major challenges to the 
creation of high-performance, cost-effective 
computers. First, the rapid growth in micro- 
processor performance must be sustained. 
Second, parallel computer architectures that 
are easy to program and provide scalable cost 
performance (that is, system performance 
can be increased by the purchase of more 
processors) must be developed. Third, algo- 
rithms and software that can effectively use 
these machines must be created. 

Here, we begin with a brief review of the 
trends in integrated circuit technology, the 
fundamental building block for micropro- 
cessors; this review focuses on the technol- 
ogy trends rather than their underlying 
mechanisms, which are beyond the scope of 
this paper. Then we turn to the architec- 
ture of current microprocessors and advanc- 
es in both computational and memory sys- 
tems. Alternative approaches for building 
multiprocessor systems with high-perfor- 
mance microprocessors, the implications of 

important scientific methods on the archi- 
tecture, and some of the programming is- 
sues for these parallel machines are then 
explored, and we conclude with the pros- 
pects for continuing growth in computer 
performance as well as the impact of this 
growth on users. 

Trends in Integrated 
Circuit Technology 

For the last 30 years, improvements in 
integrated circuit technology increased the 
performance and capability of computer 
systems. During this time, continuous re- 
ductions in the sizes of both transistors and 
wires have allowed an increase in the num- 
ber of devices that can be put on a single 
silicon die. Since 1982, the minimum fea- 
ture size has decreased from 2 pm to be- 
tween 0.6 and 0.8 pm. This means that the 
same size die can now contain roughly 10 
times as many transistors as before. Further- 
more, improvements in manufacturing 
technology have allowed the die sizes to 
increase because the number of flaws is now 
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Fig. 1. Growth in the amount of transistors per 
microprocessor over time for newly introduced 
microprocessors. 

much lower; the maximum economical die 
size has increased from roughly 0.5 to 1.5 
cm on a side. This increase has yielded an 
additional growth of about a factor of 8 in 
the number of devices per die. For example, 
a typical microprocessor in 1982 contained 
about 35,000 devices, whereas recently an- 
nounced microprocessors contain approxi- 
mately 3.5 million (Fig. 1). Decreases in 
the size of devices and lengths of wires also 
lead to faster transistors and faster intercon- 
nections, which thus lead to improvements 
in the speed of the chip. Although a linear 
decrease in feature size can yield a nearly 
linear increase in speed, a linear improve- 
ment in feature size yields a quadratic re- 
duction in transistor area and hence a 
quadratic increase in the number of devices 
that fit on a single chip. Thus, the chip 
architect is motivated to find ways to im- 
prove performance that take advantage of 
this increase in transistor count as well as 
the faster transistors. 

The imoact of these imorovements in 
density is most easily seen in memory tech- 
nology. Such technology has two main 
types: dynamic random access memory 
(DRAM) and static random access memory 
(SRAM). DRAM uses fewer transistors per 
bit of memory (one transistor for DRAM 
versus four to six for SRAM) and thus has a 
higher density. Improvements in memory 
technolorn have led to a factor of 4 im- -, 

provement in density every 3 years, which 
has in turn led to tremendous increases in 
the number of bits per chip (Fig. 2). Be- 
cause of their higher density, DRAMs are 
cheaper per bit than SRAMs. In fact, be- 
cause DRAMs have become the primary 
technology for building main memories, 
they have the additional benefit of high 
volume. Thus, they cost typically six to ten 
times less per bit than SRAMs. This means 
that for large main memories on comouters - 
ranging from personal computers (PCs) to 
supercomputers, DRAM is the technology 
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Fig. 2. Growth in the number of bits on a single 
memory chip for both DRAM and SRAM tech- 
nologies. Since the first DRAMs were intro- 
duced in the early 1970s, memory densities 
have increased by a factor of 4 every 3 years. 
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of choice for building main memory. Prices 
per bit from DRAM have decreased at 
roughly the same rate as density has in- 
creased because the asymptotic cost per 
memory chip has remained roughly con- 
stant. currently, the commodity price for 
DRAMs is about $25 per megabyte, which 
means that each l-megabit chip is selling 
for about $3. By 1995, this price is expected 
to drop to less than $10 per megabyte. 

However, DRAM does come with a 
disadvantage: it is much slower than 
SRAM. This speed difference arises both 
from internal differences between SRAM 
and DRAM and from the standard, low- 
cost package that DRAMs use; to reduce 
cost, this package uses fewer pins, which 
thus leads to slower access time. But low 
cost and high density, not speed of access, 
have been the focus of DRAM technology 
development. For example, since 1980 
DRAM access times have decreased by 
somewhat over a factor of 3, whereas 
DRAM density has increased by a factor of 
over 250. Furthermore, microprocessor 
clock cycle times, which in 1980 were 
similar to DRAM access times, have im- 
proved by over a factor of 100. The situa- 
tion is somewhat better for SRAM technol- 
ogy, where speed of access is emphasized in 
addition to low cost and high density. The 
large and growing gap between the rate at 
which the basic memory technology 
(DRAM) can perform an access and the 
rate at which modern processors can request 
accesses has led to major challenges in 
building faster machines. However, as we 
will discuss later, computer designers have 
used the concept of memory hierarchies to 
overcome this memory access limitation. 

High-Performance Microprocessors 

In designing high-performance micropro- 
cessors, designers take advantage of the 
improvements in technology both to in- 
crease the clock rate at which the processor 
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Fig. 3. Improvement in clock rate over time for 
Cray supercomputers and high-performance 
multiprocessors. 

ooerates and to increase the amount of 
work done per clock cycle, which is typi- 
cally measured by the cycles per instruction 
(CPI). The instruction execution rate is 
equal to the ratio of the clock rate to the 
CPI and determines the oerformance of an 
architecture (though of course the number 
of instructions reauired bv different archi- 
tectures also affects the relative perfor- 
mance of those architectures). For a given 
architecture, we can maximize performance 
by increasing the clock rate and decreasing 
the CPI. Of course, the clock rate and the 
CPI often trade off against one another: By 
doing more work in a clock cycle we can 
lower the CPI (because the number of clock 
cycles required will be less), but the clock 
rate may decrease by an equal factor, yield- 
ing no performance benefits. Thus, the 
challenge is to increase clock rate without 
increasing CPI and to decrease the CPI - 
without decreasing the clock rate. 

