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A Detailed Genetic Map for the X Chromosome of 
the Malaria Vector, Anopheles gambiae 

Liangbiao Zheng, Frank H. Collins, Vasantha Kumar, 
Fotis C. Kafatos*? 

Anopheles gambiae, the primary vector of human malaria in Africa, is responsible for 
approximately a million deaths per year, mostly of children. Despite its significance in 
disease transmission, this mosquito has not been studied extensively by genetic or mo- 
lecular techniques. To facilitate studies on this vector, a genetic map has been developed 
that covers the X chromosome at an average resolution of 2 centimorgans. This map has 
been integrated with the chromosome banding pattern and used to localize a recessive, 
sex-linked mutation (white eye) to within 1 centimorgan of flanking markers. 

W e  describe the development of a de- 
tailed genetic map of the principal malaria 
vector, Anopheles gambiae, using microsat- 
ellite markers (1 ) . Microsatellites are tan- 
dem arrays of simple sequence repeats and 
have the advantage of being abundant, 
widely dispersed in the genomes of hu- 
mans and other higher organisms, exten- 
sively polymorphic, and easily assayed by 
the polymerase chain reaction (PCR) (1). 
Despite the difficulties in maintaining in- 
bred strains and performing crosses in 
anopheline mosquitoes, the advantages of 
microsatellites greatly facilitated construc- 
tion of a map consisting of 24 sex-linked 

microsatellite markers. This map is an- 
chored to the white eve (w) mutation ( 2 )  . . ,  ~, 

and is usable with any of the An. gambiae 
strains examined to date (3). 

To generate the map, we isolated 
clones containing dinucleotide repeats 
from libraries of total adult mosquito ge- 
nomic DNA (4) or chromosomal division- 
specific DNA pools (5) by screening with 
oligonucleotide probes: (GT) ,,, or more 
rarely (CA) ,, or (GA) ,,. Tandem arrays 
of 5 to 48 repeats were revealed by se- 
quencing in 125 '(GT) ,,-positive clones, 
some of which contained interrupted ar- 
rays. For selected clones, pairs of primers, 

usually 20 nucleotides in length and based 
on unique sequences flanking the repeat 
array, were designed, synthesized, and 
used to amplify by PCR the corresponding 
genomic DNA fragment (6) from individ- 
ual mosquitoes of five An. gambiae strains 
(3). The sizes of the amplified fragments 
were evaluated by electrophoresis in a 
sequencing gel. Markers encompassing as 
few as 6 dinucleotide repeats were found to 
be polymorphic between strains, the size 
difference ranging from 1 to more than 30 
repeats. The inter-strain polymorphism 
between two strains, Suakoko" and WE, 
was on the order of 85%. and within- 
strain polymorphism was also observed for 
many markers. 

We constructed the genetic map and 
simultaneously mapped the w mutation by 
performing crosses involving the WE strain 
(homozygous for w) (3) and the Suakoko 
strain (homozveous for w+. the dominant 
allele for the'vwild-type Ark purple eye 
color). These strains are largely homose- 
quential, that is, they do not seem to differ 
in terms of gross chromosomal inversions 
on the X. F, females were generated by mass 
mating between WE males and Suakoko 
females and were individually backcrossed 
with WE males by forcible pair mating (7). 
From such pairs five families (A to E) 
totaling 248 progeny were obtained; they 
contained 45, 63, 76, 13, and 5 1 progeny, 
respectively. Chromosomal DNA was pre- 
pared from each mosquito ( B ) ,  and small 
portions (typically corresponding to 11200 
of a mosquito) were amplified with a pair of 
primers (6) and scored for the correspond- 
ing marker on a sequencing gel. All alleles 
(electro~horetic bands) behaved as codom- 
inant Mendelian factors. For 24 markers, 
the male progeny received one of the ma- 
ternal (F,) alleles and no paternal (WE) 
allele, indicating linkage to the X chromo- 
some. These markers were designated 
AGXH (An. gambiae X chromosome, Har- 
vard) followed by a clone number; they are 
identified in Table 1. The AGXH prefix 
will be omitted hereafter for convenience. 
Genotypic scoring for one of the markers is 
shown in Fig. 1 and the radts.of scoring 
family A for all loci are summarized in 
Table 2. 
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In general, the alleles derived from the 
Suakoko female grandparent were designat- 
ed a, and those derived from the WE male 
grandparent were designated b (for excep- 
tions, see Tables 2 and 3). Linkage of the w 
mutation to the b allele of each locus was 
demonstrated in the backcross progeny by 
the preponderance of b,w and a,w+ among 
the hemizygous males. The exceptional 
males (b,w+ or a,w) were recombinant, and 
their freauencv indicated the distance be- . , 
tween that microsatellite locus and the 
white eye gene. Similarly, two types of rare 
recombinant female progeny were encoun- 
tered (blb, w+/w or alb, wlw); the two other 
predominant types of female progeny (blb, 
W/W or alb, w+/w) were nonrecombinant 
(see also Fig. 1). 

