
Frustrated With Fortran?
Bored by Basic? Try OOP!
I t ' s one of the most heavily hyped buzz words
in computerdom these days. And it's one of
the goofiest-sounding acronyms around. But
OOP-object-oriented programming-has
made Peter Lepage a believer anyway.

A longtime veteran of computer simula-
tions, the Cornell University physicist has
abandoned the lingua franca of scientific
computing, Fortran, in favor of using OOP
techniques for every program he writes-the
most recent being a large-scale simulation of
quarks bound together by the forces of quan-
tum chromodynamics. Now, he says, he and
his colleagues are finding that the grungy,
tedious process of writing their simulation
code has turned into something that's al-
most-fun. "It's a hard thing to quantify," he
says, but OOP "allows me to write programs
that are much more sophisticated than be-
fore, that are easier to debug, and that are
infinitely more adaptable."

Lepage is part of a vanguard of researchers
who are beginning to explore a different and
-they think-better way of instructing
their computers how to compute. Conven-
tional languages such as Fortran or C may be
fine for short programs, they say. But the
rapidly increasing power and sophistication
of today's scientific programs is beginning to
make those languages look like vacuum tubes
in the age of silicon: They can do the job in
principle, but they can't really cope with the
comvlexitv. "We still have this mental
model of an individual scientist or
graduate student writing a few hun-
dred lines of code," says astronomer
William Press of the Harvard-
Smithsonian Observatory, co-au-
thor of a vovular handbook of nu-

L L

merical algorithms for scientific
computing. "Yet a big simulation in
hydrodynamics or quantum chro-
modynamics can easily run to tens
of thousands of lines. The sheer ef-
fort of programming is becoming
insurmountable."

OOP seems to offer a wav out. It
isn't just a language for program-
ming, notes Press. It's a philosophy
of programming that's been incor-
porated into many different lan-
guages, including such current fa-
vorites as Smalltalk and C++ . It
starts from the notion that com-
puter code ought to be carved up
into "obiects" that behave like the
real-world objects they represent.
And from there it goes on to prom-

ise big benefits in the form of computer code
that's far easier to understand, far easier to
write, far easier to debug, and far easier to
reuse for new programs.

Those promises have been persuasive for
software industry giants such as Borland In-
ternational and Microsoft, both of whom
have whole-heartedlv embraced OOP for the
development of thei; own products. "We've
been through the pain and joy [of OOP] our-
selves," says senior product manager Michael
Hyman of Borland, which is also a major
vendor of the object-oriented languages
C + + and Object Pascal. "The benefits are
real." And the promises have been equally
persuasive at scientific institutions such as
the National Radio Astronomy Observatory
in Charlottesville, Virginia, where astrono-
mers are using C + + to do a total rewrite of
their 15-year-old, Fortran-based Astronomi-
cal Information Processing System (AIPS).
The new object-oriented version will be
called AIPS+ +.

That said, however, the migration of sci-
entist-programmers toward OOP could
hardly be called a stampede, in large part be-
cause OOP forces users to learn a whole new
way of thinking about programs. And that, to
put it mildly, is hard. "There are decades of
infrastructure built up around procedural
programming," notes computer scientist
John Barton of IBM's Thomas J . Watson
Research Center, referring to the conven-

tional style of programming embodied in
such popular computer languages as Fortran,
Basic, Pascal, and C. In procedural program-
ming, computer code is like a recipe: You
give the machine a list of instructions telling
it how to read the input data (gather the
ingredients), how to apply a sequence of sub-
routines to the data (sift, mix. knead. bake). , ,

and how to display the final output (set the
table with a finished meal). "Programming is
taught that way," says Barton, "people learn
it that way, and they've gotten comfortable
with it that way."

Nonetheless, ex~erience has shown that .
this approach has its limits, says Lee
Nackman. Barton's colleague at IBM and his "

co-author on a forthcoming book about
OOP for scientists and engineers. O n shorter "

programs of a few hundred or even a few
thousand lines, he says, the procedural ap-
proach is relatively straightforward. But as
the programs get longer, and as lots of differ-
ent subroutines have to work at various times
on the same set of data, the programmer be-
gins to run into a too-many-cooks effect.
One subroutine may add the salt, so to speak,
then another subroutine will come along
later and in all innocence add more salt. "It
becomes more and more difficult to keep
track of the interactions," says Nackman-
es~eciallv when the various subroutines are
being written by different people.

