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Fluid flows that are smooth at low speeds become unstable and then turbulent at higher 
speeds. This phenomenon has traditionally been investigated by linearizing the equations 
of flow and testing for unstable eigenvalues of the linearized problem, but the results of such 
investigations agree poorly in many cases with experiments. Nevertheless, linear effects 
play a central role in hydrodynamic instability. A reconciliation of these findings with the 
traditional analysis is presented based on the "pseudospectra" of the linearized problem, 
which imply that small perturbations to the smooth flow may be amplified by factors on the 
order of lo5 by a linear mechanism even though all the eigenmodes decay monotonically. 
The methods suggested here apply also to other problems in the mathematical sciences 
that involve nonorthogonal eigenfunctions. 

Hydrodynamic stability theory is the study 
of how laminar fluid flows become unstable, 
the precursor to turbulence. It is well known 
that turbulence is an  unsolved problem, but 
not so well known that despite the efforts of 
generations of applied mathematicians, be- 
ginning with Kelvin, Rayleigh, and Rey- 
nolds, many of the presumably simpler phe- 
nomena of hydrodynamic stability also re- 
main incompletely understood (1, 2). 

The traditional starting point of an  
investigation of hydrodynamic stability is 
eigenvalue analysis, which proceeds in  
two stages: (i) linearize about the laminar 
solution and then (ii) look for unstable 
eigenvalues of the linearized problem. A n  
"unstable eigenvalue" is an  eigenvalue in  
the complex upper half-plane, correspond- 
ing to an  eigenmode of the linearized 
problem that grows exponentially as a 
function of time t. It is natural to  expect 
that a flow will behave unstably if and only 
if there exists such a growing eigenmode, 
and over the years much has been learned 
about which flows possess such modes, a 
distinction that depends on  the geometry, 
the Reynolds number, and sometimes oth- 
er parameters. 

For some flows, notably those with in- 
stabilities driven by thermal or centrifugal 
forces, the predictions of eigenvalue analy- 
sis match laboratory experiments. Examples 
are Rayleigh-BCnard convection (a station- 
ary fluid heated from below) and Taylor- 
Couette flow (between a stationary outer 
and a rotating inner cylinder). For other 
flows, notably those driven by shear forces, 
the predictions of eigenvalue analysis fail to 
match most experiments. We consider the 
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two. most studied examples of this kind: 
(ulane) Couette flow. the flow with a linear ,. , 

velocity profile between two infinite flat 
plates moving parallel to  one another, and 
(plane) Poiseuille flow, the flow with a 
parabolic velocity profile between two sta- 
tionary plates (Fig. 1). Other examples for 
which eigenvalue analysis fails include pipe 
Poiseuille flow (in a cylindrical pipe) and, 
to a lesser degree, Blasius boundary layer 
flob (near a flat wall). 

F& Poiseuille flow, eigenvalue analysis 
predicts a critical Reynolds number R = 
5772 at which instability should first occur 
(3), but in  the laboratory, transition to 
turbulence is observed at Reynolds numbers 
as low as R = 1000 (4). For Couette flow, 
eigenvalue analysis predicts stability for all 
R (3, but transition is observed for Rey- 
nolds numbers as low as R = 350 (6). These 

\ ,  

anomalies of "subcritical transition to tur- 
bulence" have been recoenized for manv 

L, 

years, and the explanation has traditionally 
been attributed to steu (i) above. If linear- 

L ~, 

ization has failed, the reasoning goes, one 
must look more closely at the nonlinear 
terms or perhaps linearize about a solution 
other than the laminar one [the theory of 
"secondary instability" (7-9)]. 

Recently it has emerged, however, that 
the failure of eigenvalue analysis may more 

Couette 7 
Fig. 1. Velocity profiles for two laminar flows 
(independent of x and z). The geometry is an 
infinite 3D slab of viscous incompressible fluid 
bounded by parallel walls. The laminar solu- 
tions satisfy the Navier-Stokes equations for all 
Reynolds numbers, but for higher R, the flows 
are unstable and rapidly become turbulent. 

