BIOLOGY

Al Helps Researchers Find
Meaning in Molecules

At the Imperial Cancer Research Fund in
London, a group of researchers led by Dom-
inic Clark has puzzled out the rough structure
of a protein that plays a role in the spread of
certain cancers. The structural information,
which the group intends to publish later this
year, should help guide efforts to disarm the
protein and reduce the cancer’s threat. But
just as significant as the clinical promise is
how the discovery was made. Part of the
credit goes to a nonhuman collaborator: a
computer running an artificial intelligence
(AI) program.

Clark and company may be ahead of their
time—but not by much. They are part of a
small but growing group of molecular biolo-
gists who have turned to artificial intelli-
gence for help in making sense of sequence
data on DNA and proteins. Besides zeroing
in on protein structures, Al is helping re-
searchers find genes in large stretches of
DNA and evaluate the effects of mutations
on certain genes. Unlike conventional com-
puter programs, which can only carry out
steps that are specified ahead of time, Al
programs can reason on their own and make
connections between seemingly unre-
lated pieces of information—which
makes Al especially valuable to
anyone looking for patterns in
otherwise overwhelming amounts
of data. “These kinds of tools are
extremely useful,” says Chris
Fields, director of a fully auto-
mated sequencing lab that churns
out 400,000 bases worth of DNA
sequence data each week. “The
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these software assistants comes from the
effort to sequence the entire genomes of hu-
mans and other creatures. With newly de-
coded genetic sequences—the long strings of
nucleic acid base pairs that make up strands
of DNA—rolling out of laboratories at a rate
of millions of base pairs per month, “we’ve
got sequences up the wazoo,” groans Temple
Smith, a Boston University biologist. “We
need a way to keep from being over-
whelmed.”

Enter Grail, one of ADs first triumphs in
molecular biology. First made available to
researchers over the Internet computer net-
work in 1991, Grail employs a “neural net-
work”—a technique modelled after the hu-
man brain’s approach to pattern recognition,
in which an input signal (such as an image on
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the back of the eye) cascades through a forest
of interconnected neurons until an output
pattern (a recognition of the image as, say, a
car) emerges. Grail’s assignment is to pore
over raw sequence data—long, unbroken
strings of G’s, T’s, A’s and C’s, the four nu-
cleic acid bases—and pick out the genes hid-
ing in those random seeming sequences from
the long stretches of DNA regarded as “junk.”

Actually, explains one of Grail’s creators,
computational biologist Ed Uberbacher of
Oak Ridge National Laboratory, the original
goal was simply to identify the protein-cod-
ing segments of genes. These are the parts of
a gene that contain the recipe for stringing
amino acids together to make a protein, and
they may constitute only 2% or so of a gene’s
sequence. The rest of the gene consists of
such things as regulatory regions, which de-
termine when the gene will become active,
and introns, which separate the protein-cod-
ing segments of DNA and tend to be of less
interest to molecular biologists.

Over time, biologists have learned cer-
tain rules for picking out genes and their

Parlez-vous DNA? An Al

parser identifies the “parts
of speech” in a gene.
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protein codmg segments. They know, for in-
stance, that the three-base sequences TAA,
TAG, and TGA are “stop codons” that mark
the end of a protein-specifying section. But
simply building such rules into a computer
program wouldn’t give it sufficiently keen
discrimination, since many of DNA’s impor-
tant codes are still unknown.

Because Grail is a neural network, it could
bypass these limitations by learning to recog-
nize protein-coding segments on its own.
Uberbacher “trained” Grail by showing it
DNA sequences in which the genes were
already known and having it guess where the
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protein-coding sections were, then rewiring
Grail’s software “neurons” so as to strengthen
connections that gave accurate guesses and
weaken those that produced poor results.
Eventually, the program came to recognize
protein-coding sequence segments with
about 80% accuracy.