Effectively, typing all microsatellites and 
the visible eve marker on the same set of 
mosquitoes corresponded to a 25-factor 
cross, permitting us to amve at a very 
robust genetic map with only 248 progeny. 
By considering the total frequency of re- 
combinants between each microsatellite 
marker and white eye in all the families, we 
could arrange the markers in a linear order 

L 2  

representing the order of the loci on the X 
chromosome (Tables 2 to 4). Three-factor 
analysis permitted us to assign any two 
microsatellite markers on the same or op- 
posite sides of w, depending on whether the 
frequency of recombination between these 
microsatellites was lower or higher than 
that between either marker an8 w. The 
genetic distances, as calculated from recom- 
bination frequencies between microsatel- 
lites and between microsatellites and w, 
were consistent, with due allowance for 
double recombinants. 

Whereas distances between markers can 
only be determined from recombination 
frequencies, the order of markers can be 
determined independently by logic: recom- 
bination events delimit nested blocks of 
contiguous markers, which differ by steps 
that reveal the order of the markers. Table 
3 exemplifies this analysis in 18 highly 
informative recombinant mosquitoes. Log- 
ical analvsis of all the recombinants con- 
firmed the frequency-based order of the 
markers and also revealed rare double re- 
combinants. With the available data, a few 
markers could not be separated (AGXH- 
180 from -289; -179 from -1002; -24 from 
-25 and -80; and -7 from -32 and -81), and 
thus the map has 19 resolved loci. Figure 2 
summarizes all the data, in the form of a 
genetic map that indicates both the order 
and the genetic distances between neigh- 
boring loci. The total length of the map is 
-40 cM, and the average distance between 
resolved loci is 2.1 cM. 

Excellent polytene chromosome prepa- 
rations can be obtained from An. garnbiae 
nurse cells (9). Thus, we were able to 

anchor the genetic map to the cytological and cloned (5). Others were localized by in 
map represented by the polytene banding situ hybridization to polytene chromosomes 
pattern (Table 1 and Fig. 2). Some micro- (1 0). Usually, the repetitive microsatellite 
satellites could be localized to a chromoso- sequence did not interfere with specific 
ma1 division by virtue of their origin from hybridization if the array contained fewer 
DNA that was microdissected from that than 11 repeats; however, even then inter- 
division and subsequently amplified by PCR pretable signals could not be obtained in 2 

Table 1. X-linked microsatellite markers. 

AGXH Allel: Cyto1.t 5' primer (5'+3') Repeats 3' primer (5'+3' ) 
Marker 

TGGTGGAATGTGAGACACAG (GT)11 ATGATGGTCGATCCTTGTCC 
l4 77 3111 4B TGGGACTGTAAGTGTCTCCC (GT) 10 TATCAGTGAGGCCGAGTTGC ,-. . - 

503 2 (3) (4) AGGTTAGAGTGAGCAACCAC 
71 2(2) GCGGAGTTATTTCCTGAACC 
180 2 (1) 3B GTATGTTGTGATCTCCTGCC 
106 2(1) CTCTTGGCTTACGCTCCTTG 
289 2(1) CTGCGAACTTTGCTGATTCG 
19 2 (2) (3) CTTTTTCTCCCCATTATCTC 
38 2(1) AGTGACTACGCTTCTCGGAG 

1002 2 (1) 3C GATCGGTATATGCTTCCCGC 
179 2(1) CCATCCCCTCGACAGACC 
131 2(2) TTCCCACACTTTCTCCCAGG 
24 2 (2) (3) GGAGGCTAAAATCACGGTTG 
25 2 (4) (3) 3D GCCGAAAACATTCCAACAGG 
80 2 (3) 2B TGCTCTCTCCTACATCGAGG 
99 2 (1) 2C CGGGAATTTGTTGCTTCCTG 

i ~ ~ j  30 
(GT) 8 
(GT) 10 

(GT) 4+12+8 
(GA) 9 
(GT) 9 
(GT) 7+4 
(GA) 23 
(GT) 10+6 
(GT) 48 
(GT) 36 
(GT) 9 
(GT) 9 
(GT) 8 

GCACTGCATCTCTCCAATAC 
ACAGGCCAAGCAAATGCAGG 
AAAACGAGCCACCACCAGAG 
GGGAATGAAGATGAGAAGCC 
TTCGCCAAACTGACAACTGC 
CTGCAGTGTCCATTACGTAC 
AAGTCATACTCTTGCGCCCG 
AATAAGCCACGGCGTATCCC 
AACGACGTAAGCTGACACGG 
ATAATGCGCTGCTCCCAAGG 
GATCGGCAAGACTATCGGCC 
CAGTTATGTCGGCATGCTAC 
GCCAGTGCTCTAGATTAACG 
TCGCCCTCTTTCTCCATCTC 

