
##B ARTICLES

Parallel Scientific Computation
W. Daniel Hillis and Bruce M. Boghosian

Massively parallel computers offer scientists a new tool for computation, with capabilities
and limitations that are substantially different from those of traditional serial computers.
Most categories of large-scale scientific computations have proven remarkably amenable
to parallel computation, but often the algorithms involved are different from those used on
sequential machines. By surveying a range of examples of parallel scientific computations,
this article summarizes our current understanding of the issues of applicability and pro-
gramming of parallel computers for scientific applications.

Traditionally, most digital computers have
been sequential in that they perform a
sequence of arithmetic operations, one at a
time. Today the fastest computers are par-
allel computers in which thousands or even
tens of thousands of processors operate si-
multaneously. These massively parallel
computers offer scientists a new tool for
computation, a tool that presents an unfa-
miliar set of capabilities and limitations to
users of traditional sequential computers.

To exploit parallelism efficiently, mas-
sively parallel computers often require differ-
ent programs or even different algorithms.
The development of parallel software once
seemed to be an almost insurmountable
problem for parallel machines. It was as-
sumed that many or even most computations
were inherently sequential in nature, and
therefore that oarallelism would be suitable
for only a narrow range of applications.
Today there are hundreds of massively par-
allel supercomputers in everyday use, in
thousands of different applications. Most
categories of large-scale scientific computa-
tions have proven amenable to parallelism,
including some computations that seemed
"obviously" sequential. This article gives a
range of ,examples of parallel computations
that exploit parallelism, summarizes our cur-
rent understanding of which types of scien-
tific applications are suitable for parallel
machines. and discusses some of the issues
involved in parallel programming.

Data Parallelism

There are several different ways of writing
programs for parallel computers. One com-
mon programming method is to run a con-
ventional sequential program on each pro-
cessor of the parallel machine with explicit
commands inserted to send and receive
messages to and from other processors.
These explicit commands are usually sup-
plied in the form of a library of message-

The authors are at Thinking Machines Corporation,
Cambridge, MA 021 42.

passing subroutines, such as the CMMD or
PVM (Parallel Virtual Machine) library.
This message-passing model treats the par-
allel computer as a network of independent
communicating processors, each with its
own memory (1). Some programmers find
message passing easy to understand because
the programs are written in a standard
sequential programming language.

An alternate model of parallel program-
ming is the data-parallel model, in which a
single program specifies the coordinated
activities of all the processors. This single
program consists of a sequence of inherently
parallel operations. The data-parallel model
is intuitive to manv scientists and mathe-
maticians because it corresponds very close-
lv to standard mathematical arrav notation.
For example, in array notation, we may
write the equation A + B = C, indicating
the addition of two arrays. If the arrays are
say, 1000 x 1000 elements, then the
single addition operator corresponds to the
addition of 1,000,000 numbers. The par-
allelism is implicit in the operator. This
article will describe algorithms that use
the data-parallel model, although equiva-
lent algorithms could also be expressed by
message passing.

The data-parallel model is a shared-
memory model; that is, all data is accessible
to all processors. This is in contrast to the
local memory model of message passing, in
which each processor can directly access
only its own subset of the data. In the
data-parallel model, it is the responsibility
of the compiler and the operating system to
assign the operation to specific processors
and to make sure that the data necessary to
oerform those ooerations is available at the
processor. For example, in a machine with
a million processors the compiler could
perform the 1000 x 1000 array addition
mentioned above by assigning to each pro-
cessor the task of adding one pair of array
elements. If this operation were running on
a machine with onlv 500 orocessors. then
the compiler would need to assign the job of
adding 2000 array elements to each of the

processors. This assignment may be done
automatically or, as will be discussed below,
with hints from the programmer. Normally
a data-parallel program is written without
explicit reference to the number of proces-
sors in the machine, so the same program
can run on machines with different num-
bers of processors.

Because the primitives of data-parallel
programming are operations on entire ar-
rays, data-parallel programs are often sim-
pler than sequential counterparts. The ar-
ray addition mentioned above can be writ-
ten in a data-parallel language [High-Per-
formance Fortran (2)] as follows

In parallel Fortran, as in mathematical ar-
ray notation, the iteration over the ele-
ments of the array is implicit. In a sequen-
tial language like Fortran 77, this would
need to be expressed as a sequence of scalar
additions

C (1 , J) = A (1 , J) + B (1 , J)
(2)

ENDDO

ENDDO

Data Parallelism and
Computational Science

Just as Wigner spoke about "the unreason-
able effectiveness of mathematics in the
~ h ~ s i c a l sciences" (3), there seems to be a
certain natural elegance and effectiveness
in the application of data parallelism to
science and engineering problems. One rea-
son is that the laws of physics themselves,
by their very nature, are parallel. Indeed,
they are usually expressed mathematically
in data-parallel form. For example, Fara-
day's law

has a dummy variable, x, indicating that
the equation holds at every point of space
simultaneously. When the field changes, it
does so concurrently, at each point in
space.

In the simplest applications of data
parallelism, this spatial parallelism is im-
plemented by manipulating a data struc-
ture which is analogous in structure to

856 SCIENCE VOL. 261 13 AUGUST 1993

physical space. For example, in grid-based
codes (such as, finite difference, finite ele-
ment, and so on) arrays represent grid
points of a discrete spatial lattice. When
these arrays are distributed over a parallel
computer, each processor is responsible for
computing the physics at one or more
points in space.

In other situations, the parallel index need
not be over physical space. For example, the
equations of motion integrated by a molecular
dynamics code might have the form

where the index i runs over all the molecules
in the system. Once again, the fact that i is a
dummy index indicates that the form of these
equations is the same for every molecule in
the system. Thus, the arrays in such molecular
dynamics codes that are dimensioned over the
number of molecules present might be distrib-
uted so that each processor is assigned to one
or more molecules.

