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Selective and ATP-Dependent Translocation of 
Peptides by the MHC-Encoded Transporter 

Jacques J. Neefjes, Frank Momburg, Giinter J. Hammerling* 
Major histocompatibility complex (MHC) class I molecules present peptides derived from 
nuclear and cytosolic proteins to CD8+ T cells. These peptides are translocated into the 
lumen of the endoplasmic reticulum (ER) to associate with class I molecules. Two MHC- 
encoded putative transporter proteins, TAPl and TAP2, are required for efficient assembly 
of class I molecules and presentation of endogenous peptides. Expression of TAPl and 
TAP2 in a mutant cell line resulted in the delivery of an 11-amino acid oligomer model 
peptide to the ER. Peptide translocation depended on the sequence of the peptide, was 
adenosine triphosphate (ATP)-dependent, required ATP hydrolysis, and was inhibited in 
a concentration-dependent manner. 

Cytotoxic T lymphocytes recognize pep- 
tides presented by MHC class I molecules. 
It is likely that two steps precede the bind- 
ing by class I molecules of peptides originat- 
ing from cytosolic or nuclear antigens. 
First, proteins undergo a limited degrada- 
tion in which the multicatalytic or protea- 
some complex may be involved ( I ) .  Sec- 
ond, the resulting peptides are translocated 
from the cytosol into the lumen of the ER. 
Analvsis of mutant cell lines with defective 
class I assembly and antigen presentation 
led to the identification of two related 
genes, located in the MHC class I1 region of 
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humans and rodents, that encode the trans- 
porters associated with antigen processing, 
TAPl and TAP2. These proteins form 
heterodimers (2, 3) and are expressed in the 
ER membrane (4). By structural homology 
they belong to a family of transporter pro- 
teins that have multiple membrane-span- 
ning sequences and contain an ATP-bind- 
ing consensus sequence (5). Other mem- 
bers are the mammalian P-glycoproteins 
(multidrug resistance pumps), the cystic 
fibrosis transmembrane conductance regula- 
tor (CFTR) , bacterial hemolysin transport- 
ers (HLyB), and the yeast protein Ste6. 

Two lines of evidence suggested that the 
TAP1-TAP2 heterodimer translocates pep- 
tides to the ER: The reconstitution of class 
I assembly (2, 3, 6-9) in mutant cells 

~euenheimer Feld 280, 6900 Heidelberg, Germany. transfected with TAP genes and the 
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rat TAP2 results in a different spectrum of 
peptides associated with the RTIAa MHC 
class I molecule (1 0). However, no direct 
evidence has been provided so far. Indeed, 
the function of TAPl and TAP2 as ATP- 
dependent peptide transporters has been 
questioned. ATP-independent peptide 
translocation was observed in microsomes 
isolated from both the cell line T2, which 
has a deletion encompassing TAPl and 
TAP2, and the parental cell line T1 (1 1). 
ATP-independent peptide translocation 
was also observed in experiments using 
microsomes isolated from dog pancreas 
(12). In both these studies it was assumed 
that microsomes are not leaky for small 
molecules like peptides. 

We assessed peptide translocation in the 
TAP-deficient cell line T2 and in T2 trans- 
fected with rat TAPl and TAP2 
(T2.TAP1+2). We have previously shown 
stable assembly of class I molecules and 
presentation of endogenously derived pep- 
tides in T2.TAP1+2 cells (9). To obtain 
access to the cytosol without penetrating 
the ER membrane, we permeabilized the 
cell surface with the bacterial toxin strep- 
tolysin 0. The cells were then incubated 
with the model peptide GP (sequence, RY- 
WANATRSGG) (13) that was labeled by 
iodination on tyrosine (Y) . This 1 l-amino 
acid-containing oligomer (1 l-mer) peptide 
contains an N-linked glycosylation site 
(NAT). The addition of the N-linked gly- 
can takes place in the ER (14). N-linked 
glycosylation of the GP peptide was there- 
fore used to monitor translocation to the 
ER (1 5). Sepharose beads conjugated with 
the lectin concanavalin A (Con A) were 
used to specifically recover the glycosylated 
peptide. Any difference between T2 and 
TZ.TAPl+ 2 in the extent of glycosylation 
of the model peptide can be attributed only 
to translocation of this peptide to the ER by 
TAPl and TAP2. 