4 9 3 (2) ID CAGCGCCTCCATATAGAACG (GT) 5+4 GATCATTCAGCTGAACCTGC 
7 2 (0) (1) 1C CACGATGGTTTTCGGTGTGG (GT) 8 ATTTGAGCTCTCCCGGGTG 
32 3(4) CGGTGCGTGTTCCTCGTGC (GT)29 TATGGTGTGGTTTCCCGTCC 
81 2(0) CACTGTAAATCGGAAGCGCG (GA) 7 CGGGCGGTTAAAGAAAACGG 
8 2 (1) (1) GGATGTGCTCCCAATACAAG (GT) 4+6 CTTATCGCACTGCAAGTGTC 
37 2 (1) 1C ATGTCTTGCTCACCTCGAGC (GA) 9 TAAGTTGGGCGTCTTGCTGG 
100 2(0) AGAAAGGAAATGTAACGCGG (GA)7 CTTTCATCTTGGCTGGCTGC 
412 2(0) (6) GCATGCACCTGTTGGGACAG (GT)16+4 AAACCTTACCCAAAACACAG 

'Number of alleles detected bv PCR am~l~flcat~on In flve famllles (see Table 4). each orlalnatlna from one Suakoko 
female and one WE male. ~di i t ional  allbles (numbers in parentheses) were idund in five femGes, each randomly 
chosen from colonies AA, G3, Mopti, Suakoko, and WE. tcytological origin according to the division and 
subdivision where the marker hybridizes on polytene chromosomes or (in parentheses) according to the 
numbered chromosomal d~ is i0n  from which the marker was cloned (5). 

Table 2. Number of progeny of family A with the indicated genotypes at 25 sex-linked loci. The first 
column identifies each mosquito as male or female, and the second (n) reports numbers of progeny 
for each genotype. The genotypes are indicated in the remaining columns, one column for each 
marker except for markers not resolved by present data (the prefix AGXH is omitted from the 
headings for convenience). For each marker, the maternal genotype was a/b and the paternal b; in 
the case of AGXH-145 (asterisk), the paternal genotype was c, and therefore the female progeny 
were actually either a/c or b/c. At the white eye locus, the maternal genotype was +I- (w+m and 
the paternal was - (w).  Recombinant markers are shaded. The last row (T) shows the total number 
of recombinants between each locus and w. 

3 i3 2 4 i2 
106 2 5 3 7 

7 7 180 179 8 0 4 9 
Sex n 145* 503 71 289 1002 131 99 w 81 100 412 

a a a a a  

a a 

r n 5 b b b b b b b - b b b  
m 2 b b b b b - b b b  
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out o f  10 cases, possibly because o f  the 
existence of additional repetitive se- 
quences. Table 1 and Fig. 2 report our 
current cytological assignments o f  14 mi- 
crosatellite markers. In most cases the as- 
signments are consistent wi th the genetic 
map, although two slight discrepancies 
were observed (inversions of blocks of 

markers: 180, 1002, and 25, and also 80 
and 99; Fig. 2). We have n o  explanation 
for these discrepancies, but we cannot ex- 
clude the possibility of small undetected 
chromosomal rearrangements in the stocks 
used for genetic mapping, especially in the 
W E  strain, which has multiple inversion 
polymorphisms. The distal divisions, 4 and 

3, account for 80% of  the genetic map o f  
the X chromosome. 

The integrated genetic and cytological 
map presented in Fig. 2 permitted us to  
localize the w mutation to wi th in 1 c M  
from markers o n  either side, in region 1D 
to  2C of  the polytene X chromosome. 
Recently, the An. gambiae homolog o f  the 

Fig. 1. Genetic crosses and microsatellite typing for marker AGXH179 in family 
A. The microsatellite allele originally provided by Suakoko is shown as 179a or 
a; this is linked to the wild-type dark purple eye allele (+). Conversely, the 179b 
or ballele from the WE strain is linked to the white eye allele (w). Each lane of the 
autoradiogram corresponds to a parent ( 0 ,  6) or one of the 45 progeny, which 
are grouped by sex and eye phenotype. Because of PCR artifacts and + 

X 
1796 

impurities in the primers, each microsatellite allele yields a cluster of closely 
W Y 

W E #  

spaced bands, but the a and b alleles can be distinguished unambiguously. 
Note that, in general, purpleeyed mosquitoes (filled symbols) show the a allele 
if male. and a ~ l u s  b if female: whiteeved mosouitoes (o~en  mmbols) show 9 a" 1 

\ .  , 
exclus&ely the' b allele, as expected' from th i  parental linkage reiations. &Jr 91 0 1718 3031 45 

Exceptional individuals (asterisks) are recombnant. d a" 1 ? Q 
b -  - L - - - 
a-  - =?! 