In these simple examples, the fact that
the same physical law applies to each point
of a space implies that a similar computa-
tion is being applied to every element of an
array. This sort of operation is particularly
easy to express using data-parallel notation,
and is representative of the simplest sort of
data-parallel algorithm. In real problems
there are often singularities and boundary
conditions. These are generally expressed as
parallel conditionals. For example, the pro-
gram fragment

WHERE(R.GT.O.0)
PHI = 1/R

ELSEWHERE
PHI = 0.0

ENDWHERE (6)
fills array PHI with the inverses of the
corresponding elements of array R where
those elements are positive, and with zeros
elsewhere.

The simple examples mentioned above
all involve spatially local interactions, but
locality is not required for efficient parallel
implementation. A fundamentally nonlocal
equation, such as

is also inherently parallel since it holds for
all x. Indeed, local problems are often
transformed to nonlocal representations for
solution. For example, spectral methods use
representations based on the spatial or tem-
poral frequency components of the phe-
nomenon being modeled. These methods
are nonlocal, but also have a natural paral-
lel implementation.

Nonlocal Data Communication-
The Fast Fourier Transform

A simple example of a parallel algorithm
with nonlocal interactions is the Fast Fou-
rier Transform (FFT) algorithm (4), often
visualized on a "butterfly network" (Fig. 1).
In the illustration, the data to be trans-
formed starts at the left-hand side, and
flows to the right. When the path splits, the
data is copied onto each branch. Along
some of the ~ a t h s (not indicated) the data
must be muitiplied by constants' (roots of
unity). Where paths coalesce, the incom-
ing data is added. The result of the trans-
form appears on the right.

In the illustration, the algorithm has
eight inputs, and takes place in three
"stages." In the first stage, each datum is
moved to the pathway a distance one away
on the diagram; in the second stage, each is
moved a distance two away; in the final
stage, each is moved a distance four away.
More generally, if the FFT of N data is
desired, there must be log, N stages of data
movement, each involving the movement
of N data. Thus, the algorithm has com-
plexity 0 (N log N) .

Consider the implementation of this
transform on a ~arallel comDuter of M
processors (For simplicity, let us assume
here that M and N are powers of two, and
that N r M.) As mentioned earlier. the
compiler can distribute the data among the
Drocessors in several different wavs. Let us
suppose that the eight data elements (N =
8) on the right side of the illustration are
distributed among four processors (M = 4),
with two data elements per processor. Then

Stage 1 Stage 2 Stage 3

Fig. 1. The Fast Fourier Transform is an exam-
ple of a parallel algorithm that requires nonlocal
communication. Here xdenotes the initial data,
and Xdenotes its Fourier transform. Each stage
of the algorithm consists of a parallel operation
that corresponds to a single statement in a
data-parallel program. Computing the trans-
form of N data points requires O(log N) time on
a parallel machine with O(N) processors.

it is clear that the last two stages involve
interprocessor communication, while the
first stage involves only local computation
(that is, the shaded boxes in the figure
represent processors). Moreover, the com-
munications patterns involved are very reg-
ular, and can be implemented easily on a
variety of parallel computers (5).

More generally, there are log, M stages
that involve interprocessor communica-
tion, and log, (N/M) stages that involve
O(N/M) local computations. The total
time required thus scales as

where k , is the time required for the steps
which involve communication, and k2 is
the time required for those which do not.
Note that when M = 1 (a serial computer),
this reduces to k2N log N; whereas when M
= N (a data-parallel implementation), this
becomes kl log, N.

This algorithm can be further improved
by consolidating the communications steps:
One can begin by performing the stages
that are local, and then perform a permu-
tation of the array so that the stages that
used to involve interprocessor communica-
tion are now local. and vice versa. This has
the effect of isolating the interprocessor
communication required to one single
step-the data permutation.

Data-parallel software libraries auto-
mate this entire process so that the details
are invisible to the user (6). In a high-
level data-parallel language, an FFT is
invoked by a single call, with the array
passed as an input. The compiler and
library routines then implement the algo-
rithm described above. This makes it
straightforward to implement spectral and
spectral-element codes that will run effi-
ciently in parallel.

Data-Parallel Algorithms

Be it local or nonlocal, the simple type of
spatial parallelism mentioned above is rela-
tively easy to understand. Nevertheless, it
is often preferable to use a representation of
a problem that is yet more abstract. For
example, it is common practice to solve
partial differential equations with so-called
implicit methods, in which the calculation
cannot be time advanced independently at
each gridpoint, but rather only together in
a self-consistent fashion that requires the
solution to a set of coupled linear equations
at each time step. Such solution may then
be carried out by iterative methods, such as
the conjugate gradient algorithm (7), or by
direct methods.

Because these types of methods are nor-
mally implemented on serial machines,
many researchers have assumed that there is

SCIENCE . VOL. 261 . 13 AUGUST 1993

something about them that is fundamental-
ly sequential. In fact, implicit methods and
direct solvers have natural representations
in parallel machines (8).

In practice there are surprisingly few
problems that are fundamentally sequential
in nature. Many problems that appear to be
sequential can be parallelized by the use of
a different algorithm. We will explain in
detail a simple example of an apparently
sequential problem, called the pointer-fol-
lowing problem (9), that can be solved in
parallel. The method used to solve this
problem can be applied to many other
situations that seem to require sequential
processing.

