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Parallel Scientific Computation 
W. Daniel Hillis and Bruce M. Boghosian 

Massively parallel computers offer scientists a new tool for computation, with capabilities 
and limitations that are substantially different from those of traditional serial computers. 
Most categories of large-scale scientific computations have proven remarkably amenable 
to parallel computation, but often the algorithms involved are different from those used on 
sequential machines. By surveying a range of examples of parallel scientific computations, 
this article summarizes our current understanding of the issues of applicability and pro- 
gramming of parallel computers for scientific applications. 

Traditionally, most digital computers have 
been sequential in that they perform a 
sequence of arithmetic operations, one at a 
time. Today the fastest computers are par- 
allel computers in which thousands or even 
tens of thousands of processors operate si- 
multaneously. These massively parallel 
computers offer scientists a new tool for 
computation, a tool that presents an unfa- 
miliar set of capabilities and limitations to 
users of traditional sequential computers. 

To  exploit parallelism efficiently, mas- 
sively parallel computers often require differ- 
ent programs or even different algorithms. 
The development of parallel software once 
seemed to be an almost insurmountable 
problem for parallel machines. It was as- 
sumed that many or even most computations 
were inherently sequential in nature, and 
therefore that oarallelism would be suitable 
for only a narrow range of applications. 
Today there are hundreds of massively par- 
allel supercomputers in everyday use, in 
thousands of different applications. Most 
categories of large-scale scientific computa- 
tions have proven amenable to parallelism, 
including some computations that seemed 
"obviously" sequential. This article gives a 
range of ,examples of parallel computations 
that exploit parallelism, summarizes our cur- 
rent understanding of which types of scien- 
tific applications are suitable for parallel 
machines. and discusses some of the issues 
involved in parallel programming. 

Data Parallelism 

There are several different ways of writing 
programs for parallel computers. One com- 
mon programming method is to run a con- 
ventional sequential program on each pro- 
cessor of the parallel machine with explicit 
commands inserted to send and receive 
messages to and from other processors. 
These explicit commands are usually sup- 
plied in the form of a library of message- 
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passing subroutines, such as the CMMD or 
PVM (Parallel Virtual Machine) library. 
This message-passing model treats the par- 
allel computer as a network of independent 
communicating processors, each with its 
own memory (1). Some programmers find 
message passing easy to understand because 
the programs are written in a standard 
sequential programming language. 

An alternate model of parallel program- 
ming is the data-parallel model, in which a 
single program specifies the coordinated 
activities of all the processors. This single 
program consists of a sequence of inherently 
parallel operations. The data-parallel model 
is intuitive to manv scientists and mathe- 
maticians because it corresponds very close- 
lv to standard mathematical arrav notation. 
For example, in array notation, we may 
write the equation A + B = C, indicating 
the addition of two arrays. If the arrays are 
say, 1000 x 1000 elements, then the 
single addition operator corresponds to the 
addition of 1,000,000 numbers. The par- 
allelism is implicit in  the operator. This 
article will describe algorithms that use 
the data-parallel model, although equiva- 
lent algorithms could also be expressed by 
message passing. 

The data-parallel model is a shared- 
memory model; that is, all data is accessible 
to all processors. This is in contrast to the 
local memory model of message passing, in 
which each processor can directly access 
only its own subset of the data. In the 
data-parallel model, it is the responsibility 
of the compiler and the operating system to 
assign the operation to specific processors 
and to make sure that the data necessary to 
oerform those ooerations is available at the 
processor. For example, in a machine with 
a million processors the compiler could 
perform the 1000 x 1000 array addition 
mentioned above by assigning to each pro- 
cessor the task of adding one pair of array 
elements. If this operation were running on 
a machine with onlv 500 orocessors. then 
the compiler would need to assign the job of 
adding 2000 array elements to each of the 

processors. This assignment may be done 
automatically or, as will be discussed below, 
with hints from the programmer. Normally 
a data-parallel program is written without 
explicit reference to the number of proces- 
sors in the machine, so the same program 
can run on machines with different num- 
bers of processors. 

Because the primitives of data-parallel 
programming are operations on entire ar- 
rays, data-parallel programs are often sim- 
pler than sequential counterparts. The ar- 
ray addition mentioned above can be writ- 
ten in a data-parallel language [High-Per- 
formance Fortran (2)] as follows 

In parallel Fortran, as in mathematical ar- 
ray notation, the iteration over the ele- 
ments of the array is implicit. In a sequen- 
tial language like Fortran 77, this would 
need to be expressed as a sequence of scalar 
additions 

C ( 1 , J )  = A ( 1 , J )  + B ( 1 , J )  
(2) 

ENDDO 

ENDDO 

Data Parallelism and 
Computational Science 

Just as Wigner spoke about "the unreason- 
able effectiveness of mathematics in the 
~ h ~ s i c a l  sciences" (3), there seems to be a 
certain natural elegance and effectiveness 
in the application of data parallelism to 
science and engineering problems. One rea- 
son is that the laws of physics themselves, 
by their very nature, are parallel. Indeed, 
they are usually expressed mathematically 
in data-parallel form. For example, Fara- 
day's law 

has a dummy variable, x, indicating that 
the equation holds at every point of space 
simultaneously. When the field changes, it 
does so concurrently, at each point in 
space. 