justly be attributable to step (ii). It is a fact 
of linear algebra that even if all of the 
eigenvalues of a linear system are distinct 
and lie well inside the lower half-plane, 
inputs to that system may be amplified by 
arbitrarily large factors if the eigenfunctions 
are not orthogonal to  one another. A ma- 
trix or operator whose eigenfunctions are 
orthogonal is said to be "normal" (lo), and 
the linear operators that arise in the BCnard 
and Taylor-Couette problems are in  this 
category. By contrast, Reddy e t  al. (1 1) 
discovered in  1990 that the ouerators that 
arise in Poiseuille and Couette flow are in a 
sense exponentially far from normal. A t  
about the same time, the startling discovery 
was made by Gustavsson (1 2),  Henningson 
e t  al. (1 3), and Butler and Farrell (14) that 
small perturbations to these flows may be 
amplified by factors of many thousands, 
even when all the eigenvalues are in the 
lower half-plane (Fig. 2). The elegant paper 
by Butler and Farrell discusses many details 
omitted here and, together with a more 
recent paper by Reddy and Henningson 
(15), forms the foundation of the present 
work (1 6). 

The shaded region in Fig. 2 has appeared 
in  many publications (1 7) and corresponds 
to parameters for which unstable eigen- 
modes exist. The contours outside the shad- 

Reynolds number 

Fig. 2. Maximal resonant amplification of 3D 
perturbations in linearized Poiseuille flow as a 
function of Reynolds number R and w wave- 
number magnitude k = -2 (Eq. 6). In the 
shaded region, with leftmost point R = 5772, 
unstable eigenmodes exist and unbounded 
amplification is possible. The contours outside 
that region, from outer to inner, correspond to 
finite amplification factors of 1 03, 1 O4 (dashed), 
lo5, 2 x lo5, . . ., 1.3 x lo6. For example, 
amplification by a factor of 1000 is possible for 
all R 2 549. In the laboratory, transition to 
turbulence is observed at R = 1000. The anal- 
ogous picture for Couette flow looks qualitative- 
ly similar except that there is no shaded region. 
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ed region quantify the nonmodal amplifica- 
tion that may occur in these flows. The 
possibility of amplification of perturbations 
of viscous flows by nonmodal linear mech- 
anisms has been recognized for a century 
(1 8), but until the recent developments, it 
was not known that the magnitudes in- 
volved were huge. 

An essential feature of this nonmodal 
amplification is that it applies to three- 
dimensional (3D) perturbations of the lam- 
inar flow field (1 9). In much of the litera- 
ture of hydrodynamic stability, attention 
has been restricted to 2D (xy) perturba- 
tions; in particular, the well-known Orr- 
Sommerfeld equation is an eigenvalue 
equation for 2D perturbations. A principal 
justification for this restriction has been 
Squire's theorem, which asserts that if a 
flow has an unstable 3D eigenmode for 
some R, then it has an unstable 2D eigen- 
mode for some lower value of R (20). The 
new results indicate that this emphasis on 
2D perturbations has been misplaced. 
When onlv 2D ~erturbations are consid- 
ered, some amplification can still occur, but 
it is far weaker. 

The growing attention to 3D linear, 
nonmodal phenomena represents a signifi- 
cant change in the traditional conception 
of problems of hydrodynamic stability. 

Streamwise Vortices and Streaks 

The flow features associated with this am- 
plification process have a distinctive form: 
A perturbation to the velocity field in the 
form of a "streamwise vortex" evolves into a 
higher amplitude "streamwise streak" (Fig. 
3). A streamwise vortex is an elongated 
region of vorticity approximately aligned 
with the x axis. and a streamwise streak is 
an elongated region of high or low velocity 
(relative to the mean flow) approximately 
in the x direction. Streamwise vortices and 
streaks are persistent features in laboratory 
experiments involving all kinds of internal 
and boundary layer shear flows (2 1). Phys- 
ically, they are not hard to explain: In a 
shear flow, a small perturbation in the form 

Fig. 3. Schematic illustration of a structure that 
appears in many shear flows. A low-amplitude 
vortex or counterrotating pair of vortices ap- 
proximately aligned with the flow entrains fluid 
from regions of high to low x velocity and vice 
versa. The entrained fluid appears as a streak 
of locally high or low streamwise velocity (not 
shown). This process is linear but unrelated to 
eigenmodes. 

of a streamwise vortex may move fluid from 
a region of higher to lower x velocity, or 
vice versa, where it will appear as a large, 
local perturbation in the x velocity (22). 
Because these features constitute 3D pertur- 
bations of the flow field, however, their 
prevalence has been difficult to reconcile 
with the predictions of eigenvalue analysis. 
Nonmodal analysis offers a linear explana- 
tion of why these structures are so common, 
for although streamwise streaks are not 
eigenmodes of the linearized flow problem, 
thev are ~seudomodes. 