The pointer-following problem begins

with a chain of memory locations set up in
memory as follows: An identified location,
say location 0, is the first link in the chain.
This memory location contains the address
of the second link in the chain, or in
computer science terms, a pointer to the
location of the second link. The second
link, in turn, contains a pointer to the third
link, and so on. The last link in the chain
contains the special value NULL. The
problem is to find the address of the last
link. Naively, it would seem that this prob-
lem requires sequential access of each link
to reach the end. This would require a
million steps to reach the end of a chain
with a million links, and since each opera-
tion depends on the one before it, it is

Fig. 2. Finding the end of
a serially linked list is an
example of an apparently
sequential problem that
can be computed in par-
allel. Each link in the chain
contains a pointer to the
next element. The prob-
lem is to find the end. In
the parallel algorithm,
each step halves the
length of the list by skip-
ping every other link.

Fig. 3. The average per- 50.00
formance of various size 45,00
Connection Machines on
a molecular dynamics 40.00
calculation for various 35,00
problems shows scaling
properties characteristic .$ 30.00
of massively parallel g25,00
machines. The near-lin- g
ear performance curves 20.00
show that larger ma- 15,00
chines solve proportion-
ately larger problems in 10.00
essentially the same 5,00
time. The top curve
shows the typical "roll 0.00
off" in performance for o 20 40 60 80 100 120 140
smaller problem sizes. Molecules (thousands)
For sufficiently small problems (much smaller than those shown in the figure), a parallel machine
may actually be slower than a conventional vector computer. [Data are from (12)]

858 SCIENCE VOL. 261 13 AUGUST 1993

difficult to see how parallel processing could
be used to advantage.

In fact, there is a parallel algorithm. On
a parallel processor with a million proces-
sors, the millionth link can be found in 20
steps (since 20 is the ceiling of the base 2
logarithm of 1,000,000). Here is the pro-
gram

for all k in parallel do

while A[k] = I null and
A[A[k] I =I null do

end while

end for

In the above program, P is the array of
linked pointers. The program uses an algo-
rithm called pointer-doubling (Fig. 2). The
idea behind Dointer doubline is to reduce
the length ofthe list by halfuon each step.
Each link in the chain finds the address of
the link two steps down the chain. This can
be accomplished for all links in the chain
simultaneously. When the program termi-
nates, a pointer to the last link is stored in
each element of arrav A.

The pointer-doubling algorithm is an
example of a log-time algorithm; an algo-
rithm whose time for execution is propor-
tional to the logarithm of the size of the
problem-in this case, the number of links
in the chain. Using algorithms similar to
the pointer-doubling algorithm, one can
compute any sequential chain of N associa-
tive operations in order O(1og N) time.
This is the basis of many fast parallel algo- ,
rithms. Similar algorithms can be used, for
example, to compute the subtotals of a long
list of numbers or the product of a long
chain of matrices.

The reason that parallel computers work
well on these ~roblems is because in each
example there is a large amount of data on
which it can operate simultaneously. The
number of operations that can be performed
simultaneously is proportional to the
amount of data, hence the name data par-
allel. The larger the problem, the greater
the amount of data, and the greater the
opportunity for parallel processing. This
leads to the most general signature of the
type of problems that are suitable for paral-
lel processing: Problems that have large
amounts of data tend to work well in
parallel. Because the opportunity for paral-
lelism increases with the data size, larger
version problems can often be run on ma-
chines with more processors in the same
amount of time. Often the throughput, in
terms of number of arithmetic operations
per second, increases linearly with problem
size and the number of processors (Fig. 3).

The simple rule of thumb, that the
opportunity for parallelism grows with the
amount of data, also suggests the types of
problems that may not be well suited for
parallel computers: those in which the
amount of data being operated on is very
small. For example, solving an ordinary
differential equation with only a few vari-
ables mav be much less efficient on a oaral-
lel machine than solving a partial differen-
tial eauation with 100.000 variables. Con-
sider the classical physics problem of pre-
dicting the motion of the nine ulanets -
around the sun. It is not currently under-
stood how to use more than about 100
processors concurrently on this problem,
one for each pair-wise gravitational interac-
tion between bodies (10). Does this mean
that this problem is inherently sequential
beyond this point? We speculate that it is
not, but suitable large-scale parallel algo-
rithms have yet to be developed.

Amdahl's Law

There is reason to be cautious in declaring -
any problem to be fundamentally unsuitable
for parallel computers, because such claims
have often been proven wrong. As recently
as a decade ago, it was generally assumed by
manv comouter scientists that massivelv
parallel machines would be inherently inef-
ficient on most oroblems. The argument .,
was generally cast in the form called Am-
dahl's Law (1 1). which stated that the time . ,,

required to do a computation will always be
determined by the slowest part of the com-
putation.

The argument against parallel machines
went as follows: Assume that the time
involved in performing a computation can
be broken into two categories, s and p ,
where s is the time required for the opera-
tions that need to be done seauentiallv, and , ,

p is the time required for those that can be
done in parallel. Then, assuming unlimited
potential parallelism in the parallel portion
of the problem, the running time for the
algorithm on a machine with n processors
will be at best s + pln. As the number of
orocessors increases. the time will be in-
creasingly dominated by s. For example, if
10% of the operations are currently sequen-
tial, then even with an infinite number of
orocessors the time reauired for the overall
operation of the problem cannot be reduced
by more than a factor of 10. By this argu-
ment, the efficiency of a parallel machine
would seem to go down with the number of
processors.

This argument seems compelling, yet
parallel processors with tens of thousands of
processors operate efficiently on a wide
range of problems. Where is the flaw in
reasoning? The difficulty is not with the
equation, but with the assumption about

the type of problem being solved. A faster
computer is typically not used just to solve
the same problem faster. It is more often
used to solve a larger problem in roughly
the same amount of time. Because the
opportunity for parallelism tends to grow
with the size of the problem, p tends to
grow more rapidly than s with the size of the
oroblem.