Clock rate increases have been achieved 
both through the use of better technology 
that offers shorter switching delays and 
shorter connections between switches as 
well as through better computer architec- 
tures that reduce the number of switchine " 
elements that must be traversed in a clock 
cycle (Fig. 3). Over the last 10 years, for 
instance, the clock rate of microprocessors 
has increased by a factor of 50; a combina- 
tion of improved device speed and reduced 
wiring delays accounts for about 40% of this 
improvement, and improved architecture 

Fig. 4. A typical five-stage pipeline (A) and a 
five-stage pipeline issuing two instructions (1 
and 2) every clock cycle (B). In (A), every 
instruction passes through five stages: (i) IF 
(instruction fetch), retrieving the instruction 
from memory; ( i i )  ID (instruction decode), de- 
termining what the instruction is; (iii)  AE (arith- 
metic execution), performing an arithmetic op- 
eration (that is, for an add instruction or to 
compute a data address); (iv) DA (data ac- 
cess), accessing memory to retrieve a data 
item; and (v) WR (write result), writing the 
instruction result somewhere (for example, into 
a register). In (B), a multiple-issue machine is 
de~icted with two ~ i~e l ines  that can execute 

accounts for the rest. This improvement by 
a factor of 50 in microprocessor clock rates 
over the last 10 years compares to a factor of 
3 improvement in traditional supercom- 
puter clock rates in the same time frame. 
The result is that current microprocessor 
clock rates are nearly equal to those of 
supercomputers (Fig. 3) ; assuming current 
rates of improvement, microprocessor clock 
rates should exceed supercomputer clock 
rates in 1994 or 1995. 

This rapid improvement in microproces- 
sor performance as a result of architectural 
enhancements really started in the early 
1980s. Before that, much of the emphasis 
in microprocessor design was on function- 
ality enhancement, such as increasing word 
size (for example, from 16 to 32 bits) or 
adding more instructions. Designers focused 
on qualitative measures of an architecture. 
In the early 1980s, performance started to 
become a major goal and researchers fo- 
cused on quantitative metrics such as in- 
struction execution rate and instruction 
counts. This led to the rapid incorporation 
of sophisticated architectural techniques 
that previously were used primarily in large 
mainframes and supercomputers. The intro- 
duction of microprocessors with simpler 
instruction sets (called reduced instruction 
set computers or RISCs) allowed these ar- 
chitectural techniques to be incorporated 
more easily. 

Architectural Techniques in 
State-of-the-Art Microprocessors 

To increase clock rate and to decrease CPI, 
designers can make use of reduced feature 
size to build smaller and faster processors. 
Simultaneously, designers can take advan- 
tage of the even larger increase in device 
count to build machines that accomplish 
more per clock cycle. For scientific compu- 
tation, a good way to measure how much 
work is getting done in a clock cycle is to 
measure the number of floating point oper- 
ations (FLOPs) per clock cycle. As the 
number of FLOPs per clock cycle increases, 
the CPI will fall and performance will 
increase. 

Designers increase the number of FLOPs 
per clock cycle by implementing architec- 
tural techniques that take advantage of 
parallelism among the instructions. There 
are two basic ways in which this can be 
done: 

1) Pipelining. Here, instructions are 
overlapped in execution and a new opera- 
tion is started every clock cycle, even 
though it takes several clock cycles for one 
operation to complete. A typical five-stage 
pipeline is shown in Fig. 4A; such an 
organization has a throughput that is up to 
five times greater than that of a machine , , 

two instructions every clock cycle. without such a pipeline. 
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2 )  Multiple issue. Here, several instruc- 
tions or operations are started on the same 
clock cvcle. and the instructions can be , , 

executed in parallel. A typical pipeline that 
can issue two instructions in parallel is 
shown in Fig. 4B. If the instruction pair is 
restricted to be one inteeer instruction and - 
one floating point instruction, a multiple- 
issue pipeline can be built with the addition 
of only a small amount of logic. Processors 
that implement multiple issue automatical- 
ly, without changing the instruction set, 
are called superscalar processors. 

In either case, the overlapping instruc- 
tions must be independent of one anoth- 
er-therwise. thev cannot be executed 
correctly at the same time. In most ma- 
chines, this independence property is 
checked by the hardware, though many 
compilers help out by trying to create inde- 
pendent instruction sequences that can be 
overlapped by the hardware. 

Many machines combine these two 
techniques. For example, vector machines 
allow a single vector instruction to specify a 
number of FLOPs that are executed in a 
"~ioelined" fashion. When vector instruc- 

A .  

tions are executed in parallel, multiple 
FLOPs can be completed in a single clock 
cycle. Microprocessors have used pipelining 
for about 10 years, though the earlier ma- 
chines used little pipelining in the floating 
point units because transistor counts did 
not allow it. Pipelined floating point units 
became the norm in microprocessors about 
5 years ago. In the last few years, several 
superscalar microprocessors have appeared. 
The result of this evolution has been a 
steady increase in the number of FLOPs per 
clock cycle. 

Such improvements in integrated circuit 
technology have enabled microprocessors 
to perform almost as well as conventional 
supercomputers. To illustrate this in several 
different ways, we examined the increase in 
floating point instruction throughput over 
time. Figure 5 shows the improvement in 
the peak number of FLOPs per second that 
Cray supercomputers and high-performance 
microprocessors have achieved. By compar- 
ison, improvement in the number of FLOPs 
per clock cycle can be shown with the use 
of a computational kernel for measurement 
(Fig. 6). 