In the simplest applications of data 
parallelism, this spatial parallelism is im- 
plemented by manipulating a data struc- 
ture which is analogous in  structure to 
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physical space. For example, in grid-based 
codes (such as, finite difference, finite ele- 
ment, and so on) arrays represent grid 
points of a discrete spatial lattice. When 
these arrays are distributed over a parallel 
computer, each processor is responsible for 
computing the physics at one or more 
points in space. 

In other situations, the parallel index need 
not be over physical space. For example, the 
equations of motion integrated by a molecular 
dynamics code might have the form 

where the index i runs over all the molecules 
in the system. Once again, the fact that i is a 
dummy index indicates that the form of these 
equations is the same for every molecule in 
the system. Thus, the arrays in such molecular 
dynamics codes that are dimensioned over the 
number of molecules present might be distrib- 
uted so that each processor is assigned to one 
or more molecules. 

In these simple examples, the fact that 
the same physical law applies to each point 
of a space implies that a similar computa- 
tion is being applied to every element of an 
array. This sort of operation is particularly 
easy to express using data-parallel notation, 
and is representative of the simplest sort of 
data-parallel algorithm. In real problems 
there are often singularities and boundary 
conditions. These are generally expressed as 
parallel conditionals. For example, the pro- 
gram fragment 

WHERE(R.GT.O.0) 
PHI = 1/R 

ELSEWHERE 
PHI = 0.0 

ENDWHERE (6) 
fills array PHI with the inverses of the 
corresponding elements of array R where 
those elements are positive, and with zeros 
elsewhere. 

The simple examples mentioned above 
all involve spatially local interactions, but 
locality is not required for efficient parallel 
implementation. A fundamentally nonlocal 
equation, such as 

is also inherently parallel since it holds for 
all x. Indeed, local problems are often 
transformed to nonlocal representations for 
solution. For example, spectral methods use 
representations based on the spatial or tem- 
poral frequency components of the phe- 
nomenon being modeled. These methods 
are nonlocal, but also have a natural paral- 
lel implementation. 

Nonlocal Data Communication- 
The Fast Fourier Transform 

A simple example of a parallel algorithm 
with nonlocal interactions is the Fast Fou- 
rier Transform (FFT) algorithm (4), often 
visualized on a "butterfly network" (Fig. 1). 
In the illustration, the data to be trans- 
formed starts at the left-hand side, and 
flows to the right. When the path splits, the 
data is copied onto each branch. Along 
some of the ~ a t h s  (not indicated) the data 
must be muitiplied by constants' (roots of 
unity). Where paths coalesce, the incom- 
ing data is added. The result of the trans- 
form appears on the right. 

In the illustration, the algorithm has 
eight inputs, and takes place in three 
"stages." In the first stage, each datum is 
moved to the pathway a distance one away 
on the diagram; in the second stage, each is 
moved a distance two away; in the final 
stage, each is moved a distance four away. 
More generally, if the FFT of N data is 
desired, there must be log, N stages of data 
movement, each involving the movement 
of N data. Thus, the algorithm has com- 
plexity 0 (N log N) . 

Consider the implementation of this 
transform on a ~arallel comDuter of M 
processors (For simplicity, let us assume 
here that M and N are powers of two, and 
that N r M.) As mentioned earlier. the 
compiler can distribute the data among the 
Drocessors in several different wavs. Let us 
suppose that the eight data elements (N = 
8) on the right side of the illustration are 
distributed among four processors (M = 4), 
with two data elements per processor. Then 

Stage 1 Stage 2 Stage 3 

Fig. 1. The Fast Fourier Transform is an exam- 
ple of a parallel algorithm that requires nonlocal 
communication. Here xdenotes the initial data, 
and Xdenotes its Fourier transform. Each stage 
of the algorithm consists of a parallel operation 
that corresponds to a single statement in a 
data-parallel program. Computing the trans- 
form of N data points requires O(log N) time on 
a parallel machine with O(N) processors. 

it is clear that the last two stages involve 
interprocessor communication, while the 
first stage involves only local computation 
(that is, the shaded boxes in the figure 
represent processors). Moreover, the com- 
munications patterns involved are very reg- 
ular, and can be implemented easily on a 
variety of parallel computers (5). 

More generally, there are log, M stages 
that involve interprocessor communica- 
tion, and log, (N/M) stages that involve 
O(N/M) local computations. The total 
time required thus scales as 

where k ,  is the time required for the steps 
which involve communication, and k2 is 
the time required for those which do not. 
Note that when M = 1 (a serial computer), 
this reduces to k2N log N; whereas when M 
= N (a data-parallel implementation), this 
becomes kl log, N. 

This algorithm can be further improved 
by consolidating the communications steps: 
One can begin by performing the stages 
that are local, and then perform a permu- 
tation of the array so that the stages that 
used to involve interprocessor communica- 
tion are now local. and vice versa. This has 
the effect of isolating the interprocessor 
communication required to one single 
step-the data permutation. 

Data-parallel software libraries auto- 
mate this entire process so that the details 
are invisible to the user (6). In a high- 
level data-parallel language, an FFT is 
invoked by a single call, with the array 
passed as an input. The compiler and 
library routines then implement the algo- 
rithm described above. This makes it 
straightforward to implement spectral and 
spectral-element codes that will run effi- 
ciently in parallel. 

Data-Parallel Algorithms 

Be it local or nonlocal, the simple type of 
spatial parallelism mentioned above is rela- 
tively easy to understand. Nevertheless, it 
is often preferable to use a representation of 
a problem that is yet more abstract. For 
example, it is common practice to solve 
partial differential equations with so-called 
implicit methods, in which the calculation 
cannot be time advanced independently at 
each gridpoint, but rather only together in 
a self-consistent fashion that requires the 
solution to a set of coupled linear equations 
at each time step. Such solution may then 
be carried out by iterative methods, such as 
the conjugate gradient algorithm (7), or by 
direct methods. 