A typical situation might have p of
order N , and s of order unity or order log
N , where N is the amount of data in the
problem. With this scaling, we see that
the amount of data processed per unit
time, Nl(s + pln), can become arbitrarily
large as n goes to infinity, as long as N
increases with n. That is, as long as one
looks to oroblems with more and more
data, one will always benefit from adding
orocessors.

A rule of thumb when writing parallel
programs is that if any part of the program
has a time scaling that is linear or greater
in N , then there is probably an algorithm
with a better scaling that uses more pro-
cessors. A problem may grow either be-
cause a more complex system is being
analyzed or because the same system is
being analyzed to a higher degree of accu-
racy. Either way, the opportunity for par-
allelism generally increases. In problems of
this sort it generally makes sense to scale
the amount of processors with the data.
The power of this approach is evident
from a few examples:

Adding N pairs of numbers together
takes O (N) time-on a sequential computer,
because each pair must be added together in
sequence. On a parallel computer of N
processors, however, it would take O(1)
time if the pairs were distributed one per
processor.

W~lhelmson
3D Convection

Ceperley Quantum
Monte Carlo

WilhelmsonlLee
Outflow

FouadIShawki
Shear Band

MassoISeidel
General Relat~v~ty

NormanlStone
Fluid Dynamics

HernquistIBryan
N-bodv

Adding N numbers together to get
one total also requires O (N) time on a
sequential computer. On a parallel comput-
er of N processors, however, the total can
be computed in O(log N) time, since the
data can be combined in the fashion of a
binary tree, with the final result appearing
at the root, in a manner similar to that of
the pointer-doubling algorithm mentioned
above. Each layer of the tree can be com-
puted in parallel.

Sometimes the time scaling can be
improved by assigning more processors to
the problem. For example, the multiplica-
tion of two N by N matrices takes O(N3)
time on a sequential computer, O (N) time
on a parallel computer of N Z processors, and
O(1og N) time on a parallel computer of N3
processors.

In all of these cases, as N goes to -
infinity, the importance of the serial part of
the computation goes to zero, so Amdahl's
Law is irrelevant.

As noted earlier, problems with small
amounts of data may not work well on
parallel machines. In the case where the
data size is fixed. the inefficiencies indicat-
ed by Amdahl's Law may turn out to be
significant. For this reason, massively par-
allel machines are most often used to
calculate larger, more detailed versions of
problems than sequential machines, rather
than to speed up the calculation on the
same size problems. For problems that are
small enough to run in a short period of
time on a sequential machine, massively
parallel machines often offer only modest
imorovements.

For problems with large data sets, mas-
sively parallel machines often perform at
significantly greater speeds than those that
are obtainable on sequential machines.

Average Gflopsls

Fig. 4. This chart shows the performance, in billions of floating-point operations per second, of a
variety of large-scale applications running on the 512 processor Connection Machine CM-5 at the
National Science Foundation NCSA Supercomputer Center. [Courtesy NCSA]

SCIENCE VOL. 261 13 AUGUST 1993 859

Figure 4 shows the performance on a
variety of applications that run on the 512
processor Connection Machine at the Na-
tional Science Foundation's National
Center for Supercomputing Applications
in Illinois. On some unusual codes, mas-
sively parallel processors have generated
even higher rates of sustained perfor-
mance. For example, the 1024 processor
Connection Machine at Los Alamos Na-
tional Laboratories has recently achieved
sustained performance rates of 45 Gflopls
(billions of floating point operations per
second) on molecular dynamics calculations
(1 2) , 60 Gflopls on a fluid flow calculation
(13), and 60 Gflopls on a weather calcula-
tion (14). For comparison, the fastest rate
achievable on a single Cray vector processor
is about 1 Gflopls, and the fastest rate
achievable on a shared memory vector pro-
cessor is about 16 Gflopls.

Even these high rates of sustained per-
formance are only about half of the poten-
tial peak performance of the machines. It
is very unusual for any type of computer,
parallel or otherwise, to sustain its peak
arithmetic rate during normal operation.
The average performance of a user's code
run on the University of Illinois' National
Center for Supercomputing Applications'
four-processor Cray Y-MP is about 0.070
Gflopls, or 5% of its peak (15). It is used
almost entirely in single-processor mode.
Because the arithmetic units represent
only a small part of the hardware resource,
a well-balanced machine is not necessarily
optimized to run the arithmetic units at
peak speed, any more than a well-designed
car is designed to run the transmission at
peak torque. A computer's peak perfor-
mance therefore is irrelevant to most us-
ers. What matters to users is the time
required for the computation or the cost of
the computation. In both of these catego-
ries, massively parallel machines routinely
excel over vector machines by consider-
able margins. Figure 4 shows the perfor-

mance of a 512 processor machine on a
variety of scientific applications. Figure 5
shows the ~erformance of various oarallel
machines on a standard performance
benchmark (LINPACK) (1 6).

Data Communication

Another important factor determining the
speed of a computation on a parallel ma-
chine is the pattern of communication. In
most parallel machines each processor has
its own associated memory which holds a
certain subset of the data. Access to anoth-
er processor's memory requires significantly
more time than for accessing the orocessor's

u .

own local memory. This places a perfor-
mance premium on having the right data,
or as much of it as possible, available
locally. For example, when the parallel
processor performs the addition of two ar-
rays, it is advantageous to have the corre-
sponding elements of the two arrays stored
within the same processor, so that the
computation can be performed using entire-
ly local memory reference operations. In
this case, most parallel compilers will do
this automatically.

The situation is more difficult when
more complex operations are being per-
formed. For example, consider the problem
of multiplying two 1000 x 1000 arrays on a
machine with 1000 processors. Is it better
to put a single row of the array into the
local memory of each processor or a single
column? Or would it be better to out a
subarray, say, 25 x 40, in each processor?
For most multiplication algorithms the sub-
array allocation turns out to be preferable
because it minimizes the nonlocal commu-
nication (1 7).