T2 and T2.TAPlf2 were permeabilized 
by streptolysin 0 and incubated with 1251- 
GP for 10 rnin at 37OC in the absence or 
presence of different concentrations of ATP 
or of the nonhydrolyzable ATP analogs 
ATP-y-S, AMP-PCP, and AMP-PNP 
(15). The cells were lysed with NP-40. 
Glycosylated peptides were recovered by 
Con A-Sepharose binding and eluted with 
a-methylmannoside before quantitation in 
a gamma counter (Fig. 1). Glycosylated 
lZ5I-GP could be recovered from 
T2.TAP1+2 cells but not from T2 cells. 
Translocation to the ER followed by glyco- 
sylation of lZ5I-GP used ATP in a concen- 
tration-dependent manner. Nonhydrolyz- 
able ATP analogs did not yield glycosylated 
lZ5I-GP, suggesting that hydrolysis of ATP 
is required for TAP1 +2-dependent peptide 
translocation to the ER. In T2 cells trans- 
fected with either TAPl or TAP2 alone (9) 

Fig. 1. ATP-dependent peptide translocation in 
T2.TAP1+2 transfectants. The plasma mem- 
brane of 3.5 x 10" T2 or T2.TAPl+2 cells was 
permeabilized with streptolysin 0, and cells 
were incubated for 10 min at 37°C with -100 ng 
of lZ51-GP in the absence or presence of differ- 
ent concentrations of ATP or nonhydrolyzable 
ATP analogs, as indicated. Right bar, nonper- 
meabilized cells. The peptides that are translo- 
cated into the ER become glycosylated. These 
were isolated by Con A-Sepharose, eluted 
from Con A-Sepharose by a-methylmannoside, 
and quantitated by gamma counting, as de- 
scribed (15). Translocation of peptides to the 
ER is ATP-dependent and occurs only in cells 
expressing the peptide transporter subunits. 

no peptide translocation was observed (1 6). 
The rate of translocation of 1251-GP in 

permeabilized T2.TAP1+2 was determined 
at 37°C in the presence or absence of 
saturating amounts of ATP (10 mM, Fig. 
1). The cells were lysed and glycosylated 
1251-GP recovered (Fig. 2). Rapid translo- 
cation of lZ5I-GP to the ER was observed 
during the first 10 rnin and then leveled off. 
Addition of ATP after 10 rnin had no 

0 22 0 10 20 30 40 50 60 

Time (min) 

Fig. 2. Kinetics of peptide translocation in 
T2.TAP1+2 transfectants. T2.TAP1+2 cells (5 
x 10" per sample) were permeabilized with 
streptolysin 0. lZ51-GP (-100 ng) was added, 
and the cells were incubated at 37°C in the 
absence or presence of 10 mM ATP for 0, 2, 3, 
4, 6, 11, 21, 30, or 60 min. Cells were lysed, and 
the glycosylated peptides were isolated and 
quantitated (15). Translocation of lZ51-GP is 
rapid during the first 10 rnin and then levels off. 
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Fig. 3. Competition of peptide translocation 
with other peptides. T2.TAP1+2 cells (5 x lo6 
per sample) were permeabilized with strepto- 
lysin 0 .  lZ51-GP (100 ng) was mixed with differ- 
ent amounts of unlabeled peptides GP, 
OVA(258-265), or HEL(46-61) (19). The perme- 
abilized T2.TAP1+2 cells were incubated with 
the respective peptide mixtures at 37°C for 10 
min in the presence of 10 mM ATP. The cells 
were lysed and glycosylated lZ51-GP was re- 
covered (15). Fifty percent inhibition is ob- 
tained with 1 nmol of OVA(258-265) or GP 
peptide and with 2 nmol of HEL(46-61). 

significant effect on the recovery of glyco- 
sylated 1251-GP, whereas a second addition 
of lZ5I-GP after 10 rnin led to an increased 
recovery of glycosylated peptide (1 6). This 
indicates that the observed plateau in Fig. 2 
is not due to lack of ATP or the lipid-linked 
oligosaccharide donor in the ER but prob- 
ably due to degradation of the input peptide 
in the cytosol. 