To explain this term, we must define the 
evolution ouerator that is the mathematical 
basis of this article. Let uo = uo(x,y,q) 
denote the vector velocity field correspond- 
ing to Poiseuille or Couette laminar flow. 
Let uo + U(t) = uo(x,y,z) + U(x,y,z,t) be 
the velocity field of a slightly perturbed 
flow, that is, a nearby solution to the 
Navier-Stokes equations (uppercase letters 
distinguish quantities that are functions of 
t). If we take U to be infinitesimal, then it 
satisfies an equation 

dU 
--(t) = -lYu (t) 
dt (1) 

where 2 is a linear onerator that we call the 
linearized Navier-Stokes evolution opera- 
tor..As a measure of the size of solutions to 
this equation, we define 

which we call the energy norm because its 
square is sometimes interpreted as an energy. 

Suppose the linearized fluid system is 
driven by a signal of the form V(t) = e-'"'v 
for some frequency w E C (C denotes the 
set of complex numbers) and function v = 
v(x,y,r) 

dU 
-(t) = - W ( t )  + e-'O'v for - m  < t < m 
dt 

(3) 
It is easily verified that the response will be 

U(t) = ie-'"b where u = ( d  - 2)-'v (4) 
(9 denotes the identity operator). Thus, 
the operator ( d  - %)-I, known as the 
resolvent of 3, transforms "inputs" v to the 
linearized fluid flow at frequency o into 
corresponding "outputs" u. The degree of 
amplification that may occur in the process 
is equal to the operator norm 

1 1 ~ 1 1  (5) 
I (  - 2 -  = sup - 

v*o llvll 

(sup denotes supremum or maximum). Be- 
cause an arbitrary time-dependent perturba- 
tion of the laminar flow can be reduced to 
an integral over real frequencies by Fourier 
analysis, values of o on the real axis R are 
of particular interest. The maximum possi- 

ble amplification over all real frequencies 
(Fig. 2) is 

sup I[(& - 2)-'ll 
O E R  

(6) 

An eieenvalue of 2 is a number o E C - 
such that Xu  = o u  for some corresponding 
eigenfunction u. Equivalently, it is a num- 
ber o with the property that perturbations 
with frequency o can be amplified un- 
boundedly: I l ( d  - 2)-'ll = m .  Generaliz- 
ing this definition, for any E 2 0, an 
"E-pseudoeigenvalue" of % is a number o 
such that I[(& - 2)-'l[ 2 E:', and a 
corresponding "E-pseudomode" is any func- 
tion u with 11%~ - oull 5 E I I u I I .  If E is small, 
then an E-pseudomode u may be excited to 
a substantial amplitude by a small input 
perturbation, possibly including noise in an 
experimental apparatus. At R = 5000, for 
example, a streamwise streak is an 
E-pseudomode of the linearized Poiseuille 
flow problem for E = 1.2 x and thus 
can be excited by a streamwise vortex five 
orders of magnitude weaker in amplitude. 

The set of E-pseudoeigenvalues of an 
operator is the "E-pseudospectrum" (23) 

The pseudospectra {A,(%)} form a nested 
family of sets in the complex plane, with 
Ao(2) equal to the spectrum A(%). If 2 is 
normal, A,(%) is the set of all points at 
distance I E from A (2 )  , but in the nonnor- 
ma1 case, it may be much larger. 

Spectra and Pseudospectra 

We numerically calculated spectra and pseu- 
dospectra for Couette flow with R = 350 and 
3,500 and for Poiseuille flow with R = 1,000 
and 10,000 (24). These Reynolds numbers 
roughly span the range in each case from 
occasional turbulence (in some experiments) 
to unavoidable turbulence (even in experi- 
ments under the most carefully controlled 
conditions). To perform our calculations, we 
first Fourier transform in x and q, reducing 
the calculation to one space dimension (y) 
and two real parameters a ai4d p  (wave 
numbers in x and q). The determinatim of 
the pseudospectra then requires a minimiza- 
tion in the a p  plane (25). 