Today's compilers are able to do a good
job of automatically assigning data to pro-
cessors in many cases, but it is still often
necessary for a programmer to explicitly
specify the allocation to achieve good per-
formance. Parallel languages, like High

Performance Fortran, which provide simple
notation for array operations, also allow
optional directives specifying how these
arrays are allocated. With improvements in
compiler technology, the automatic alloca-
tion performed by compilers is likely to
improve, but for now, understanding how

Fig. 5. The measured perfor- 60 -
mance, in floating-point opera- - -
tions per second, of various par- "

8 50 - allel computers solving a large =
system of linear equations (LIN- -
PACK). The performance of differ- 40 -
ent sizes of CM-5 Connection Ma-
chines illustrates a near-linear re-

-
lationship between performance 30 -
and problem/machine size. The -
horizontal axis shows the problem f 20 -
size in terms of the number of
coefficients involved. The num- $ -
bers of processors for each ma- 10 -
chine are shown in parentheses. -

data maps onto processors is an important
part of writing an efficient parallel program.

In some problems there is no efficient
static allocation of data to processors. In
such cases it is possible for parallel proces-
sors to perform the data-to-processor map-
ping dynamically during the course of the

CM-5 (1024)

*CM-5 (512)

ONEC SX-3 (4)

C,,YMP CM-5(256)

CdJO (I6) OEtel Delta (512)

* OCM-200 (2048)

CM-5 (128)
OFujitsu AP1000 (512)

I I I I I
0 014 018 1.2 1.6 2.0 2.4 2.8 X lo9

computation. A good example is an adap-
tive grid used, for example, in fluid flow
calculations based on Lagrangian grid
methods. In this calculation the fluid is

Problem size

represented by a discrete lattice structure
which changes with time. As fine structure
develops in the fluid, a localized whirlpool
for example, new grid elements are allocat-
ed dynamically where they are needed to
model the details of the structure. New data
structures allocated in memory are automat-
ically placed in the processors containing
the lattice elements with which thev will
communicate. If the flow of the fluid is
nonuniform, the grid is likely to grow dis-
proportionately in certain processors. Pro-
cessors handling a difficult portion of the
fluid will have a disproportionate amount of
the data and the computational load. In
order to address this problem, a parallel
program for an adaptive grid algorithm typ-
ically alternates between a phase of compu-
tation and a phase of load balancing. Dur-
ing the load balancing phase the data is
redistributed evenly across the processors.
Although such algorithms are more difficult
to write than a fixed allocation program,
they are often able to achieve significant
performance benefits by exploiting the non-
uniform nature of the problem. In the last
example below, we shall describe the im-
plementation of a load-balancing algorithm
for a quantum chemistry computation.

Because communication from nonlocal
memory is the highest cost operation, it
often makes sense to choose a parallel
algorithm that minimizes communication,
even if that algorithm involves doing slight-
ly more arithmetic. For example, the stan-
dard method for solving dense systems of
linear equations on sequential machines is
Gaussian elimination. or in matrix terms
LU decomposition. To maintain numerical
stability with this method the order of
variable elimination (pivoting) is normally
determined dynamically. It is possible to
use this algorithm on a massively parallel
machine, and in fact it is often used,
especially for extremely large dense matri-
ces. Sometimes, however, it may actually
be faster to use an alternate algorithm -
which requires fewer communication oper-

SCIENCE VOL. 261 13 AUGUST 1993

ations at the expense of twice as many
arithmetic operations. This method, called
QR factorization, is based on isolating vari-
ables by orthogonalizing the matrix. Al-
though it involves twice as many arithmetic
operations as Gaussian elimination, the
communication patterns are very simple, so
it may actually be faster on a parallel ma-
chine. This method also has advantages in
numerical stability (1 8).

Similarly, for sparse systems of equa-
tions, often encountered in finite difference
or finite element calculations, it has been
noted that both direct solvers and iterative
solvers are frequently used on sequential
computers. The choice between these alter-
natives depends on many factors, but par-
allelization tends to favor iterative solvers
since they can be implemented with a
minimum of data communication (7).

Because the ratio of local to nonlocal
references depends on the ratio of the num-
ber of processors to the total data size,
applications involving large amounts of
data are likely to do a larger number of local
references, resulting in higher average com-
putation rate. This effect reinforces the rule
of thumb mentioned earlier that massively
parallel machines are more suitable for
problems with large amounts of data.

Computational Geometry
and the lsing Model

This trade-off between local and nonlocal
approaches is nicely illustrated by the ex-
ample of the Ising model of statistical phys-
ics (1 9). This model is frequently used as a
prototype for understanding the critical be-
havior of systems of spins, for example,
magnetic domains of solids. In its simplest
embodiment, it is a grid-based algorithm
with one bit of data at each site that tells
whether the spin at that site is up or down.
Two neighboring spins on the lattice con-
tribute energy - 1 if their spins have oppo-
site value, and +1 if their spins have the
same value. This energy is summed over the
set of neighbors of a site, and then over the
entire lattice to get the lattice energy.

There are then several strategies for
updating the values of the spins to march
the system toward equilibrium. The sim-
plest is the heat-bath algorithm-based on
the Metropolis Monte Carlo algorithm
(20)-in which the spins flip randomly, the
difference in total lattice energy is comput-
ed, and the changes are accepted with some
probability that depends on this difference.
This algorithm is easily parallelizable. If the
sites are distributed across Drocessors. the
energy of each site could be computed
locally, and the sum of that energy over the
lattice is then obtained by a log-time global
reduction operation. Variants of this algo-
rithm abound. For example, it is much

more efficient to perform this algorithm on
alternate checkerboard-colored sites of the
lattice, and then accept or reject each
change locally. Once again, this is straight-
forward to compute in parallel (2 1).