- 

Table 3. Selected individual progeny that are informative for ordering the alleles of different families are not identical. Exceptions are paternal 
microsatellite markers. Conventions are as described in Table 2. The third genotypes of family A at marker 145 (c) and family C at marker 145 (a). In 
column indicates expected recombinant genotype at each locus. Mos- some cases (asterisks) the mother was homozygous, and thus recombina- 
quitoes are identified by family (A through E) and numerical code. For tion could not be detected with this marker. ND, not determined. Note that 
simplicity, maternal genotypes are designated ah and paternal b, even if mosquito B:26 can be identified unambiguously as a double recombinant. 

2 4 
180 179 2 5 32 

* * b  
b b b b b b  

. b b b b b - b b b b * * b  
B:28 m a 
B:27 m a  
B:20 m a  b b b b b - b b b b * * b  
E:24 m a b b b b - b * b b b b N D  
B:26 m a  b b b - b b b b * * b  
A:24 f b/b a/b a/b +/- a/b a/b a/b a/b a/b a/b a/b 
D:01 m b  a  + a  a  a  a a a ' N D  
E:04 m b  
A:45 f a/b 

D : 0 4 m  a b  b  b  b  b  b  b  b  

Table 4. Total number of recombinants in five mosquito families. In each markers, except as indicated (t, 172 progeny; $, 197; 0, 185; 11, 184; and 
family (A through E) the number of recombinants from each marker 11, 121). ND, not determined. The last two rows show the total number of 
relative to wis listed, out of the number of progeny indicated in the second recombinants between each microsatellite and w(All) or between adjacent 
column. Mothers were heterozygous except as indicated by asterisks microsatellites (Adj.). Note that the order of markers inferred by recombi- 
(where recombination could not be detected because of maternal ho- nation frequencies is the same as that inferred from the nested blocks of 
mozygosity). The 412 marker could not be scored in families D and E for recombinant markers (Table 3). 
technical reasons. Thus, a total of 248 progeny were scored for most 

-- 

24 
180 179 3 5  32 

Fam. Proq. 145 77 503 71  106 289  19  38  1002 131  80  99 w 49  7 81  8 37 100 412 
A 4 5 1 3 1 3 1 2 8  6 6 6 6 4  3 1 1  0 1 1  1 1  1 2 3  
B 6 3 2 2 2 0 1 8 1 3 1 1 1 0  7 4 4 3 3 0 0 0 0 0 0 * * 3 
C 7 6 2 7 2 0 1 7 1 1 7  7 5 5 3 2 0 * 0 0 1 1  1 2  2 5 
D 1 3 4 3 3 2 2 2 1 1 1 1 1 0 0 0 0 0 1 1 1 N D  
E 5 1 2 1 1 8 1 6 1 1 8 8 6 5 1 1 1 1 0 0 * 2 2 2 2 N D  

All 248 87 74  66 45 34  3 3  25 2 1  1 3  10  6 2 t  0 1 2$ 4 5 69 73 11" 
Adj . 1 3 8  2 0 1 1  1 8  4 8 3 4 4 2 t  1 1 $ O  1 1 8 1 3  41 
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Drosophila white gene has been cloned 
independently and mapped by in situ hy- 
bridization to region 2A (I I), thus further 
validating our map and suggesting that the 
white eye phenotype indeed is caused by a 
mutation in this locus. 

Current methods make feasible the de- 
tailed molecular and genetic analysis of 
organisms that have received scant atten- 
tion to date. The procedures that we have 
adopted can be used to analyze the auto- 
somes and produce a similarly detailed 
genetic map. This will permit localization 
and characterization of important genes, 
such as those that control the susce~tibil- 
ity or refractoriness of mosquitoes to the 
malaria parasites (1 2). 

Note added in proof: We now have a total 
of 3 1 microsatellite markers resolvable at 23 
loci, with a total map distance of about 44 
cM. A genetic map consisting of 53 restric- 
tion fragment length polymorphic DNA 
markers has been developed for Aedes ae- 
gypti, the yellow fever vector (13). 
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