Because these types of methods are nor- 
mally implemented on serial machines, 
many researchers have assumed that there is 
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something about them that is fundamental- 
ly sequential. In fact, implicit methods and 
direct solvers have natural representations 
in parallel machines (8). 

In practice there are surprisingly few 
problems that are fundamentally sequential 
in nature. Many problems that appear to be 
sequential can be parallelized by the use of 
a different algorithm. We will explain in 
detail a simple example of an apparently 
sequential problem, called the pointer-fol- 
lowing problem (9), that can be solved in 
parallel. The method used to solve this 
problem can be applied to many other 
situations that seem to require sequential 
processing. 

The pointer-following problem begins 

with a chain of memory locations set up in 
memory as follows: An identified location, 
say location 0, is the first link in the chain. 
This memory location contains the address 
of the second link in the chain, or in 
computer science terms, a pointer to the 
location of the second link. The second 
link, in turn, contains a pointer to the third 
link, and so on. The last link in the chain 
contains the special value NULL. The 
problem is to find the address of the last 
link. Naively, it would seem that this prob- 
lem requires sequential access of each link 
to reach the end. This would require a 
million steps to reach the end of a chain 
with a million links, and since each opera- 
tion depends on the one before it, it is 

Fig. 2. Finding the end of 
a serially linked list is an 
example of an apparently 
sequential problem that 
can be computed in par- 
allel. Each link in the chain 
contains a pointer to the 
next element. The prob- 
lem is to find the end. In 
the parallel algorithm, 
each step halves the 
length of the list by skip- 
ping every other link. 

Fig. 3. The average per- 50.00 
formance of various size 45,00 
Connection Machines on 
a molecular dynamics 40.00 
calculation for various 35,00 
problems shows scaling 
properties characteristic .$ 30.00 
of massively parallel g25,00 
machines. The near-lin- g 
ear performance curves 20.00 
show that larger ma- 15,00 
chines solve proportion- 
ately larger problems in 10.00 
essentially the same 5,00 
time. The top curve 
shows the typical "roll 0.00 
off" in performance for o 20 40 60 80 100 120 140 
smaller problem sizes. Molecules (thousands) 
For sufficiently small problems (much smaller than those shown in the figure), a parallel machine 
may actually be slower than a conventional vector computer. [Data are from (12)] 
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difficult to see how parallel processing could 
be used to advantage. 

In fact, there is a parallel algorithm. On 
a parallel processor with a million proces- 
sors, the millionth link can be found in 20 
steps (since 20 is the ceiling of the base 2 
logarithm of 1,000,000). Here is the pro- 
gram 

for all k in parallel do 

while A[k] = I  null and 
A[A[k] I =I  null do 

end while 

end for 

In the above program, P is the array of 
linked pointers. The program uses an algo- 
rithm called pointer-doubling (Fig. 2). The 
idea behind Dointer doubline is to reduce 
the length ofthe list by halfuon each step. 
Each link in the chain finds the address of 
the link two steps down the chain. This can 
be accomplished for all links in the chain 
simultaneously. When the program termi- 
nates, a pointer to the last link is stored in 
each element of arrav A. 

The pointer-doubling algorithm is an 
example of a log-time algorithm; an algo- 
rithm whose time for execution is propor- 
tional to the logarithm of the size of the 
problem-in this case, the number of links 
in the chain. Using algorithms similar to 
the pointer-doubling algorithm, one can 
compute any sequential chain of N associa- 
tive operations in order O(1og N) time. 
This is the basis of many fast parallel algo- , 
rithms. Similar algorithms can be used, for 
example, to compute the subtotals of a long 
list of numbers or the product of a long 
chain of matrices. 

The reason that parallel computers work 
well on these ~roblems is because in each 
example there is a large amount of data on 
which it can operate simultaneously. The 
number of operations that can be performed 
simultaneously is proportional to the 
amount of data, hence the name data par- 
allel. The larger the problem, the greater 
the amount of data, and the greater the 
opportunity for parallel processing. This 
leads to the most general signature of the 
type of problems that are suitable for paral- 
lel processing: Problems that have large 
amounts of data tend to work well in 
parallel. Because the opportunity for paral- 
lelism increases with the data size, larger 
version problems can often be run on ma- 
chines with more processors in the same 
amount of time. Often the throughput, in 
terms of number of arithmetic operations 
per second, increases linearly with problem 
size and the number of processors (Fig. 3). 



The simple rule of thumb, that the 
opportunity for parallelism grows with the 
amount of data, also suggests the types of 
problems that may not be well suited for 
parallel computers: those in which the 
amount of data being operated on is very 
small. For example, solving an ordinary 
differential equation with only a few vari- 
ables mav be much less efficient on a oaral- 
lel machine than solving a partial differen- 
tial eauation with 100.000 variables. Con- 
sider the classical physics problem of pre- 
dicting the motion of the nine ulanets - 
around the sun. It is not currently under- 
stood how to use more than about 100 
processors concurrently on this problem, 
one for each pair-wise gravitational interac- 
tion between bodies (10). Does this mean 
that this problem is inherently sequential 
beyond this point? We speculate that it is 
not, but suitable large-scale parallel algo- 
rithms have yet to be developed. 