For large systems, however, these brute-
force algorithms, based entirely on local
interaction, are not the most efficient way
to equilibrate a system of Ising spins. Near
criticality, the spins tend to cluster on
length scales that range up to the size of the
entire lattice. Thus, in a local algorithm,
the number of iterations required must scale
as a power law in the lattice size so that
information has a chance to transit the
lattice many times. For this reason, Swend-
sen and Wang (22) introduced an improved
algorithm that involves identifying con-
nected clusters of like spins and then flip-
ping the entire cluster at once. Thus,
changes made to the system may extend
over a large distance, and the propagation
of information is not restricted to one link
per iteration of the algorithm.

The problem then reduces to the effi-
cient identification of the connected clus-
ters of like spins on a lattice (see Fig. 6).
This problem is not as obviously paralleliz-
able as the original heat-bath algorithm or
its variants. Nevertheless, it has been
shown (23) that it does indeed parallelize.

To understand the data-parallel algo-
rithm used for this problem, consider first
the following simple algorithm for identify-
ing the clusters: Label each site with a
unique integer. Then compare a site's inte-
ger to that of all of its connected neighbors,
and have it overwrite its value with the
minimum of its present value and that of all
of its neighbors. By iterating this last step
until a steady state is reached, it is clear
that we will arrive at a situation in which
everv site of a cluster will have the same

have different integers.
This method of cluster identification is

clearly parallel, but it can be so slow as to
mitigate the effectiveness of the Swendsen-
Wang approach, since it involves only
nearest-neighbor communication on the
Cartesian grid (as did the heat-bath algo-
rithm). Because of this slow propagation of
information, identifying clusters on an N x
N lattice may require O(N2) time for suffi-
ciently serpentine clusters. (We shall pre-
sent this technique for the two-dimensional
case, but it is obviously generalizable to
higher dimension.)

We would like a way to move the cluster
information around faster. To do this. let us
first recast the above simple algorithm in
the language of matrices: Let A(') denote
the connectivity matrix describing the clus-
ters on the two-dimensional Cartesian grid.
Thus, if we again label the sites by integers,
the ith row of A(') contains a 1 in all
columns corresponding to sites to which
site i is connected (including i itself), and 0
elsewhere; Thus, there will be at most five
1's in each row.

The operation of comparing with neigh-
bors in your cluster and iterating can then
be understood as repeated multiplication by
A('). For example, the ith row of (A('))'
will contain a 1 in every column corre-
sponding to a site that is zero, one, or two

integer, and sites in different clusters will + + + + + + + + + + + + + + +

Fig. 6. This algorithm is an important improve-
ment to the standard "heat-bath" Monte Carlo
algorithm for thermalizing the lsing model. It
calls for flipping entire connected blocks of like
spins at each step. One part of the algorithm is
thus the identification of these blocks. This is
accomplished by a multigrid access pattern in
which information is combined on different Flg. 7. Nonzero elements of the cluster connec-
scales. Here, "up" spins are denoted by + tivity matrices correspond to sites in the same
signs, and "down" spins are denoted by - cluster that are a power-of-two distance away.
signs. The outlines of the blocks are shown in The figure shows the first three steps of data
gray. access for a single site.

SCIENCE VOL. 261 13 AUGUST 1993 861

links away, etc. For sufficiently large J, we
will have (A(O))J = (A(0))Jfl = (A(')) ", and
at that point, row i will contain a 1 in all
columns corresponding to sites to which
site i is connected, and 0 elsewhere. Unfor-
tunately, as noted above, J might have to
be O(N2) before convergence is obtained.

To significantly speed up this algorithm,
a multigrid approach can be used. Referring
to Fig. 7, let A(') be the connectivity
matrix for sites at distance 2. More gener-
ally, let A(') be the connectivity matrix for
sites at distance 2' along each axis. These
connectivity matrices can be obtained re-
cursively. For example, if a site is connect-
ed to another site, a distance Z1 to the
north. and that site is in turn connected to
another site, a distance 2' further to the
north, then the first site knows that it is
connected to the site a distance 21f1 further
to the north, etc.

Given these connectivity matrices at
different length scales, we can arrive at
(A('))* much more quickly by successively
multiplying by connectivity matrices for
many length scales right up to the full size
of the lattice

where n is on the order of log N for an N x
N lattice.

On a lattice of 10242 sites. the Swend-
sen-Wang algorithm thermalizes the Ising
model in 667,000 times fewer iterations
than the heat-bath algorithm. Of course,
because of the necessity of finding the
clusters in the above-described fashion,
each iteration of the Swendsen-Wang algo-
rithm takes much longer than those of the
heat-bath algorithm (1 9). Nevertheless,
Brower et al. (23) were able to implement
the above multigrid algorithm so that each
iteration took about 25 times longer than a -
heat-bath iteration, so that the Swendsen-
Wang algorithm yielded a factor of 27,000
improvement over the heat-bath algorithm
on a CM-2 Connection Machine parallel
comuuter with 65.536 urocessors. , .

~ultigrid methods are also often used for
elliutic eauation solvers. Because thev have
favorableAconvergence properties, they are
often faster than local methods on parallel
machines (24).

N-Body Problems

Many algorithms of computational science
call for operations to be performed on each
element of an array that involve all of the
other elements thereof. For example, sim-
ulations of systems of gravitationally inter-
acting masses (25), electrostatically inter-
acting charges (26), or vortices in an in-

compressible fluid (27) involve what is
known as the N-body problem, in which
every particle must interact with every oth-
er one in the system.