Not content with that figure, Uberbacher
revised Grail to take non-protein-coding
segments into account. Just as trying to iden-
tify an unlabeled state on a U.S. map is easier
when the neighboring states are identified,
so picking out protein-coding segments be-
comes easier when neighboring segments are
known. Uberbacher says the program’s accu-
racy is now 90%.

The grammar of DNA. At the University
of Pennsylvania, David Searls, a biologist
and—like many in his field—also a com-
puter scientist, is taking a different approach
to Al-based gene mapping: He treats DNA as
a language in which genes are “sentences”
and tries to teach a computer to pick out
which DNA sequences are grammatical sen-
tences (i.e., genes) and which are nongram-
matical nonsense. The roots of this linguistic
approach go back to the pioneering work of
Massachusetts Institute of Technology lin-
guist Noam Chomsky, who in the 1950s de-
fined a language as the set of “strings” that
can be formed by chaining together a group
of symbols—whether the symbols are the
letters of the English alphabet, the Os and 1s
of computer instructions, or the four nu-
cleic acid bases.

Viewed in this light, DNA is a bit like a
series of English sentences whose words are
run together without capital letters or punc-
tuation. Making sense of the sentences re-
quires figuring out where they start and end,
and how they are broken into phrases by
commas. We can do that in English by enlist-
ing our knowledge of grammar—the set of
rules defining how parts of speech can be
related—and Searls hopes to unlock DNA’s
“grammar” in order to recognize the begin-
ning and end of genes and their component
parts. Just as English grammar dictates the
way nouns, verbs, and other parts of speech
can be combined into phrases which in turn
make up sentences, so DNA’s grammar
should explain how “words” (such as codons)
can be arranged to form “phrases” (such as
the parts of the gene that regulate how and
where enzymes bind to the DNA in order to
read the gene sequence), and how such
phrases are structured into a complete ge-
netic sentence (a gene). Searls notes that
genes can even be grouped into “paragraphs”
—strings of genes that address a single
“theme,” such as the group of genes that code
for cell surface receptor proteins.

To discover DNA’s grammar, Searls has
developed a computer program called a “par-
ser,” which attempts to split a genetic se-
quence into increasingly lower-level parts—
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first into genes, then into protein-coding
versus non-protein-coding segments, then
into codons—just as sixth graders break
down English sentences into phrases and
then parts of speech. The hope is that, by
practicing on known sequences, the parser
can learn the genetic grammar. Later, it
could apply the grammar to unknown se-
quences to see whether they can be parsed
into genes and components of genes. Right
now, Searls’ system is able to identify parts of
a gene with about 75% accuracy, and Searls
expects that number to improve.

Puzzling out protein structure. Besides
deciphering DNA sequences, biologists are
faced with the job of making sense of an-
other kind of raw data: the strings of amino
acids that make up proteins. Many of a
protein’s properties, including how it inter-
acts with other molecules in the body, de-
pend on the specific three-dimensional
structure into which the string of amino ac-
ids folds and curls, but the protein’s se-
quence, at least at first glance, reveals little
about this structure. Biologists can some-
times determine a protein’s structure with
x-ray crystallography, but this is a slow, te-
dious process. Researchers would like to be
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Body by Al. A neural network determined the local structures
of this protein by examining the amino acid sequence.

able to predict the structure merely by know-
ing the one-dimensional sequence of amino
acids that constitute the protein.

This has proved an exceptionally difficult
problem. Some conventional computer pro-
grams have had limited success in predicting
“secondary structure”—the handful of more-
or-less generic shapes such as the corkscrew-
shaped alpha-helixes and multi-stranded
beta-sheets that crop up along the protein
and can provide important clues to a pro-
tein’s functions. Essentially, these programs
work by tracking the relative abundance of
various amino acids in sections of those few
proteins whose structures have been deter-
mined through crystallography; given a new,
unknown protein, the programs assume that
similar ratios of amino acids imply similar
secondary structures. Unfortunately, their
predictions are wrong nearly half the time.