Additionally, improvement in device 
speed and integration allows the entire 
central processing unit (CPU) core to be 
placed on a single chip, which makes in- 
terconnections faster and allows micropro- 
cessor clock rates to approach, and in the 
near future surpass, the clock rates of high- 
end vector supercomputers. Furthermore, 
rapid improvements in density have al- 
lowed microprocessor architects to incorpo- 
rate many of the techniques used in large 
machines for increasing throughput per clock 

cycle, such as multiple functional units. 
Another important advance in micro- 

processor technology has been the develop- 
ment of microprocessors with 64-bit address 
spaces. With a 64-bit architecture, the 
processor can easily accommodate the data 
requirements of large-scale scientific appli- 
cations. In fact, this architectural capability 
means that microprocessors with 64-bit ad- 
dressing can access more memory than any 
existing mainframes or supercomputers. 

Of course, microprocessors have an 
enormous price advantage over conven- 
tional supercomputers. Because of this and 
their ability to access large memories, mi- 
croprocessors are becoming the computing 
engines of choice for all levels of comput- 
ing. Later, we will show how this technol- 
ogy can be used to build scalable multipro- 
cessors that offer performance equal to and 
better than conventional vector supercom- 
puters for less money. 

RlSC microprocessors 
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Fig. 5. Peak floating point execution rates 
(FLOPs) for Cray supercomputers and RlSC 
microprocessors. These rates are the maximum 
floating point rates and, in general, are not 
attainable by any real program. Nonetheless, 
this measurement provides insight into the 
growth of floating point performance, because 
application performance tends to track these 
peak rates. 
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Fig. 6. Floating point operations (FLOPs) exe- 
cuted per clock cycle, with 1000 x 1000 Lin- 
pack as the benchmark (5). This graph shows 
the floating point throughput improvement inde- 
pendent of any clock rate improvements. 

Meeting the Demands for Memory 

To maintain a high instruction throughput 
rate, a system must be able to satisfy mem- 
ory requests at a high rate; that is, it must 
provide sufficient memory bandwidth. Ad- 
ditionally, the memory system should have 
a low access latency (that is, a small delay 
per memory access). If there is not sufficient 
memory bandwidth, the processor will stall 
because it cannot get the data or instruc- 
tions it needs. If the averaee access time (or " 

latency) is high, then the processor will 
stall because it will run out of thines to do - 
while waiting for a memory access to be 
com~leted. Thus. the ideal memorv svstem , . 
for a high-performance processor would 
provide 100% of the instruction and data 
bandwidth required by the processor at as 
low an access latency as possible. Of course, 
the memory should also be extremely large. 
Modern computers achieve this set of seem- 
ingly impossible goals by using a memory 
hierarchy that takes advantage of the typi- 
cal access patterns of programs. 

In scientific and engineering applica- 
tions, the access patterns for instructions 
and data are fairly specialized, which allows 
optimization of the memory system accord- 
ingly. For example, for many scientific ap- 
plications the program is much smaller than 
the data. Furthermore, the program exhib- 
its high locality of reference (or locality, for 
short)-that is, only a small portion of the 
program is heavily used during any given 
interval. This localitv. called tem~oral lo- , . 
cality, arises because the program often 
consists of nested loops that execute the 
same instructions many times. Temporal 
locality can be exploited by trying to keep 
recentlv accessed instructions in a dace 
where they can be fetched quickly. 

There is often tem~oral localitv in the 
data accesses, even i i t h  very laige data 
sets. An additional form of localitv seen in 
instruction and data accesses is spatial lo- 
cality. Spatial locality refers to the tenden- 
cy to make use of instruction or data ele- 
ments that are close together in memory at 
the same time. For example, many pro- 
grams access all the elements in a row or 
column of a matrix seauentiallv or consider 
points in a mesh that are accessed in some 
sequential order. Spatial locality can be 
exploited by retrieving memory words that 
are close to a word that is requested in 
parallel with the requested word, with the 
hope that the processor will need the near- 
by words soon. To take advantage of spatial 
locality, accesses to nearby data items must 
also be close together in time. These local- 
ity properties do not come from any inher- 
ent property of computation but are based 
on extensive observations of how programs 
behave. A good way to visualize locality is 
to think of a plot of the memory addresses 
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accessed by a program versus time. The 
presence of clustering in such a plot repre- 
sents locality; the challenge for the comput- 
er architect is to take advantage of this 
clustering. 

Given the presence of locality in mem- 
ory accesses and the trade-off between 
SRAMs and DRAMs of speed versus cost, 
how can a memory system be organized so 
that it meets the demand of a high-perfor- 
mance CPU and also takes advantage of 
low-cost DRAM technology? The answer 
lies in using a hierarchy of memories with 
the memories closest to the CPU being - 
composed of smaller, faster, but more ex- 
pensive memory technology. A memory 
hierarchy is managed so that the most 
recently used data are kept in the memories 
closer to the CPU; these memories, which 
hold copies of data in the levels further 
away from the CPU, are called caches. The 
lowest level of the memory hierarchy is 
built with the lowest cost (and lowest per- 
formance) memory technology, namely 
DRAMs. A tv~ical  structure in a memorv , L 

hierarchy and some typical sizes and access 
times are shown in Fig. 7. The registers and 
often the first-level cache are today con- 
tained on the microprocessor. The goal of 
this organization is to allow most memory 
accesses to be satisfied from the fastest 
memory, while still allowing most of the 
memory to be built from the lowest cost 
technology. Temporal locality (clustering 
on the time axis) is exploited in such a 
structure, because newly accessed data 
items are kept in the top levels of the 
hierarchy. Spatial locality (clustering on 
both the time and address axes) is exploited 
by moving blocks consisting of multiple 
words with adjacent addresses from a lower 
level to an upper level when a request 
cannot be satisfied in the upper level. 