Note that this problem generally re-
quires O(N2) time on a sequential computer
[For certain force laws-most, notably the
Coulomb force law-there are O N com- . ,
plexity methods that employ multiple ex-
pansions for the treatment of distant parti-
cles, and these are also parallelizable, but
they are outside the scope of the present
discussion.] Figure 8 illustrates a data-par-
allel algorithm for a computer with O(N)
processors. Each processor is responsible for
treating one or more bodies. The informa-
tion corresponding to the bodies is copied,
and then cyclically rotated through the
array of processors so that each body has a
chance to interact with every other body in
O(N) steps. Thus, scaling the number of
processors with the number of bodies has
served to reduce the time needed from
0(N2) to O(N).

Better time scaling is possible if one
increases the number of urocessors as the
square of the number of bodies. In this case,
one might imagine the processors as repre-
senting the interactions between the bod-

Algorithm a

n

Algorithm b

Fig. 8. Two different parallel algorithms for the
N-body problem have different scaling proper-
ties. Both algorithms compute the forces on
each of N bodies in parallel. The arrowheads in
the figure denote processors. Algorithm a cy-
clically shifts the data through N processors,
calculating each pairwise interaction in se-
quence, requiring N steps. Algorithm b uses
O(N2) processors to compute all N 2 interac-
tions at once, and then it adds all the forces
together in log, N steps using the tree struc-
tures shown in gray.

ies, rather than the bodies themselves.
Once the pairwise interactions have been
computed, the N interactions involving a
given body can be summed in log, N steps.
All these sums can be computed in parallel.
The entire algorithm is thus completed in
O(1og N) time (see Fig. 8).

Thus, note that the asymptotic time
scaling for this problem depends on how
one is willing to scale the number of pro-
cessors with the data. If one has only one
processor (a sequential computer), then it
takes O(N2) time. If one lets the number of
processors scale as the number of bodies,
then it takes O(1og N) time. If one lets the
number of processors scale as the square of
the number of bodies, then it takes O(1og
N) time.

This improvement in time scaling with
processor number scaling is generic to a
wide class of problems in computational
science. It is significant that data-parallel
libraries can automate this entire process by
examining the number of bodies and the
number of processors available at run time
to decide which algorithm is optimal. In-
deed, all-to-all communications routines
for exactly this type of problem are avail-
able in at least one existing data-parallel
software library (6).

Load Balancing Algorithms and
Monte Carlo Methods for

Quantum Chemistry

To understand how load-balancing opera-
tions can be expressed in the data-parallel
style, we consider the example of Monte
Carlo methods for quantum chemistry cal-
culations. The accurate computation of
ground-state properties of atoms, mole-
cules, or systems thereof is a ubiquitous
problem in computational chemistry. The
Schrodinger equation, which governs this,
can be expressed as a diffusion equation in
imaginary time (28) or as an integral equa-
tion involving a Green's function (29). In
either case, it may then be solved iterative-
ly for ground state properties.

Because the configuration space may be
of very high dimension, it is impossible to
use grid-based algorithms. Instead, the
wavefunction is represented as a weighted
average over a set of point particles in the
configuration space. The above-mentioned
diffusive process is then affected by having
the particles undergo a random walk. As
they move about and sample the configura-
tion space, weighted averages over them
converge to ground-state expectation val-
ues, such as the ground-state energy.

In spite of this rather drastic change of
representation, the method is still amena-
ble to data-parallel treatment. Because of
the linearity of the Schrodinger equation,
the random walkers move about indepen-

SCIENCE VOL. 261 13 AUGUST 1993

Fig. 9. To improve the vari-
ance of quantum Monte
Carlo simulations, a load-
balancing algorithm is fre-
quently used that calls for
assigning a weight to all
walkers. As the walkers
move about and sample
confiauration mace. their , .
weight is modified. Occasionally, low-weight walkers are killed and high-weight walkers are split. If
we imagine parallelizing over the walkers present, the problem reduces to that of the dynamic
allocation and deallocation of processors to tasks. The illustration shows that this problem can be
handled simply using data-parallel primitives that involve the cumulative summation of the number
of children of each walker, the sending of walkers to their new positions in the array, and the copying
of walkers across segments of the array as many times as necessary (see text).

dentlv. and so their random walk can be , .
parallelized with no interprocessor commu-
nication. Arrays containing walker at-
tributes are simply spread over the array of
processors, so that each processor represents
one (or a group of) random walkers.

Like the Ising model, this na'ive imple-
mentation can be imoroved in numerous
ways. For example, tracking large numbers
of low-weight random walkers is a burden to
the computation because they contribute
little to anv ex~ectation value. In order to , .
reduce the statistical variance, it is prefer-
able to load balance the computation by
selectively eliminating low-weight walkers,
and cloning high-weight walkers. Because
we are associating processors with walkers,
this killing-and-splitting process requires
the dynamic allocation and deallocation of
processor resources.

In the data-parallel paradigm, this kill-
ing-and-splitting algorithm for load bal-
ancing can be implemented as follows:
Based on walker weight, each processor
can decide how many children will be
spawned by its walker(s). This number of
children walkers may be zero (for walkers
that will be killed), one (for walkers that
will just survive), or greater than one (for
walkers that will be cloned). Call this
array of nonnegative integers M. By taking
the cumulative sum of M, one can deter-
mine the leading array position of the
walker in the desired load-balanced state.
By sending walkers with nonzero M to
these positions, and then copying them as
necessary, the desired killing and splitting
is accomplished.