Amdahl's Law 

There is reason to be cautious in declaring - 
any problem to be fundamentally unsuitable 
for parallel computers, because such claims 
have often been proven wrong. As recently 
as a decade ago, it was generally assumed by 
manv comouter scientists that massivelv 
parallel machines would be inherently inef- 
ficient on most oroblems. The argument ., 
was generally cast in the form called Am- 
dahl's Law ( 1  1 ). which stated that the time . ,, 

required to do a computation will always be 
determined by the slowest part of the com- 
putation. 

The argument against parallel machines 
went as follows: Assume that the time 
involved in performing a computation can 
be broken into two categories, s and p ,  
where s is the time required for the opera- 
tions that need to be done seauentiallv, and , , 

p is the time required for those that can be 
done in parallel. Then, assuming unlimited 
potential parallelism in the parallel portion 
of the problem, the running time for the 
algorithm on a machine with n processors 
will be at best s + pln. As the number of 
orocessors increases. the time will be in- 
creasingly dominated by s. For example, if 
10% of the operations are currently sequen- 
tial, then even with an infinite number of 
orocessors the time reauired for the overall 
operation of the problem cannot be reduced 
by more than a factor of 10. By this argu- 
ment, the efficiency of a parallel machine 
would seem to go down with the number of 
processors. 

This argument seems compelling, yet 
parallel processors with tens of thousands of 
processors operate efficiently on a wide 
range of problems. Where is the flaw in 
reasoning? The difficulty is not with the 
equation, but with the assumption about 

the type of problem being solved. A faster 
computer is typically not used just to solve 
the same problem faster. It is more often 
used to solve a larger problem in roughly 
the same amount of time. Because the 
opportunity for parallelism tends to grow 
with the size of the problem, p tends to 
grow more rapidly than s with the size of the 
oroblem. 

A typical situation might have p of 
order N ,  and s of order unity or order log 
N ,  where N is the amount of data in the 
problem. With this scaling, we see that 
the amount of data processed per unit 
time, Nl(s + pln), can become arbitrarily 
large as n goes to infinity, as long as N 
increases with n. That is, as long as one 
looks to oroblems with more and more 
data, one will always benefit from adding 
orocessors. 

A rule of thumb when writing parallel 
programs is that if any part of the program 
has a time scaling that is linear or greater 
in N ,  then there is probably an algorithm 
with a better scaling that uses more pro- 
cessors. A problem may grow either be- 
cause a more complex system is being 
analyzed or because the same system is 
being analyzed to a higher degree of accu- 
racy. Either way, the opportunity for par- 
allelism generally increases. In problems of 
this sort it generally makes sense to scale 
the amount of processors with the data. 
The power of this approach is evident 
from a few examples: 

Adding N pairs of numbers together 
takes O ( N )  time-on a sequential computer, 
because each pair must be added together in 
sequence. On a parallel computer of N 
processors, however, it would take O(1)  
time if the pairs were distributed one per 
processor. 
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Adding N numbers together to get 
one total also requires O ( N )  time on a 
sequential computer. On a parallel comput- 
er of N processors, however, the total can 
be computed in O(log N )  time, since the 
data can be combined in the fashion of a 
binary tree, with the final result appearing 
at the root, in a manner similar to that of 
the pointer-doubling algorithm mentioned 
above. Each layer of the tree can be com- 
puted in parallel. 

Sometimes the time scaling can be 
improved by assigning more processors to 
the problem. For example, the multiplica- 
tion of two N by N matrices takes O(N3)  
time on a sequential computer, O ( N )  time 
on a parallel computer of N Z  processors, and 
O(1og N )  time on a parallel computer of N3 
processors. 

In all of these cases, as N goes to - 
infinity, the importance of the serial part of 
the computation goes to zero, so Amdahl's 
Law is irrelevant. 

As noted earlier, problems with small 
amounts of data may not work well on 
parallel machines. In the case where the 
data size is fixed. the inefficiencies indicat- 
ed by Amdahl's Law may turn out to be 
significant. For this reason, massively par- 
allel machines are most often used to 
calculate larger, more detailed versions of 
problems than sequential machines, rather 
than to speed up the calculation on the 
same size problems. For problems that are 
small enough to run in a short period of 
time on a sequential machine, massively 
parallel machines often offer only modest 
imorovements. 

For problems with large data sets, mas- 
sively parallel machines often perform at 
significantly greater speeds than those that 
are obtainable on sequential machines. 

Average Gflopsls 

Fig. 4. This chart shows the performance, in billions of floating-point operations per second, of a 
variety of large-scale applications running on the 512 processor Connection Machine CM-5 at the 
National Science Foundation NCSA Supercomputer Center. [Courtesy NCSA] 
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Figure 4 shows the performance on a 
variety of applications that run on the 512 
processor Connection Machine at the Na- 
tional Science Foundation's National 
Center for Supercomputing Applications 
in Illinois. On some unusual codes, mas- 
sively parallel processors have generated 
even higher rates of sustained perfor- 
mance. For example, the 1024 processor 
Connection Machine at Los Alamos Na- 
tional Laboratories has recently achieved 
sustained performance rates of 45 Gflopls 
(billions of floating point operations per 
second) on molecular dynamics calculations 
(1 2) , 60 Gflopls on a fluid flow calculation 
(13), and 60 Gflopls on a weather calcula- 
tion (14). For comparison, the fastest rate 
achievable on a single Cray vector processor 
is about 1 Gflopls, and the fastest rate 
achievable on a shared memory vector pro- 
cessor is about 16 Gflopls. 