A memory hierarchy achieves both high 

Size Microprocessor chip Access time 

64 to 256 words <I cycle 

8K words 1 10 2 cycles 

256K words 5 to 15 cycles 

4G words Memory 40 to 100 cycles 

Fig. 7. A typical memory hierarchy, showing the 
increase in size and in access time through 
levels of the hierarchy. Although not shown 
here, bandwidth is also usually higher in the 
upper levels of the hierarchy. 

bandwidth and low latencv of access. The 
former is accomplished by satisfying most 
requests from the fastest memory that can 
support a high access rate. Similarly, the 
top level of the hierarchy also has the 
lowest access time, which thus leads to low 
overall latency. Today, machines ranging 
from low-end PCs to high-speed multipro- 
cessors use caches as the most cost-effective 
method to meet the memory demands of 
fast CPUs. 

Vector supercomputers also use a mem- 
ory hierarchy, but most such machines do 
not contain caches. Instead, most vector 
supercomputers contain a small set of high- 
bandwidth, low-latency vector registers and 
provide explicit instructions to move data 
from the main memory to the vector regis- 
ters in a hieh-bandwidth bulk transfer. The 

LJ 

goal in such a design is to be able to move 
an arbitrary vector from memory to the 
CPU as fast as possible. Moving an entire 
vector takes advantage of spatial locality. 
Once the vector is loaded into the CPU, 
the compiler will try to keep it in a vector 
register to take advantage of temporal lo- 
cality. Because there are not many vector 
registers (8 to 64 typically), only a small 
number of vectors can be kept close to the 
CPU. 

There are important differences between 
these two approaches. Because the vector 
registers are relatively small, many data 
accesses in a vector machine need to go to 
the main memory. A memory hierarchy 
with caches can provide a much lower 
average latency because most accesses will 
go to the top level of the hierarchy, which 
has a much shorter access time than the 
main memory. A major benefit of the short- 
er access time is that the processor can be 
kept busier because it does not have to wait 
for the memory. To minimize the long 
latency of memory access in a vector super- 
computer, many such machines construct 
their main memory from SRAM. This re- 
duces the time to access this large memory 
and makes it easier to provide high band- 
width. This approach, however, is much 
more expensive, as SRAM is 6 to 10 times 
more expensive per bit than DRAM. Thus, 
memory systems in vector supercomputers 
are often as much as 10 times more expen- 
sive per bit than the memory systems of 
micro~rocessor-based machines with cache- 
based memory hierarchies. Another impor- 
tant advantage of a memory hierarchy is 
that its hardware manages the caches auto- 
matically, whereas use of vector registers 
requires assistance from the compiler or the 
programmer. 

The major disadvantage of a cache 
memory hierarchy is that it typically pro- 
vides lower bandwidth to the main memory 
(the lowest level of the hierarchy). This 
means that programs that do not exhibit 

good locality will be penalized. Although 
this has been a major drawback, recent 
progress in algorithms and compiler tech- 
nology has led to the development of meth- 
ods for improving the locality of access for 
arrays, which are the primary data structure 
in scientific programs. Most important sci- 
entific algorithms can be adapted in this 
way, although automatically applying these 
techniques within a compiler has been ac- 
complished to date only for a narrower set 
of problems. One technique, called block- 
ing, is able to significantly reduce the num- 
ber of requests to the main memory, making 
caches work extremely well. The idea be- 
hind blocking is to restructure the compu- 
tation so that the memory accesses are 
clustered in both the time and address 
dimensions. For example, matrix multiply 
is blocked by transforming a straightforward 
version of the operation into a version that 
operates on submatrices, which thus com- 
putes partial results. Another technique, 
called prefetching, tries to reduce or elimi- 
nate the penalties encountered when the 
data items accessed by a program will not fit 
in the cache. With prefetching, the com- 
piler determines that certain data items not 
in the cache will be needed in the future 
and signals the memory hierarchy to fetch 
these items into the cache before they are 
actually needed. The fact that caches are 
typically larger and have a more general 
purpose than vector registers makes cache- 
based memory hierarchies more efficient 
over a larger range of computing problems 
that the vector register-based systems, even 
though the vector machines often have a 
faster access to the main memory. 

Parallel Processing with 
Microprocessors 

As microprocessors become the dominant 
type of processor for science and engineer- 
ing computations, with system costs typi- 
cally more than 10 times lower than the 
costs of conventional supercomputers, it is 
natural to ask if multiple microprocessors 
can be used in parallel for single problems 
to further increase speed and to make pos- 
sible new and more ambitious applications. 
Research over the last 10 years has demon- 
strated this potential in most of the appli- 
cation areas of science and engineering. 

There are four major computational 
methods in use within the range of disci- 
plines that study the physical world from 
the smallest atomic distances to the largest 
galactic distances. The multipole methods 
have recently revolutionized computational 
dynamics at the atomic, molecular, and 
galactic levels ( I ) ,  though these techniques 
are also applicable at other scales. The 
three other classes of solution techniques 
are direct matrix methods, iterative meth- 
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ods on discrete grids, and spectral methods. 
For each of these four computational 

methods, parallel versions have been suc- 
cessfully developed and are being used. 
Parallel versions of spectral methods such as 
the fast Fourier transform have been in use 
for many years. Multipole methods, which 
treat clusters of particles and summarize the 
effects of one cluster on the other with the 
moments of the cluster, are naturally paral- 
lelized because each cluster is treated in 
parallel. Iterative methods on discrete grids 
can be parallelized by dividing the grids into 
subgrids that are processed in parallel, and 
neighboring subgrids can communicate the 
new values of boundary points after each 
iteration. Parallel versions of multigrid and 
adaptive multigrid techniques are also being 
developed. Obtaining good performance on 
direct methods was extremely challenging, 
not because of the lack of parallelism but 
because of the high cost of data communi- 
cation. However, the development of 
blocking (or tiling) techniques has over- 
come the communication problem, leading 
to highly parallel versions of many common 
linear algebra methods. 