To illustrate this, Fig. 9 depicts six
walkers with attributes (position, weight,
and so on) stored in the array X. Walker
one will give rise to two children, walker
three to one child, and walker five to three
children. The other walkers will give rise to
zero children; that is, they will be killed.
The array M is shown. The cumulative sum
of M, denoted by S, is then taken by the

sum-scan operation-a log-time data-paral-
lel primitive. Processors with nonzero M
then send their walker's attributes to the
array element given by S. Another log-time
data-parallel primitive, known as the (seg-
mented) copy-scan, then fills in the new
array X by copying entries as necessary.

With this method, highly accurate
quantum Monte Carlo computations have
been carried out on numerous atomic and
molecular systems. For example, the most
accurate computation to date of the
ground-state energy of the hydrogen mole-
cule was carried out in this fashion (30).

Further refinements to the algorithm
make it possible to treat larger systems of
electrons, but the constraints imposed by
the Pauli principle-the requirement that
the electronic wavefunction be antisym-
metric-turn out to necessitate further in-
terprocessor communication. Recently, it
has been shown (3 1) that these constraints
can be satisfied by performing an N-body
computation-one in which every proces-
sor exchanges information with every oth-
er. In this way, recent quantum Monte
Carlo studies of the helium dimer have
been accurate enough to resolve its very
weakly bound ground state (32), which was
detected experimentally in March of this
year (33).

Conclusions

The examples above are only a sample of
the types of engineering and scientific ap-
plications for which parallel computers are
well suited. They range in character from
simple analogs of physical processes with
spatial parallelism to sophisticated mathe-
matical models that bear only an abstract
relation to physics. Methods of program-
ming parallel computers continue to
evolve, and as yet the limitations of this
technology are not well understood-but it
is already clear that massively parallel com-
puters are and will continue to be an im-

portant tool for the largest and most com-
plex scientific computations.

REFERENCES

1. G. C. Fox, What Have We Learnt From Using Real
Parallel Machines To Solve Real Problems? (Cal-
tech Rep. C3P-506, California Institute of Technol-
ogy, Pasadena, CA, 1988).

2. High Performance Fortran Language Specifica-
tion (Tech. Rep. CRPC-TR 92225, Center for Re-
search on Parallel computation, Rice University,
Houston, TX, 1993).

3. E. P. Wigner, Commun. Pure Appl. Math. 13, 222
(1 960).

4. J. W. Cooley and J. W. Tukey, Math. Comput. 19,
297 (1 965)

5. S. L. Johnsson, R. L. Krawitz, R. Frye, D. MacDon-
aid, Cooley-Tukey FFT on the Connection Ma-
chine (Tech. Rep. ser. NA89-4, Thinking Ma-
chines Corporation, Cambridge, MA, 1989).

6. CMSSL for CM Fortran, CM-5 Edition (Thinking
Machines Corp., Cambridge, MA, 1993), vols. I
and 11, version 3.1.

7. G. Golub and C, van Loan, Matrix Computations
(The Johns Hopkins Univ. Press, Baltimore, MD,
1990).

8. Z. Johan, T. Hughes, K. Mathur, S. Johnsson,
Comput. Meth. Appl. Mech. Eng. 99, 113 (1992).

9. D. Hillis and G. Steele, Commun. ACM29 (1986).
10. J. H. Applegate, IEEE Trans. Comput. C-34, 9 882

(1 985)
11. J. L. Gustafson, Commun. ACM 31, 5 (1988).
12. D. M. Beazley and P. S. Lomdahl, Paral. Cornput.,

in press.
13. L. Long, M. Kamon, T. Chyczewski, J. Mycz-

kowski, Comput. Syst. Eng. 3, 337 (1992).
14. G. Sabot, S. Wholev, J. Berlin. P. O~oenheimer.

Supercomputing '93 Proceedings (in bress).
15. L. Smarr, private communication.
16. J. Dongarra, Performance of Various Computers

Using Standard Linear Equations Software (Com-
puter Science Department, University of Tennes-
see, Knoxville, TN, 1993).

17. L. E. Cannon, thesis, Montana State University
(1 969).

18. H. Simon, Ed., Proceedings of the Conference on
Scientific Applications of the Connection Machine
(World Scientific, Singapore, 1989)

19. See, for example, L. E. Reichl, A Modern Course
in Statistical Physics (Univ. of Texas Press, Austin,
TX, 1980).

20. See, for example, M. H. Kalos and P. A. Whitlock,
Monte Carlo Methods, vol. 1, Basics (Wiley, New
York, 1986).

21. See, for example, T. Toffoli and N. Margolus,
Cellular Automata Machines (MIT Press, Cam-
bridge, MA, 1987), section 17.2.

22. R. Swendsen and J. S. Wang, Phys. Rev. Lett. 58,
2 (1987).

23. R.'c. Biower, P. Tamayo, B. York, J. Stat. Phys.
63, 73 (1991).

24. 0 . McBryan and P. Frederickson, Parallel Super-
convergent Multiqrid (Theory Center Technical
~eport;~ornell university, lthaca. NY. 1987)

25. J, Barnes and P. Hut, ~ a t u r e 324, 446 (1986).
26. C. K. Birdsall and A. B. Langdon, Plasma Physics

Via Computer Simulation (McGraw-Hill, New York,
1985).

27. A. J. Chorin, J. Comput. Phys. 27, 428 (1978).
28. N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44,

335 (1 949)
29. M. H. Kalos, Phys. Rev. 128, 4, 1791 (1962).
30. C. A. Traynor, J. B. Anderson, B. M. Boghosian, J.

Chem. Phys. 94 (no. 5) (1991).
31. J. B. Anderson, C. A. Traynor, B. M. Boghosian,

ibid. 95, 7418 (1991).
32. , ibid. 99, 345 (1993).
33. F. Luo, G. C. McBane, G. Kim, C. F. Giese, W. R.

Gentry, ibid. 98, 3564 (1993).

SCIENCE VOL. 261 13 AUGUST 1993