Even these high rates of sustained per- 
formance are only about half of the poten- 
tial peak performance of the machines. It 
is very unusual for any type of computer, 
parallel or otherwise, to sustain its peak 
arithmetic rate during normal operation. 
The average performance of a user's code 
run on the University of Illinois' National 
Center for Supercomputing Applications' 
four-processor Cray Y-MP is about 0.070 
Gflopls, or 5% of its peak (15). It is used 
almost entirely in single-processor mode. 
Because the arithmetic units represent 
only a small part of the hardware resource, 
a well-balanced machine is not necessarily 
optimized to run the arithmetic units at 
peak speed, any more than a well-designed 
car is designed to run the transmission at 
peak torque. A computer's peak perfor- 
mance therefore is irrelevant to most us- 
ers. What matters to users is the time 
required for the computation or the cost of 
the computation. In both of these catego- 
ries, massively parallel machines routinely 
excel over vector machines by consider- 
able margins. Figure 4 shows the perfor- 

mance of a 512 processor machine on a 
variety of scientific applications. Figure 5 
shows the ~erformance of various oarallel 
machines on a standard performance 
benchmark (LINPACK) (1 6). 

Data Communication 

Another important factor determining the 
speed of a computation on a parallel ma- 
chine is the pattern of communication. In 
most parallel machines each processor has 
its own associated memory which holds a 
certain subset of the data. Access to anoth- 
er processor's memory requires significantly 
more time than for accessing the orocessor's 

u .  

own local memory. This places a perfor- 
mance premium on having the right data, 
or as much of it as possible, available 
locally. For example, when the parallel 
processor performs the addition of two ar- 
rays, it is advantageous to have the corre- 
sponding elements of the two arrays stored 
within the same processor, so that the 
computation can be performed using entire- 
ly local memory reference operations. In 
this case, most parallel compilers will do 
this automatically. 

The situation is more difficult when 
more complex operations are being per- 
formed. For example, consider the problem 
of multiplying two 1000 x 1000 arrays on a 
machine with 1000 processors. Is it better 
to put a single row of the array into the 
local memory of each processor or a single 
column? Or would it be better to out a 
subarray, say, 25 x 40, in each processor? 
For most multiplication algorithms the sub- 
array allocation turns out to be preferable 
because it minimizes the nonlocal commu- 
nication (1 7). 

Today's compilers are able to do a good 
job of automatically assigning data to pro- 
cessors in many cases, but it is still often 
necessary for a programmer to explicitly 
specify the allocation to achieve good per- 
formance. Parallel languages, like High 

Performance Fortran, which provide simple 
notation for array operations, also allow 
optional directives specifying how these 
arrays are allocated. With improvements in 
compiler technology, the automatic alloca- 
tion performed by compilers is likely to 
improve, but for now, understanding how 

Fig. 5. The measured perfor- 60 - 
mance, in floating-point opera- - - 
tions per second, of various par- " 

8 50 - allel computers solving a large = 
system of linear equations (LIN- - 
PACK). The performance of differ- 40 - 
ent sizes of CM-5 Connection Ma- 
chines illustrates a near-linear re- 

- 
lationship between performance 30 - 
and problem/machine size. The - 
horizontal axis shows the problem f 20 - 
size in terms of the number of 
coefficients involved. The num- $ - 
bers of processors for each ma- 10 - 
chine are shown in parentheses. - 

data maps onto processors is an important 
part of writing an efficient parallel program. 

In some problems there is no efficient 
static allocation of data to processors. In 
such cases it is possible for parallel proces- 
sors to perform the data-to-processor map- 
ping dynamically during the course of the 
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computation. A good example is an adap- 
tive grid used, for example, in fluid flow 
calculations based on Lagrangian grid 
methods. In this calculation the fluid is 

Problem size 

represented by a discrete lattice structure 
which changes with time. As fine structure 
develops in the fluid, a localized whirlpool 
for example, new grid elements are allocat- 
ed dynamically where they are needed to 
model the details of the structure. New data 
structures allocated in memory are automat- 
ically placed in the processors containing 
the lattice elements with which thev will 
communicate. If the flow of the fluid is 
nonuniform, the grid is likely to grow dis- 
proportionately in certain processors. Pro- 
cessors handling a difficult portion of the 
fluid will have a disproportionate amount of 
the data and the computational load. In 
order to address this problem, a parallel 
program for an adaptive grid algorithm typ- 
ically alternates between a phase of compu- 
tation and a phase of load balancing. Dur- 
ing the load balancing phase the data is 
redistributed evenly across the processors. 
Although such algorithms are more difficult 
to write than a fixed allocation program, 
they are often able to achieve significant 
performance benefits by exploiting the non- 
uniform nature of the problem. In the last 
example below, we shall describe the im- 
plementation of a load-balancing algorithm 
for a quantum chemistry computation. 