Because parallelism seems readily avail- 
able, what must be addressed next is what 
type of parallel processors will prove most 
useful for these applications. From a dis- 
tance, all existing large-scale parallel ma- 
chines look essentially the same: they con- 
sist of processor-memory pairs connected 
together by an interconnection network, 
which is used for interprocessor communi- 
cation. Such a machine is called a distrib- 
uted memory machine. There also exist 
machines with a single centralized memory, 
which typically use a single bus to connect 
all the processors and the memory. These 
bus-based machines have been extremely 
successful with up to a few tens of proces- 
sors, although the use of a single centralized 
memory and a bus interconnect does not 
allow such,machines to have larger numbers 
of processors. Nonetheless, this bus-based 
organization will be the architecture of 
choice for small processor counts for several 
more years. 

Two features that are crucial in deter- 
mining the effectiveness and ease of use of a 
parallel processor are the method used for 
interprocessor communication and the or- 
ganization and performance of the inter- 
connection network. The communication 
mechanism and network are critical be- 
cause communication is far more expensive 
than computation. In current machines, 
communication delays can be from 100 to 
10,000 processor clock cycles. Although 
improvements in the absolute communica- 
tion time are likely (especially at the high 
end of the scale), ongoing processor en- 
hancements are likely to mean that com- 
munication will continue to cost at least 

100 processor clock cycles on high-perfor- 
mance machines. To understand how to 
optimize this expensive communication in 
both the application and the architecture, 
it is necessary to understand the communi- 
cation characteristics of the major compu- 
tational methods. 

Requirements of Parallel 
Applications 

For a parallel machine with P processor- 
memory pairs, the parallel characteristics of 
each of the four computational methods are 
summarized in Table 1. For problems of size 
N (where N is the number of unknowns), 
direct methods have substantial communica- 
tions requirements because every submatrix 
must be communicated to a subset of the 
processors, but the computational require- 
ments dwarf the communication require- 
ments for large problems. The spectral meth- 
ods have the highest ratio of communication 
to computation and thus present the most 
difficulties for efficient implementation. 
(Spectral methods also use complex and 
costly communication patterns, which poses 
additional challenges to implementation.) 

Our focus in this paper is on the appli- 
cation of parallel processing to single, large- 
scale problems (where N is large) that tax 
the computational power of the fastest sin- 
gle-processor machines currently available 
(that is, such large-scale problems might 
run for many hours or even days on such 
machines). To obtain significant perfor- 
mance advantages for such problems, a 
reasonable number of processors needs to be 
used. With large numbers of processors, the 
communication-to-computation ratio (Ta- 
ble 1) will be an important factor when the 
higher cost of communication is accounted 
for. Thus, machines with high-latency, 
low-bandwidth communication mecha- 
nisms, such as a local area network inter- 

connection, will not perform very well in 
such applications. 

Communication is also characterized by 
the frequency and amount of data commu- 
nicated among parallel processes. In some 
methods, data is communicated less fre- 
quently but in large quantities; methods 
with this characteristic are called coarse- 
grained. Other methods communicate in a 
less structured fashion with smaller amounts 
of data communicated more often; this type 
of communication is called fine-grained. Of 
course. the distinction between fine- and 
coarse-grained computation is not rigid, 
and different im~lementations of a method 
may have different granularity. Nonethe- 
less, the distinction is important in evalu- 
ating the communication mechanism. To 
the extent that a program favors more 
fine-grained communication, a communi- 
cation structure that achieves high band- 
width only when communicating large 
blocks of data will not be efficient. Small- 
scale multiprocessors have been effective at 
handling fine-grained communication, be- 
cause the processors can be closely coupled 
and the communication has low latency 
(that is, a small delay until completion). 
Large-scale machines have been better 
matched to coarse-grained parallelism be- 
cause the overhead of initiating communi- 
cation has been much higher (by factors of 
100 to 1000) than on small-scale machines. 

One potentially attractive approach to 
building parallel processors is to use work- 
stations connected on a local area network, 
often called a workstation cluster. This 
approach, however, has proved suitable 
only for applications where the parallel 
computations are so coarse-grained as to be 
essentially independent. A classic example 
of such a computation is a problem that 
involves many independent simulations. 
For this type of application, the workstation 
cluster is extremely cost effective because a 

Table 1. A comparison, for four major solution techniques, of the scaling of computation required, 
parallelism available, necessary communication, and the ratio between communication and 
computation. Pis the number of processors; N is a measure of the size of the problem. For direct 
methods, N is the number of unknowns; for iterative methods, N represents the size of one side of 
the grid. For both multipole and spectral methods, N is the number of sample points. 

Ratio of Method Pr&lrn Computation Parallelism Communication communication to 
needed available required computation 

Direct N2 N3 N2 N 2 x *  V'F 
N 

Iterative N2 N2 N2 N X *  V'F 
- 

N 
Multipole N N t o N x  logN N V'i7-G V ' E F  

N 
Spectral N N x log N N N x log P log P 

- 
log N 
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high-speed communications network is not 
required. If one tried to use a workstation 
cluster for the type of problems shown in 
Table 1, the performance would be very 
poor except for problems where the ratio of 
problem size to number of workstations was 
very large. Although a cluster might oper- 
ate efficiently in such a situation, the small 
number of processors compared to the large 
computational requirement would mean 
that the time to complete the run would be 
very long. Currently, both the lower band- 
width of typical local area networks and 
their high communication latency limit 
workstation clusters to a narrow class of 
parallel applications. This class can be ex- 
panded in some cases with methods that are 
more coarse-grained, although this often 
requires substantial programmer effort. Ef- 
fectively executing large, single parallel ap- 
plications with the methods listed in Table 
1 requires higher bandwidth, lower latency 
interconnection technology. 