In the case of Couette flow, the spec- 
trum of 2 is a continuous region contained 
in the lower half-plane (Fig. 4) (for each 
a - p  pair, the spectrum is discrete; the 
union over a and p  is a continuum). This is 
true for all R, corresponding to the uncon- 
ditional stability of Couette flow according 
to eigenvalue analysis (5). For Poiseuille 
flow, the spectrum lies in the lower half- 
 lane for small R. but as R increases, two 
bumps appear that cross into the upper 
half-plane at R = 5772 (Fig. 5). These 
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bumps represent the mode that has received 
most of the attention in the literature, 
known as a Tollmien-Schlichting or TS 
wave. Judging by the spectra alone, one 
would conclude that Couette and Poiseuille 
flows are fundamentally different because 
one has unstable eigenmodes for certain 
values of R and the other does not. 

The pseudospectra tell a different story. 
For both Couette and Poiseuille flow, they 
protrude significantly into the upper half- 
plane for all reasonably large values of R, 
implying that the corresponding evolution 
processes must feature prominent nonmodal 
effects (26). Qualitatively, the pseudospec- 
tra in the Couette and Poiseuille cases look 
more alike than different, suggesting that 
these flows should behave similarly, as is 
observed in experiments (27). 

One cannot see in Figs. 4 and 5 what 
values of a and B are associated with 
various points in the spectrum and pseu- 
dospectra. In fact, the upper boundaries of 
the spectra correspond to modes with p = 
0, in keeping with Squire's theorem, where- 
as the upper parts of the pseudospectra 
correspond to pseudomodes with p f 0, 
indicating that the effects of nonnormality 
are predominantly 3D. The highest points 
of the pseudospectra correspond to a = 
Reo = 0, hence purely streamwise struc- 

Real part oi frequency 

Fig. 4. Spectrum and E-pseudospectra in the 
complex o-plane of the linearized Navier- 
Stokes evolution operator for Couette flow. The 
spectrum is the shaded region, and the solid 
curves, from outer to inner, are the boundaries 
of the E-pseudospectra for = lo-", 

and 1 0-3.5. The spectrum lies in the lower 
half-plane, but the pseudospectra extend sig- 
nificantly into the upper half-plane, revealing 
the nonnormality of this operator. Note that the 
real and imaginary axes are scaled differently. 

tures, but approximately streamwise fea- 
tures with nonzero a and Reo are also 
strongly amplified (28). 

Physical lrnplications 

Pseudoresonance. One interpretation of 
nonnormality was described above in con- 
nection with Eq. 5. If a system is governed 
by a linear operator 2 that is normal or 
close to normal-familiar examples include 
musical instruments. vibratine structures. " 
and molecules as described by quantum 
mechanics-then [I(& - 2 )  -'I[ is large if 
and only if o is close to an eigenvalue, and 
thus the frequencies at which the system 
resonates are determined by the spectrum. 
For a nonnormal system, however, I[(& - 
2)-'ll may be large, and thus resonance or 
"pseudoresonance" may occur even when o 
is far from the spectrum. A plot of pseu- 
dospectra can be interpreted as a plot of 
contours of equal resonance magnitude; the 
real axis is of particular interest because it 
corresponds to forcing at real frequencies. 

Both Couette and Poiseuille flows exhib- 
it strong 3D pseudoresonance for frequen- 
cies o - 0 (Fig. 6). The magnitude is 
O(R2), not O(R) as one would have for a 
normal operator with spectra at the same 
distance O(R-') below the real axis. This 
and other asymptotic results of our calcula- 
tions are summarized in Table 1. 

Transient growth. A second interpreta- 
tion of nonnormalitv involves the transient 
growth of flow perturbations that may 
evolve from certain initial conditions (I 1- 
16). Consider the initial-value problem 

Real part of frequency 

Fig. 5. Same as Fig. 4 but for Poiseuille flow. For 
R > 5772, two bumps in the spectrum extend 
into the upper half-plane. 