Because communication from nonlocal 
memory is the highest cost operation, it 
often makes sense to choose a parallel 
algorithm that minimizes communication, 
even if that algorithm involves doing slight- 
ly more arithmetic. For example, the stan- 
dard method for solving dense systems of 
linear equations on sequential machines is 
Gaussian elimination. or in matrix terms 
LU decomposition. To maintain numerical 
stability with this method the order of 
variable elimination (pivoting) is normally 
determined dynamically. It is possible to 
use this algorithm on a massively parallel 
machine, and in fact it is often used, 
especially for extremely large dense matri- 
ces. Sometimes, however, it may actually 
be faster to use an alternate algorithm - 
which requires fewer communication oper- 
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ations at the expense of twice as many 
arithmetic operations. This method, called 
QR factorization, is based on isolating vari- 
ables by orthogonalizing the matrix. Al- 
though it involves twice as many arithmetic 
operations as Gaussian elimination, the 
communication patterns are very simple, so 
it may actually be faster on a parallel ma- 
chine. This method also has advantages in 
numerical stability (1 8). 

Similarly, for sparse systems of equa- 
tions, often encountered in finite difference 
or finite element calculations, it has been 
noted that both direct solvers and iterative 
solvers are frequently used on sequential 
computers. The choice between these alter- 
natives depends on many factors, but par- 
allelization tends to favor iterative solvers 
since they can be implemented with a 
minimum of data communication (7). 

Because the ratio of local to nonlocal 
references depends on the ratio of the num- 
ber of processors to the total data size, 
applications involving large amounts of 
data are likely to do a larger number of local 
references, resulting in higher average com- 
putation rate. This effect reinforces the rule 
of thumb mentioned earlier that massively 
parallel machines are more suitable for 
problems with large amounts of data. 

Computational Geometry 
and the lsing Model 

This trade-off between local and nonlocal 
approaches is nicely illustrated by the ex- 
ample of the Ising model of statistical phys- 
ics (1 9). This model is frequently used as a 
prototype for understanding the critical be- 
havior of systems of spins, for example, 
magnetic domains of solids. In its simplest 
embodiment, it is a grid-based algorithm 
with one bit of data at each site that tells 
whether the spin at that site is up or down. 
Two neighboring spins on the lattice con- 
tribute energy - 1 if their spins have oppo- 
site value, and +1 if their spins have the 
same value. This energy is summed over the 
set of neighbors of a site, and then over the 
entire lattice to get the lattice energy. 

There are then several strategies for 
updating the values of the spins to march 
the system toward equilibrium. The sim- 
plest is the heat-bath algorithm-based on 
the Metropolis Monte Carlo algorithm 
(20)-in which the spins flip randomly, the 
difference in total lattice energy is comput- 
ed, and the changes are accepted with some 
probability that depends on this difference. 
This algorithm is easily parallelizable. If the 
sites are distributed across Drocessors. the 
energy of each site could be computed 
locally, and the sum of that energy over the 
lattice is then obtained by a log-time global 
reduction operation. Variants of this algo- 
rithm abound. For example, it is much 

more efficient to perform this algorithm on 
alternate checkerboard-colored sites of the 
lattice, and then accept or reject each 
change locally. Once again, this is straight- 
forward to compute in parallel (2 1). 

For large systems, however, these brute- 
force algorithms, based entirely on local 
interaction, are not the most efficient way 
to equilibrate a system of Ising spins. Near 
criticality, the spins tend to cluster on 
length scales that range up to the size of the 
entire lattice. Thus, in a local algorithm, 
the number of iterations required must scale 
as a power law in the lattice size so that 
information has a chance to transit the 
lattice many times. For this reason, Swend- 
sen and Wang (22) introduced an improved 
algorithm that involves identifying con- 
nected clusters of like spins and then flip- 
ping the entire cluster at once. Thus, 
changes made to the system may extend 
over a large distance, and the propagation 
of information is not restricted to one link 
per iteration of the algorithm. 

The problem then reduces to the effi- 
cient identification of the connected clus- 
ters of like spins on a lattice (see Fig. 6). 
This problem is not as obviously paralleliz- 
able as the original heat-bath algorithm or 
its variants. Nevertheless, it has been 
shown (23) that it does indeed parallelize. 

To understand the data-parallel algo- 
rithm used for this problem, consider first 
the following simple algorithm for identify- 
ing the clusters: Label each site with a 
unique integer. Then compare a site's inte- 
ger to that of all of its connected neighbors, 
and have it overwrite its value with the 
minimum of its present value and that of all 
of its neighbors. By iterating this last step 
until a steady state is reached, it is clear 
that we will arrive at a situation in which 
everv site of a cluster will have the same 

have different integers. 
This method of cluster identification is 

clearly parallel, but it can be so slow as to 
mitigate the effectiveness of the Swendsen- 
Wang approach, since it involves only 
nearest-neighbor communication on the 
Cartesian grid (as did the heat-bath algo- 
rithm). Because of this slow propagation of 
information, identifying clusters on an N x 
N lattice may require O(N2) time for suffi- 
ciently serpentine clusters. (We shall pre- 
sent this technique for the two-dimensional 
case, but it is obviously generalizable to 
higher dimension.) 

We would like a way to move the cluster 
information around faster. To do this. let us 
first recast the above simple algorithm in 
the language of matrices: Let A(') denote 
the connectivity matrix describing the clus- 
ters on the two-dimensional Cartesian grid. 
Thus, if we again label the sites by integers, 
the ith row of A(') contains a 1 in all 
columns corresponding to sites to which 
site i is connected (including i itself), and 0 
elsewhere; Thus, there will be at most five 
1's in each row. 