An important side benefit has emerged 
from the development of parallel methods. 
Newly developed parallel methods have 
naturally emphasized an arrangement 
where one processor would work on one 
submatrix, subgrid, cluster of data ele- 
ments, or subarray. This arrangement 
(sometimes called locality of computa- 
tion) is necessary (and natural) to limit 
the amount of communication required to 
support the parallel computation. This 
locality of computation also results in 
better locality of reference to the data. 
Thus, these parallel methods with im- 
proved locality often use the memory hi- 
erarchy more efficiently. In fact, the im- 
proved locality of the parallel version of- 
ten leads to shorter execution time when 
that version is run on a single processor 
because of the improved performance of 

Fig. 8. Three typical interconnection networks. 
(A) Bus: a zero-dimensional interconnect. (B) 
Ring: a one-dimensional interconnect. (C) 
Mesh: a two-dimensional interconnect. 

the memory hierarchy. This speedup also 
represents an important lesson for those 
who have developed computational meth- 
ods on vector-style supercomputers. In 
many of those methods, locality of refer- 
ence is at odds with the efficient use of 
vector registers and the high-bandwidth 
memory systems to which they are con- 
nected. As a result, vector supercomputer 
applications do not necessarily port effi- 
ciently to parallel microprocessors without 
restructuring data accesses to improve lo- 
cality of reference. 

lnterconnection Technologies for 
Parallel Processors 

Interconnection technology for parallel pro- 
cessors has taken a wide variety of forms. 
These different forms emphasize trade-offs in 
cost, bandwidth scalability, and efficiency. 
For example, in smaller scale multiproces- 
sors, cost and bandwidth per processor tend 
to be crucial. In larger scale machines, total 
system bandwidth becomes crucial, and a 
designer may favor scalability of communi- 
cations bandwidth over local, per processor 
bandwidth and cost. Interconnection 
schemes that scale well tend to sacrifice per 
processor bandwidth and are most costly, 
whereas schemes that are inexpensive often 
do not scale. Looking at the range of current 
machines and the fundamental properties of 
interconnection networks, it appears quite 
difficult to design interconnection schemes 
that satisfy all the desired goals. 

Another important trade-off is band- 
width versus latency of communication for 
small data items. Lower communications 
latency means that a machine can take 
advantage of finer grained parallelism. In 
addition, lower communication latency 
usually eases the job of the programmer, 
because less effort is required to hide or 
overlap the communication delays. Recent 
trends in interconnection technology have 

Table 2. lnterconnection networks of different 
dimensions connecting P processor nodes. 
The bandwidth measures show how bandwidth 
scales with processor count (P); the last col- 
umn shows how the number of wires (a good 
measure of cost) scales with the number of 
processors. C, constant. 

Inter- Wire Maxi- Bisec- count 
connec- mum tion 

tion system band- per sions 
network band- width data 

width bit 

Bus 0 C C 1 

Ring 1 P C P 
2D mesh 2 P 4P 

3D mesh 3 K 6 P 
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tended to favor smaller communication 
units (called packets), which has led, as we 
shall discuss later, to a situation where the 
method used to communicate (rather than 
the interconnection technology) is often 
the major source of delay. 

Possibly the most important trade-off in 
designing an interconnection network in- 
volves bandwidth and cost. Bandwidth can 
be measured with two different metrics: 
how the bandwidth scales in the best case 
when communication is localized and how 
it scales when the network is used for a 
random communication pattern. The for- 
mer is measured by computing the maxi- 
mum aggregate bandwidth under ideal con- 
ditions (typically, nearest neighbor commu- 
nication). The latter is typically measured 
by computing the bisection bandwidth, 
which is the bandwidth available across a 
bisection of the processors into two equal 
parts. One simple way to assess) cost is to 
count the number of wires, because wires 
are one of the most expensive parts of an 
interconnection network and their cost is 
proportional to that of other costly parts, 
such as network ports. 

Figure 8 shows three of the most com- 
mon interconnection networks in use to- 
day. The dimension of a network refers to 
the number of dimensions through which 
data can flow at once. For example, in a bus 
communication is broadcast on the bus and 
all data flows through a single point. In 
contrast, meshes can be expanded into 
more dimensions; for example, the upcom- 
ing Cray T3D uses a three-dimensional 
mesh. With the exception of the bus inter- 
connect, which is not scalable because the 
bandwidth does not increase as the number 
of processors increases, all of the intercon- 
nection networks in Fig. 8 are indirect 
networks. This means that each node in the 
network contains a processor, and data is 
routed through the nodes to reach other 
processors. There are also direct networks 
where the intermediate nodes between the 
source and destination are all switches 
(such as small crossbars) and are not pro- 
cessing nodes also. Such direct networks are 
more complex and more costly than indir 
rect networks but have the advantage that 
bandwidth, especially bisection bandwidth, 
tends to scale better. Table 2 shows how 
communication bandwidth and the number 
of wires scale with the number of processors 
in some of these indirect networks. It is 
clear that different networks may be more 
appropriate for different system sizes, be- 
cause the trade-offs between cost and scal- 
ability are substantial. 

The Communication Method 
Conceptually, microprocessor-based multi- 
processors seem to be in great shape: The 
technology for building these machines is 



progressing rapidly as is the understanding 
of parallel solution methods. The question 
of how processors should communicate data 
is one of the most important remaining 
questions, because the communication 
method affects both the programming mod- 
el and the cost of communication. The 
importance of the programming model can- 
not be overstated: Many multiprocessors 
have gone unused not because they had 
major flaws in the processors or the inter- 
connection, but because they were simply 
too difficult to program. The major choices 
for the communication method are shared 
memory and message passing. 

The primary advantage of message pass- 
ing is that it is simple and cheap to build. 
Little or no additional hardware is required 
beyond the processors, memory, and inter- 
connection network. For this reason, most 
of the large-scale multiprocessors to date 
have used this communication model. From 
the programmer's viewpoint, message pass- 
ing has the severe drawback of forcing the 
programmer to partition a program into 
separate processes that communicate ex- 
plicitly by sending messages rather than 
implicitly through memory. 