Worse, he says, if and when the program-
mers do get everything working right, the
svstem becomes difficult or im~ossible to
change. To take a very simple example, sup-
pose a program processes information labeled
by date, and suppose that for some reason the
programmer wants to change those dates
from a six-digit encoding, such as 08-13-93,
to a 9-vlace al~hanumeric encoding: AUG-

Piecemeal programming. Four objects-an equation editor, a bound-
ary condition editor, a solver, and a graphics module-make up a
simple equation-solving program in SCENE, a computing environment
at Rutgers. Each object's content appears in a window.

13-1993. The assumptionvthat the
date is encoded by six digits may
have been built into dozens of sub-
routines scattered throughout the
program. So now the programmer
must track down every one of those
subroutines and correct it-assum-
ing, of course, that he can figure out
how all those various subroutines
work when they were written by
somebody else (or even by the pro-
grammer himself, but 6 months
earlier).

In fairness, say Barton and
Nackman, these problems were
recognized more than 20 years ago
and have been at the forefront of
concern among language designers
and software engineers ever since.
The OOP solution, in fact, was ini-
tially just a rather obscure offshoot
of those efforts. Hints of it first ap-
peared in the 1960s in a language
called Simula, developed by the
Norwegian programmers Kristen

SCIENCE VOL. 261 13 AUGUST 1993 849

Nygaard and 0. J. Dahl. Then in the 1970s it
was given its first full-blown implementation
in the language Smalltalk, created by Alan
Kay, Adele Goldberg, and Daniel Ingalls at
the Xerox Palo Alto Research Center. And
in the 1980s it got its biggest boost with the
appearance of hybrid languages, of which by
far the most popular is C++, created by
Bjarne Stroustrup of AT&T Bell Laborato-
ries. As the plus signs suggest, C++ added
object-oriented capabilities to the popular
procedural language C, and thereby offered
programmers a way to explore the possibili-
ties of OOP starting from a safe and familiar
environment. In 1990, some 00P-like fea-
tures were even added to the latest version of
Fortran.

Object lessons. In every case, the basic
idea was to quit treating the data as a global
collection of information that any part of the
program can manipulate. Instead, the data
should be broken into functional pieces,
with each piece attached to a particular com-
ponent of the program. In biological terms,
you could think of a conventional program as
being like a nutrient broth, with the data
floating around freely where any passing sub-
routine can get at them. Then an object-
oriented program is more like a colony of
cells, with each fragment of data safely
tucked away inside the software equivalent
of a cell membrane. The "cells" in this pic-

other objects don't need to know or care
what's going on in there. Meanwhile the
Date programmer can make all the internal
changes he wants as long as they don't do
anything to alter the object's response to ex-
ternal messages. The upshot, says Nackman,
is that it's much easier for programmers to
keep track of how the various parts of their
programs affect each other. And that, in
turn, means that they can do a much better
job of coping with complexity.

At Rutgers University, for instance, Ri-
chard Peskin and his colleagues have re-
cently used the object-oriented language
Smalltalk as the foundation for a large-scale
simulation and data management system
known as the Scientific Comvutational En-
vironment for Numerical Experimentation
(SCENE). SCENE basically consists of a
number of personal computers and worksta-
tions linked via a network to a cluster of
high-speed parallel-processing computers,
which are capable of blasting through com-
plex numerical calculations very quickly. To
build a new simulation with SCENE, users sit
at a workstation or ~ersonal comDuter and
work interactively with Smalltalk, which
gives them a rich set of programming tools
for rapidly creating various objects on screen
and then testing them individually.