The operation of comparing with neigh- 
bors in your cluster and iterating can then 
be understood as repeated multiplication by 
A('). For example, the ith row of (A('))' 
will contain a 1 in every column corre- 
sponding to a site that is zero, one, or two 

integer, and sites in different clusters will + + + + + + + + + + + + + + +  

Fig. 6. This algorithm is an important improve- 
ment to the standard "heat-bath" Monte Carlo 
algorithm for thermalizing the lsing model. It 
calls for flipping entire connected blocks of like 
spins at each step. One part of the algorithm is 
thus the identification of these blocks. This is 
accomplished by a multigrid access pattern in 
which information is combined on different Flg. 7. Nonzero elements of the cluster connec- 
scales. Here, "up" spins are denoted by + tivity matrices correspond to sites in the same 
signs, and "down" spins are denoted by - cluster that are a power-of-two distance away. 
signs. The outlines of the blocks are shown in The figure shows the first three steps of data 
gray. access for a single site. 
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links away, etc. For sufficiently large J, we 
will have (A(O))J = (A(0))Jfl = (A(')) ", and 
at that point, row i will contain a 1 in all 
columns corresponding to sites to which 
site i is connected, and 0 elsewhere. Unfor- 
tunately, as noted above, J might have to 
be O(N2) before convergence is obtained. 

To significantly speed up this algorithm, 
a multigrid approach can be used. Referring 
to Fig. 7, let A(') be the connectivity 
matrix for sites at distance 2. More gener- 
ally, let A(') be the connectivity matrix for 
sites at distance 2' along each axis. These 
connectivity matrices can be obtained re- 
cursively. For example, if a site is connect- 
ed to another site, a distance Z1 to the 
north. and that site is in turn connected to 
another site, a distance 2' further to the 
north, then the first site knows that it is 
connected to the site a distance 21f1 further 
to the north, etc. 

Given these connectivity matrices at 
different length scales, we can arrive at 
(A('))* much more quickly by successively 
multiplying by connectivity matrices for 
many length scales right up to the full size 
of the lattice 

where n is on the order of log N for an N x 
N lattice. 

On a lattice of 10242 sites. the Swend- 
sen-Wang algorithm thermalizes the Ising 
model in 667,000 times fewer iterations 
than the heat-bath algorithm. Of course, 
because of the necessity of finding the 
clusters in the above-described fashion, 
each iteration of the Swendsen-Wang algo- 
rithm takes much longer than those of the 
heat-bath algorithm (1 9). Nevertheless, 
Brower et al. (23) were able to implement 
the above multigrid algorithm so that each 
iteration took about 25 times longer than a - 
heat-bath iteration, so that the Swendsen- 
Wang algorithm yielded a factor of 27,000 
improvement over the heat-bath algorithm 
on a CM-2 Connection Machine parallel 
comuuter with 65.536 urocessors. , . 

~ultigrid methods are also often used for 
elliutic eauation solvers. Because thev have 
favorableAconvergence properties, they are 
often faster than local methods on parallel 
machines (24). 

N-Body Problems 

Many algorithms of computational science 
call for operations to be performed on each 
element of an array that involve all of the 
other elements thereof. For example, sim- 
ulations of systems of gravitationally inter- 
acting masses (25), electrostatically inter- 
acting charges (26), or vortices in an in- 

compressible fluid (27) involve what is 
known as the N-body problem, in which 
every particle must interact with every oth- 
er one in the system. 

Note that this problem generally re- 
quires O(N2) time on a sequential computer 
[For certain force laws-most, notably the 
Coulomb force law-there are O N  com- . , 
plexity methods that employ multiple ex- 
pansions for the treatment of distant parti- 
cles, and these are also parallelizable, but 
they are outside the scope of the present 
discussion.] Figure 8 illustrates a data-par- 
allel algorithm for a computer with O(N) 
processors. Each processor is responsible for 
treating one or more bodies. The informa- 
tion corresponding to the bodies is copied, 
and then cyclically rotated through the 
array of processors so that each body has a 
chance to interact with every other body in 
O(N) steps. Thus, scaling the number of 
processors with the number of bodies has 
served to reduce the time needed from 
0(N2) to O(N). 

Better time scaling is possible if one 
increases the number of urocessors as the 
square of the number of bodies. In this case, 
one might imagine the processors as repre- 
senting the interactions between the bod- 

Algorithm a 

n 

Algorithm b 

Fig. 8. Two different parallel algorithms for the 
N-body problem have different scaling proper- 
ties. Both algorithms compute the forces on 
each of N bodies in parallel. The arrowheads in 
the figure denote processors. Algorithm a cy- 
clically shifts the data through N processors, 
calculating each pairwise interaction in se- 
quence, requiring N steps. Algorithm b uses 
O(N2) processors to compute all N 2  interac- 
tions at once, and then it adds all the forces 
together in log, N steps using the tree struc- 
tures shown in gray. 

ies, rather than the bodies themselves. 
Once the pairwise interactions have been 
computed, the N interactions involving a 
given body can be summed in log, N steps. 
All these sums can be computed in parallel. 
The entire algorithm is thus completed in 
O(1og N) time (see Fig. 8). 

Thus, note that the asymptotic time 
scaling for this problem depends on how 
one is willing to scale the number of pro- 
cessors with the data. If one has only one 
processor (a sequential computer), then it 
takes O(N2) time. If one lets the number of 
processors scale as the number of bodies, 
then it takes O(1og N) time. If one lets the 
number of processors scale as the square of 
the number of bodies, then it takes O(1og 
N) time. 

This improvement in time scaling with 
processor number scaling is generic to a 
wide class of problems in computational 
science. It is significant that data-parallel 
libraries can automate this entire process by 
examining the number of bodies and the 
number of processors available at run time 
to decide which algorithm is optimal. In- 
deed, all-to-all communications routines 
for exactly this type of problem are avail- 
able in at least one existing data-parallel 
software library (6). 