In contrast, the shared memory model 
(more appropriately called the shared-ad- 
dress space model) allows the programmer 
to directly reference data in any of the 
physically distributed memories, indepen- 
dent of the location of the data. The 
programmer does not have to partition the 
data and insert messages to get the program 
to run, although locality of reference is 
important for good performance. Fortunate- 
ly, the task of improving locality is also 
simpler with a shared memory model and 
appropriate hardware support. 

The shared memory model is a natural 
extension of the uniprocessor programming 
model and is therefore much more familiar 
to programmers and more easily supported in 
standard programming languages. It is also 
the standard model for small-scale, bus- 
based multiprocessors. Shared memory com- 
munication can also be more efficient than 
message passing because it can be completely 
supported in hardware with the use of exist- 
ing techniques of memory hierarchies. 

Researchers and designers realized early 
on that scalable parallel machines would 
require memory to be distributed indepen- 
dent of its logical sharing. With that real- 
ization, it was quite natural to hook the 
processors together with a communication 
mechanism based on the input-output (110) 
support already existing in the processor. 
Thus, communications were treated like 
110 and parallel processes communicated by 
passing messages through the 110 channel. 
Recent message-passing systems have great- 
ly streamlined this communications path, 
but existing systems all have a lot of over- 

head involved in communications. This 
overhead makes fine-grained communica- 
tion very costly and forces the programmer 
to work hard to avoid communication and 
to organize any remaining communication 
into large blocks. 

Although shared memory models may be 
easier to use, the challenge for the shared 
memory model has been to find a method to 
scale to large numbers of processors, orga- 
nized with physically distributed memory. 
In the last several years, we have learned 
how to do this. The resulting architectural 
approach, called distributed shared memory 
(DSM), can be made to work with almost 
any communications structure. When a 
data access is attempted by a processor, the 
memory system determines whether the 
access is to a local memorv or to a remote 
memory; if the access is remote, the mem- 
ory module generates a request to get the 
data from the remote memory. This request 
is routed over the interconnection network 
to the remote memory, where the data is 
retrieved and then sent back to the request- 
ing processor. Logically, the application has 
access to all the memory in the machine, 
and although remote accesses are more 
expensive than local accesses, this hard- 
ware-supported mechanism has a much 
smaller overhead than message-passing 
communication. 

An idea closely related to DSM is distrib- 
uted virtual memory (DVM) (2). Distribut- 
ed virtual memorv makes use of standard 
local area networks and virtual memory 
hardware to create a shared memory among 
physically separate machines, such as a clus- 
ter of workstations. A major advantage of 
DVM is that it unifies the software model for 
multiprocessors and workstation clusters. Its 
major drawback arises from the limitations of 
the underlying hardware, which typically 
provides limited bandwidth and has high 
communication latency. Another difficulty 
in using DVM is that the unit of communi- 
cation, namely pages in virtual memory, is 
mismatched to the communication needs of 
most applications. In some cases, a page is 
too large a unit, and in other cases, it is 
important to optimize the page boundaries, 
which are typically invisible to program- 
mers, thus introducing highly machine-de- 
pendent details into the program. 

The amount of remote communication 
in a DSM machine can be reduced by 
caching. By simply allowing remote data to 
be placed in the cache of a processor, one 
can greatly reduce the access time for sub- 
sequent accesses to this data. But the cach- 
ing of data shared by multiple processors 
does introduce a new problem: cache coher- 
ence. Such a coherence problem arises be- 
cause a shared data item mav be read and 
written by a number of processors. The 
system must ensure that the value read by a 

processor is the most recent value written 
for that item. In small-scale, bus-based 
multiprocessors, this problem was solved 
more than 10 years ago with a technique 
called snoopy caches. In a bus-based sys- 
tem, every processor can see every memory 
access. It is therefore simple to have each 
processor update its copy of a data item 
when it sees the item is being changed by a 
transaction on the shared bus. Because 
caching is an attractive method to reduce 
latency and because it would be unaccept- 
able to burden the programmer with the 
task of keeping caches coherent, the devel- 
opment of snoopy caches was key to making 
bus-based multiprocessors effective. Unfor- 
tunately, the mechanism used in snoopy 
caches is not scalable to large numbers of 
Drocessors because it relies on communicat- 
ing with every processor on any update of a 
shared data item, whether a processor has a 
copy of the item. 

A major challenge in developing DSM 
architectures has been to deal with the 
cache coherence problem. DSM multipro- 
cessors without cache coherence were de- 
veloped early; however, these machines did 
not prove popular largely because of their 
inherent programming difficulty, which was 
similar to that required by message-passing 
architectures. Only in the last few years 
have DSM machines been built that can 
support cache coherency in a scalable fash- 
ion with the use of an arbitrary intercon- 
nection network. Furthermore. the cost of 
the additional hardware needed to keep the 
caches coherent is modest. The Stanford 
DASH machine (3), for example, estimates 
the added cost to be between 10 and 15%. 
Although this is a noticeable cost incre- 
ment, the benefits in improved programma- 
bility and achieved efficiency have been 
enormous. 

This improvement in our understanding 
of how to build scalable parallel processors 
comes at a very propitious time. Technol- 
ogy trends are making it less and less attrac- 
tive to have centralized shared memory for 
systems with even moderate numbers of 
processors. But with this new understanding, 
it is now possible to supply a single, shared 
memory programming model independent of 
the underlying interconnection technology, 
the number of processors, and the physical 
distribution of memory. Thus, architects 
designing a new multiprocessor system can 
treat the choice of interconnection technol- 
ogy and topology as an engineering problem 
and can expect parallel applications to run 
well with few or no changes. 