This kind of immediate feedback is al-
most impossible with conventional prog-

ture are software ob- ramming, notes Pes-
jects representing im- kin. And yet it's a
portant entities in the crucial part of the
program, such as Date, "The objects in the intellectual process,
br ~ a n k ~ c c o u n t , or

-
because nobody can

BreadDough. Each of Pmgram model objecto in get a complicated
these software objects the physical world in a ulation right the first
contains all the data much dearer and more time without a lot of
referrine to that ~ a r - fiddline. Smalltalk. - "
ticular entity, much as dire& way." he says, "allows you
a real cell contains all to use the computer
the lipids, enzymes, --Richard Peskin as an experimental
and other biohole- medium-without
cules that it needs. Moreover, each software
object contains a set of internal subroutines
that tell it how to respond to messages arriv-
ing from the outside, much as a real cell
knows how to respond to hormones and
other chemical messengers arriving at the
cell membrane.

So if any object in the program needs to
know, say, the current month in two-digit
format, it doesn't try to access the digits di-
rectly. It sends the Date object a message
something like "Get-Month-With-Two-
Digits," to which the Date object replies,
"08." And if another object later on needs to
know the month in the three-letter format, it
sends that same Date object a message, " ~ k t -
Month-with-Three-Letters," to which the
date object replies, "AUG."

The point of all this, says Nackman, is
that everything is handled in the interior of
the Date object. Programmers working on

getting mired in the complexities of every-
thing from data structures to memory man-
agement."

Better still, says Peskin, Smalltalk's OOP
orientation helps a programmer structure his
computer code in the same way as he thinks
about the problem. "The objects in the pro-
gram model objects in the physical world in a
much clearer and more direct wav." he savs. , ,
For example, instead of representing the flow
of air around an airfoil bv some comvlicated.
arbitrary-looking array of numbers, as in For-
tran. one s im~lv defines an obiect called Air- . ,
foil and endows it with internal computer
code telline it how to behave in resDonse to
physical foFces. The computer still i a s to do
the hard work of calculating those forces, he
says. But for the scientist or engineer doing
the simulation, the gain in conceptual clarity
is tremendous: "I just have to send the Airfoil
object a message asking 'What is your lift!"'

Labor saver. At Cornell, Lepage points
to an additional advantage of OOP: easy re-
usability of program components. In his
work, for example, he might define an object
that represents the spatial grid for numeri-
cally integrating a certain set of differential
eauations. Once he's imvlemented the Grid
object and gotten it thoroughly debugged, he
can then use it for a totallv different set of
differential equations with little or no change.
With Fortran, he would have to start practi-
cally from scratch.

A related property called "inheritance"
also cuts down on the work of programming.
Inheritance is a feature that has no counter-
part in conventional languages. Object-ori-
ented languages allow a programmer to de-
fine classes of objects that share generic
properties and behaviors, much as biologists
group similar organisms into classes such as
"bird" or "mammal." Say a programmer has
defined as a class the on-screen windows that
are part of many programs' user interfaces.
When a new window is needed. he or she can
simply invoke the Windows class-without
having to duplicate the computer code that
tells the window object how to open, close,
or do anvthine else that all other windows , -
know how to do. The code for such opera-
tions simvlv stavs there in the Windows - , ,
class, where the OOP system automatically
calls it whenever any window object needs it.

Of course, says Borland's Michael Hy-
man, potential OOP users should be fore-
warned: Before thev can reav the benefits of
clarity and reusability, they're going to have
to vut in a lot more work UD front than
they're used to. "If you architect for reuse,
you'll get reuse," he says. "If you just hack
away, you won't. We find that you're going to
do at least three redesigns before you get a set
of object classes that are solid and stable."

"With OOP, we're not just asking the
programmers to come up with a concrete
representation of their objects," agrees IBM's
Nackman. "We're asking them to do abstrac-
tion, too-to come up with reusable classes
of objects. And that's hard. It's like going
from arithmetic, which is very concrete, to
abstract algebra."

O n the other hand, he says, OOPS reus-
ability advantage may well come to the res-
cue. At least one startup company, Rogue
Wave Software of Corvallis, Oregon, is al-
ready offering a "class library" of C++ code
designed for numerical work and data vro- -
cessing. And IBM's Barton, for one, expects
there to be many other such libraries.
"Things are changing fast," he says.

Indeed they are, says Harvard's Press. Even
if scientists' migration to OOP isn't a stampede
yet, it's likely to grow. For coping with compu-
tational complexity, he says, "object-oriented
programming, or something very much like it,
is the only game in town."

-M. Mitchell Waldrop

SCIENCE VOL. 261 13 AUGUST 1993