The solution can be written U(t) = 
exp(-iB)v, where exp(-iB) is the oper- 
ator exponential. The factor by which such 
solutions can grow in time t is 

IP(f)ll (9) 
Ilexp(-iB)ll= sup - 

v*o llvll 

If 2 were a normal oDerator with sDectmm 
in the lower half-plane, we would have 
Ilexp(-iB)ll 5 1 for all t r 0, but in 
actuality, the growth is Ilexp(-i&)ll = O(R) 
at times t = O(R) (Fig. 7). This dependence 
on R can be explained as follows: The 
streamwise vortex-streak interaction is invis- 
cid and operates on a time scale O(R) before 
being shut off by the effects of viscosity (13). 
Such behavior is physically straightforward, 
appearing complicated only when interpret- 
ed in the basis of eigenmodes. 

The O(R2) resonances of Figs. 2 and 6 
are approximately equal to the integrals 
under the curves in Fig. 7. Mathematically, 
this can be seen from the formula 

which implies 

In practice, this inequality is typically with- 
in a factor of 2 of equality. We can interpret 
the O(R2) figure physically by noting that 
the resonant amplification is a result of the 
combination of two effects: one (normal) 
factor O(R) representing the time scale 
over which input energy can accumulate 
before it eventually decays, and another 
(nonnormal) factor O(R) representing tran- 
sient growth. 

Fig. 6. Pseudoresonance curves for Couette 
flow at various Reynolds numbers. Each curve 
shows I l ( d  - 2)-lll, the maximum possible 
amplification of perturbations to the laminar 
flow field as a function of frequency o. An 
analogous plot for Poiseuille flow looks qualita- 
tively the same except that for R > 5772, an 
additional resonance of magnitude m appears 
for o - 0.2. 
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A rigorous connection can be made 
between transient growth factors and the 
geometry of the pseudospectra. One can 
prove 

sup Ilexp(-i&)ll 2 sup E-'U~(%) (12) 
r 2 O  E > O  

where ~ ~ ( 3 )  = S U ~ ~ ~ ~ ~ ( ~ )  Imo (15). In 
words, if the pseudospectra protrude far into 
the upper half-plane, then substantial tran- 
sient growth must be possible. For the 
Poiseuille and Couette flows considered 
here, this estimate falls short of the actual 
growth by a factor = 1.4. 

Destabilizing perturbations. A third inter- 
pretation of nonnormality is based on an 
alternative, equivalent definition of the 
pseudospectra of an operator % 

A,(%) = closure{o E @: o E A(2 + '%) 
for some '% with ll'%ll < E) (13) 

In words, the E-pseudospectrum of 3 is the 
union of the spectra of all perturbed opera- 
tors 2 + '% with II'%II < E, together with any 
limit points of this set (a technicality of 
little importance). It is interesting to recon- 
sider Figs. 4 and 5 in the light of this 
alternative characterization. The pseu- 
dospectral contours in these figures imply 
that although the flows in question are 
eigenvalue stable (for R < 5772 in the 
Poiseuille case), exceedingly small pertur- 
bations to the evolution operator, of order 
O(R-,), suffice to make them eigenvalue 
unstable (Fig. 8). The norm of the minimal 
destabilizing perturbation is emin = 
(supwERI/(OS) - %)-'ll)-', the inverse of 
the maximal resonance of Eq. 6. For exam- 
ple, although Poiseuille flow with R = 5000 
is eigenvalue stable, there exists a perturba- 
tion '% of norm 1.2 x that renders it 
unstable. 

This raises the question of the physical 
meaning of operator perturbations and their 
relevance to instabilities observed in the 
laboratory. The minimal destabilizing per- 
turbation '% with 11811 = emin is easily char- 
acterized: It is the rank-1 operator E,~,,vu*, 

Time 

Fig. 7. Nonmodal transient growth of flow per- 
turbations for Couette flow. For any finite R, 
viscous effects shut off the growth on a time 
scale O(R). 

where the asterisk denotes conjugate trans- 
Dose and v and u are the functions that 
achieve the supremum in Eq. 5 for o = 0 
lin matrix terminolom. u and v are the -, . 
principal singular vectors in the singular 
value decomposition (SVD) of 3 (29); the 
phrase "conjugate transpose" is also from 
matrix algebra]. This operator transforms 
streamwise streaks into streamwise vortices, 
closing the loop so that transient growth for 
finite t can feed back to become modal 
growth for all t. Of course, there is no 
reason to expect such a perfectly contrived 
perturbation to arise under natural condi- 
tions; yet our calculations show that even 
random perturbations of 2 often have 
much the same effect (30). Such perturba- 
tions might be introduced in the laboratory, 
for example, by imperfections in the bound- 
arv walls. 