The shared memory programming model 
is analogous to the virtual memory pro- 
gramming model. Virtual memory is a good 
thing as long as it is used appropriately; 
likewise, shared memory is a good thing as 
long as you use it intelligently. Locality of 
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computation and locality of reference con- 
tinue to be critical for efficient use of these 
systems. To help the user there are pro- 
gramming environments that contain a va- 
riety of tools, some automatic, for develop- 
ing better parallel applications in an incre- 
mental fashion. It is possible to start with a 
serial version of a method and slowly 
change it into a good parallel method. The 
parallel version can then be optimized to 
improve locality and enhance performance. 
This approach is in contrast to message- 
passing systems, where great up-front efforts 
are required just to implement parallel ver- 
sions that simply run correctly and incre- 
mental progress is rare. In addition, the 
interconnection structure and communica- 
tion characteristics in message-passing ma- 
chines have been so critical to uerformance 
that programs had to be developed and 
tuned with one uarticular machine in mind. 
Even porting message-passing programs 
from one uarallel machine to another could 
require a significant effort. A common story 
is that of William Goddard, a colleague in 
chemistry. His team spent 6 months trying 
to develop a parallel version of a multipole 
method on a message-passing machine. 
They gave up and then spent 2 weeks 
successfully developing an efficient parallel 
version on a DSM system. Similar experi- 
ences have been found for a variety of n 
body applications (4). 

With the success of microprocessor 
hardware, from the desktop to a new gen- 
eration of supercomputers, we now also 
have a single programming model capable 
of spanning the entire range of micropro- 
cessor-based computing systems. Further- 
more, methods that emphasize computa- 
tional locality so as to reduce communica- 
tion also naturally lead to better locality in 
data referencing patterns, which better uses 
the memory hierarchy. 

Future Trends and Implications 

The rapid progress in microprocessor perfor- 
mance since the early 1980s is likely to con- 
tinue for at least five more years. Improve- 
ments in integrated circuit technology prom- 
ise not only improved clock rates but also 
substantial growth in the number of transis- 
tors per processor: microprocessors with clock 
rates of 400 MHz and higher and over 5 
million transistors are less than 5 years away. 
Using these increased transistor counts, archi- 
tects will employ a variety of techniques to 
further increase the number of instructions 
executed every cycle and to decrease losses 
from the memory hierarchy and from ineffi- 
cient use of pipelines. Together, the technol- 
ogy and architectural enhancements should 

drive an annual performance growth rate of at 
least 50% and possibly closer to 100% (at least 
for floating point programs) during the next 
several years. 

This ongoing rapid technology improve- 
ment will further reinforce the role of the 
microprocessor as the dominant computing 
element. Furthermore, it has important de- 
sign and economic implications for how 
large-scale parallel processors are construct- 
ed. The rapid performance growth of mi- 
crourocessors leads to rauid obsolescence of 
machines built from microprocessors. The 
industrv and users have adauted to this 
situation on the desktop by using 3-year 
depreciation cycles for this rapidly evolving 
technology as well as planning upgrades to 
allow the basic hardware to be used for 
more than one processor generation. For 
large computing systems, however, the 
common uractice has been deureciation 
schedules of 5 years or even 7 years. If our 
large computing systems are microprocessor 
based, these systems will become obsolete 
when the microprocessors inside them be- 
come out of date in 3 years. Whereas most 
large machines allow for expansion and 
upgrade of memory and peripherals, the use 
of microprocessor technology motivates de- 
signs where the processor (and often the 
caches) can also be upgraded. In a typical 
microprocessor-based computing system, 
the microprocessor and its cache or caches 
account for approximately 25% of the total 
cost, whereas the memory system, intercon- 
nect, peripherals, cables, cabinets, fans, 
and power supplies account for the remain- 
ing 75%. A design that supports upgrading 
to a newer urocessor model mav have some 
additional initial cost, but it can have a 
significantly longer useful life. Unfortunate- 
ly, although it is possible to build a system 
that will allow an upgrade that will double 
or perhaps triple performance, it is difficult 
and costly to design a system that will last 
through more than one upgrade. One major 
reason for this is that upgrading the inter- 
connection technology is typically very dif- 
ficult, and designing an interconnection 
technology to support several upgrades usu- 
ally becomes too costly. 

Beyond 5 years, the prognosis for the 
performance growth of microprocessors is 
more hazy. The scope of the grchitectural 
techniques being used to extract perfor- 
mance from a single instruction stream has 
not grown much in the past few years. 
There also appear to be major engineering 
limitations in our abilitv to build urocessors 
that exploit unlimited amounts of instruc- 
tion-level parallelism (the type of parallel- 
ism exploited by pipelining and multiple 
issue). If these limitations are not over- 

come-a task that today looks quite diffi- 
cult-performance growth for microproces- 
sors may eventually be limited primarily by 
technology-driven clock rate enhance- 
ments. Such a situation will likelv lead to 
performance growth rates of about 25 to 
30% per year. Indeed, this is the growth 
rate one could see if one looked at high-end 
mainframes or supercomputers that have 
exploited many of these architectural en- 
hancements already. 

Such a slowdown in the uerformance 
growth of uniprocessors will further increase 
the importance of multiprocessors, especial- 
ly for scientific and engineering computa- 
tions where parallelism is generally in abun- 
dance. A major challenge for users of par- 
allel computing has been the variety of 
incompatible programming models and ar- 
chitectures. Because parallel computing is 
still maturing, the development of a single 
programming model that can span multiple 
generations of architectures as well as a - 
range of processor counts is critical. Fortu- 
nately, we have learned how to build large- 
scale multiprocessors that support shared 
memory, the model of choice for both 
uniprocessors and small-scale multiproces- 
sors. This advance should lead to a single 
programming model supported on a wide 
variety of different architectures. 

Although a single programming model 
greatly improves our ability to use these 
new parallel machines and to reap the 
benefits of a software investment, parallel 
processing still presents challenges to scien- 
tists and engineers who would take advan- 
tage of it. In particular, it will be critical to 
develop new parallel methods that exhibit 
locality so that the machines can be used 
efficiently. Users who understand the im- 
portance of both parallelism and locality 
will be able to use these cost-effective mul- 
tiprocessors to perform computations much 
more cheaply than would have been possi- 
ble just a few years ago with conventional 
supercomputers. 
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