A peptide supply system for MHC class I 
molecules will have to translocate many 
different peptides. We therefore competed 
for translocation of lZ5I-GP with different 
concentrations of GP (the input ll-mer 

Peptide sequence 

Fig. 4. Selection of peptides by the peptide 
transporter. T2 or T2.TAPl+2 cells (2 x 10" per 
sample) were permeabilized with streptolysin 0 
and incubated for 20 min in the presence of 10 
mM ATP and -300 ng of either iodinated RY- 
WANATRSE (RY . . . SE), RYWANATRSH (RY 
. . . SH), or RYWANATRST (RY . . . ST) (17). 
The glycosylated peptides were recovered as 
described and quantitated (15). Peptides with 
H or E as the COOH-terminal residue are effi- 
ciently translocated; the peptide with T as the 
COOH-terminal residue is not. 
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peptide), the 8-mer peptide ovalbumin the concentrations of input peptide [up to 2 were incubated in the same buffer. GP peptide 
(258-265) [0VA(258-265)], and the 16- pM for maximal translocation (Fig. 3)] (10 yg) was iodinated by chloramine T with 1 mCi 

of Naw51. Free iodine was separated from bound 
mer peptide hen egg lysozyme (46-61) used in our study can be reached in a living iodine bv DOWEX (OH-). The cells in 100 111 of 
[ H E L ( ~ ~ - 6 1 ) ]  in the-presence of 10 mM cell, the calculation indicates that peptide permeadi~ization buffer were incubated for 10 min 

at 37°C with 10 yl (-100 ng = 0.075 nmol) of ATP at 37°C. GP and OVA(258-265) transporters allow translocation of large 1251_Gp in the presence or absence of (freshly 
competed with equal efficiency for translo- amounts of peptides to the ER. MHC class prepared) ATP or 10 mM adenosine 5'-0(3-thio- 
cation of lZ5I-GP (50% inhibition at -1 I molecules bind onlv a selected set of triphosphate) lithium salt (ATP-yS), 5'-aden- 

ylylimidodiphosphate (AMP-PNP), or P,y-methyl- nmol competitor), and HEL(46-61) re- peptides with high affinity, so transport of 
eneadenosine 5,-triphosphate lithium salt (AMP- 

quired slightly higher concentrations (50% large quantities of peptides may be essen- PCP) (all from Sigma). The reaction was terminat- 
inhibition at -2 nmol competitor) (Fig. 3). tial. In addition, efficient and rapid trans- ed by addition of 1 m~ NP-40 lysis mix [I% NP-40, 

150 mM NaCI, 5 mM MgCI,, and 50 mM tris-HCI It is not clear whether these differences are location of peptides to the ER may be 
(pH 7,5)1, nuclei were removed, and the lysate 

due to the length or sequence of the com- required to escape complete breakdown in was incubated with 100 p1 of packed Con 
petine: HEL peptide. the cvtosol. The system described here A-Sepharose for 1 hour. The Con A-Sepharose - 

W; assessed-the specificity of the peptide should allow the elucidation of the length was washed five times with NP-40 lysis mix, and 
the bound peptides were eluted with 100 mM transporter for different peptides using the and sequence constraints for peptide trans- a-methylmannoside. The eluted fractions were 

translocation of the 10-mer peptide RY- port as well as the possible degradation of quantitated by gamma counting. 
WANATRSX, where X is either T, H, or E 
(1 3). Similar amounts of iodinated peptide 
(17) were added to permeabilized T2 or 
T2.TAP1+2 cells, and translocated pep- 
tides were recovered (Fig. 4). The peptides 
with the COOH-terminal residue H or E were 
efficiently translocated by T2.TAPl f 2 ,  but 
the peptide with T as the COOH-terminal 
residue was not. This suggests that the pep- 
tide transporter selects peptides, in agree- 
ment with Powis et al. (1 O ) ,  and indicates 
that the COOH-terminal residue is essential 
for this selection. 

From the competition experiment with 
T2.TAP1+2 cells (Fig. 3), we estimate a 
minimal translocation rate of -2 x lo4 GP 
molecules per minute (18). It is uncertain 
whether the rate of peptide transport is 
exclusively controlled by the peptide trans- 
porters or whether additional cytosolic mol- 
ecules, such as chaperonins, are involved. 
The amount of TAPl and TAP2 expressed 
in transfected T2 cells is similar to that of 
stimulated rat spleen cells ( 9 ) ,  and there- 
fore the calculation can be considered as 
representative of physiological cells. Al- 
though it has not been determined whether 

peptides in the ER. 
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