Load Balancing Algorithms and 
Monte Carlo Methods for 

Quantum Chemistry 

To understand how load-balancing opera- 
tions can be expressed in the data-parallel 
style, we consider the example of Monte 
Carlo methods for quantum chemistry cal- 
culations. The accurate computation of 
ground-state properties of atoms, mole- 
cules, or systems thereof is a ubiquitous 
problem in computational chemistry. The 
Schrodinger equation, which governs this, 
can be expressed as a diffusion equation in 
imaginary time (28) or as an integral equa- 
tion involving a Green's function (29). In 
either case, it may then be solved iterative- 
ly for ground state properties. 

Because the configuration space may be 
of very high dimension, it is impossible to 
use grid-based algorithms. Instead, the 
wavefunction is represented as a weighted 
average over a set of point particles in the 
configuration space. The above-mentioned 
diffusive process is then affected by having 
the particles undergo a random walk. As 
they move about and sample the configura- 
tion space, weighted averages over them 
converge to ground-state expectation val- 
ues, such as the ground-state energy. 

In spite of this rather drastic change of 
representation, the method is still amena- 
ble to data-parallel treatment. Because of 
the linearity of the Schrodinger equation, 
the random walkers move about indepen- 
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Fig. 9. To improve the vari- 
ance of quantum Monte 
Carlo simulations, a load- 
balancing algorithm is fre- 
quently used that calls for 
assigning a weight to all 
walkers. As the walkers 
move about and sample 
confiauration mace. their , . 
weight is modified. Occasionally, low-weight walkers are killed and high-weight walkers are split. If 
we imagine parallelizing over the walkers present, the problem reduces to that of the dynamic 
allocation and deallocation of processors to tasks. The illustration shows that this problem can be 
handled simply using data-parallel primitives that involve the cumulative summation of the number 
of children of each walker, the sending of walkers to their new positions in the array, and the copying 
of walkers across segments of the array as many times as necessary (see text). 

dentlv. and so their random walk can be , . 
parallelized with no interprocessor commu- 
nication. Arrays containing walker at- 
tributes are simply spread over the array of 
processors, so that each processor represents 
one (or a group of) random walkers. 

Like the Ising model, this na'ive imple- 
mentation can be imoroved in numerous 
ways. For example, tracking large numbers 
of low-weight random walkers is a burden to 
the computation because they contribute 
little to anv ex~ectation value. In order to , . 
reduce the statistical variance, it is prefer- 
able to load balance the computation by 
selectively eliminating low-weight walkers, 
and cloning high-weight walkers. Because 
we are associating processors with walkers, 
this killing-and-splitting process requires 
the dynamic allocation and deallocation of 
processor resources. 

In the data-parallel paradigm, this kill- 
ing-and-splitting algorithm for load bal- 
ancing can be implemented as follows: 
Based on walker weight, each processor 
can decide how many children will be 
spawned by its walker(s). This number of 
children walkers may be zero (for walkers 
that will be killed), one (for walkers that 
will just survive), or greater than one (for 
walkers that will be cloned). Call this 
array of nonnegative integers M. By taking 
the cumulative sum of M, one can deter- 
mine the leading array position of the 
walker in the desired load-balanced state. 
By sending walkers with nonzero M to 
these positions, and then copying them as 
necessary, the desired killing and splitting 
is accomplished. 

To illustrate this, Fig. 9 depicts six 
walkers with attributes (position, weight, 
and so on) stored in the array X. Walker 
one will give rise to two children, walker 
three to one child, and walker five to three 
children. The other walkers will give rise to 
zero children; that is, they will be killed. 
The array M is shown. The cumulative sum 
of M, denoted by S, is then taken by the 

sum-scan operation-a log-time data-paral- 
lel primitive. Processors with nonzero M 
then send their walker's attributes to the 
array element given by S. Another log-time 
data-parallel primitive, known as the (seg- 
mented) copy-scan, then fills in the new 
array X by copying entries as necessary. 

With this method, highly accurate 
quantum Monte Carlo computations have 
been carried out on numerous atomic and 
molecular systems. For example, the most 
accurate computation to date of the 
ground-state energy of the hydrogen mole- 
cule was carried out in this fashion (30). 

Further refinements to the algorithm 
make it possible to treat larger systems of 
electrons, but the constraints imposed by 
the Pauli principle-the requirement that 
the electronic wavefunction be antisym- 
metric-turn out to necessitate further in- 
terprocessor communication. Recently, it 
has been shown (3 1) that these constraints 
can be satisfied by performing an N-body 
computation-one in which every proces- 
sor exchanges information with every oth- 
er. In this way, recent quantum Monte 
Carlo studies of the helium dimer have 
been accurate enough to resolve its very 
weakly bound ground state (32), which was 
detected experimentally in March of this 
year (33). 

Conclusions 

The examples above are only a sample of 
the types of engineering and scientific ap- 
plications for which parallel computers are 
well suited. They range in character from 
simple analogs of physical processes with 
spatial parallelism to sophisticated mathe- 
matical models that bear only an abstract 
relation to physics. Methods of program- 
ming parallel computers continue to 
evolve, and as yet the limitations of this 
technology are not well understood-but it 
is already clear that massively parallel com- 
puters are and will continue to be an im- 

portant tool for the largest and most com- 
plex scientific computations. 
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