.a neural network that learns

Bad influences. In the protein
collagen, Al picked out regions
(magenta) that affect the lethal-
ity of a point mutation (yellow).

Now Al is improving the
odds. The current champ in
secondary structure predic-
tion is a system developed by
Xiru Zhang of Thinking Ma-
chines Corp. in Cambridge,
Massachusetts, and his col-
leagues. Zhang’s system com-
prises three “expert” modules
that follow different predic-
tive strategies and hone their
skills on a database of known
structures. The first expert is

to associate the patterns in
long sequences of amino acids
with particular secondary
structures. The second simply
looks for the known sequence that most
closely resembles the unknown sequence
and offers the known sequence’s structure
as its prediction.

The third expert uses statistical tech-
niques to calculate which
short sequences are most often
associated with which type of
structure. A “combiner” mod-
ule melds the predictions from
these three molcules into a
single prediction. The system
predicts the correct secondary
structure 67% of the time,
Zhang says, which he and
many other researchers sus-
pect may be about as good as it
gets without taking into ac-
count amino acids beyond the
immediate area under consid-
eration. “It may be that inter-
actions between amino acids
far apart on the protein are af-
fecting the way it folds,” Zhang explains.

If predicting secondary structure is tough,
predicting “tertiary structure’—the com-
plete three-dimensional form—is next to
impossible, but Clark at the Imperial Cancer
Research Fund has got a good start on it. His
Al program tackles a protein’s “topological
structure”—the rough spatial relationship
between its helixes, sheets, and plain strands.
Clark’s system is equipped with a handful of
rules about protein folding gleaned from
biochemistry and statistical observation.
One rule, for example, states that when a
helix is connected to a plain strand on either
end, the whole assembly will tend to fold
up like an accordion, with the helix parallel
to and sandwiched between the two strands.
In operation, the system examines secon-
dary structures and tries to apply the rules
wherever possible so it can at least eliminate
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implausible topological struc-
tures. In some cases, that’s
enough to make an experi-
mentally verifiable prediction
of the structure, as was the
case with the sought after can-
cer-related protein. Clark
won't identify the protein
pending further verification,
but he claims that early results
suggest the computer got it
right. “We’re all very excited
about this,” he says.

Some Al work has gone
beyond identifying sequences
and structures to making pre-
dictions about function. Na-
tional Institutes of Health
computer scientist Lawrence
Hunter and University of Cal-
ifornia, San Francisco, chem-
ist Teri Klein are studying os-
teogenesis imperfecta, a bone
disease caused by mutations in the gene that
codes for the protein collagen. Depending on
which part of the protein it affects, the muta-
tion can be fatal to fetuses. As a first step
toward developing tests for carriers of the
mutation and perhaps even treatments, the
two scientists would like to predict which
mutations will be lethal.

Al is aiding the prediction effort by help-
ing them devise rules about mutation leth-
ality. Hunter and Klein’s system begins by
studying a small database of lethal and non-
lethal mutated collagen genes and picking
out features of the gene sequence that ap-
pear to be correlated to lethality; having nar-
rowed the search, it analyzes these features
to produce sets of rules that predict the le-
thality of a mutation. Finally the system per-
forms statistical tests of its hypotheses to
decide if any of them are promising, extract-
ing and combining those rules that best sur-
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" vive the tests.

One discovery so far: It’s not just the site
of the mutation that determines its lethality,
but also which amino acids show up an even
number of positions down the protein from
the site of the mutation—a finding that
promises a clue not only to how the mutation
works its effects, but also to the structure of
the protein. “It was a totally unexpected re-
sult,” says Hunter. There are certain to be
many more unexpected patterns lurking in
the blizzard of genetic code and protein se-
quences facing molecular biologists. And
Hunter, like many of his colleagues, sees no
alternative to unleashing Al’s computer
code on this storm of code from biology. As
he puts it: “If Al can’t do it, I don’t know
what can.”

—-David Freedman

David Freedman is a free-lance science writer in
Brookline, Massachusetts.
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