A different prospective application of 
the idea of destabilizing operator perturba- 
tions may be to the theory of "secondary 
instability" as an explanation of subcritical 
transition to turbulence (7-9). This theory 
is founded on the observation that when 
certain laminar shear flows are perturbed by 
certain physically motivated waves of large 
amplitude, the resulting problem is eigen- 
value unstable. The great sensitivity of the 

Fig. 8. Minimal norm E,,, = O(W2) of an 
operator perturbation %that can destabilize an 
eigenvalue-stable shear flow at Reynolds num- 
ber R. The dependence is so nearly quadratic 
that the curves appear straight to plotting ac- 
curacy. The dots mark the approximate Rey- 
nolds numbers at which Couette and Poiseuille 
flows are typically observed to undergo transi- 
tion to turbulence (350 and 1000, respectively). 

spectrum of % to perturbations, however, 
raises the question of whether this effect 
might be better understood as a symptom of 
the nonnormality of the unperturbed prob- 
lem than as a description of how transition 
to turbulence actually takes place under 
natural conditions (3 1). 

Favored Structures 

Unlike eigenmodes, the pseudomodes of a 
linear operator are not uniquely deter- 
mined; the precise structure excited in a 
highly nonnormal linear system will depend 
on the details of the excitation. But it is 
noteworthy that the three physical mecha- 
nisms considered above lead to similar pre- 
dictions of what flow structures should be 
prominent in shear flows at high Reynolds 
numbers. Consider the initial-value prob- 
lem of Eq. 8 with initial flow field U(0) = 
v and solution exp(-i&)v. The amplitude 
history of this solution is given by 

I exp(-i&)vll, and the operator norm 
exp(-i&)ll is the upper envelope of all 

such curves corresponding to all initial 
functions v. Figure 9 indicates how closely 
this envelope is approached by three phys- 
icallv interestine choices of v. Each of these - 
functions can be characterized mathe- 
maticallv as the function on which a cer- 
tain- linear operator attains its norm; the 
operators are %-I, exp(-itopt%), and 
exp(-i0+3), respectively, with the O+ no- 
tation indicating a limit as t + 0. The first 
function, vl, is the one that excites a 
maximal resonant response, or equivalent- 
ly, induces a minimal destabilizing pertur- 
bation. The second, v,, is the Butler-Farrell 
"ootimal" that achieves maximal total 
growth at some time t = top,. The third, v,, 
is the oerturbation with maximal growth 
rate at't = 0, which has been stuc6ed by 
Lumley and others (1 4, 32). We compute vj 
numerically with the aid of the SVD ap- 
plied to discrete approximations of the as- 
sociated operators (33). 

Although the physical ideas behind v,, 
v,, and v, are different, vl and v, achieve 
comparable and near-maximal transient 
growth (and also comparabte resonance, 

Table 1. Leading-order behavior of various quantities as R + m (numbers accurate to 1 % for R > 
100) and the associated wave numbers a and p. The results for Poiseuille flow pertain to the highly 
nonnormal part of the problem, ignoring the R > 5772 mode (TS wave). 

Couette Poiseuille 

Value a p Value a p 

Distance of spectrum from real axis (Rl2.47)-I 0 0 (Rl2.47)-I 0 0 
Maximum resonance sup,,,ll(&,- (R/8.12)2 0 1.18 (R/17.4)2 0 1.62 
Transient growth sup, , , llexp(-it%)ll Rl29.1 35.71R 1.60 Rl71.5 0 2.04 
Optimal time t ,,, for'above Rl8.52 35.7lR 1.60 Rl13.2 0 2.04 
Lower bound based on pseudospectra Rl42.6 0 1.62 Rl103. 0 2.04 
Transient growth (a = 0) Rl29.3 0 1.66 Rl71.5 0 2.04 
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not shown). These functions are also simi- 
lar in structure, both having approximately 
the form of streamwise vortices that evolve 
into streamwise streaks. 

Nonlinear Bootstrapping and 
Transition to Turbulence 

Kelvin wrote in 1887 (34): 

It seems probable, almost certain indeed, that 
. . . the steady motion is stable for any viscosity, 
however small; and that the practical unsteadiness 
pointed out by Stokes forty-four years ago, and so 
admirably investigated experimentally five or six 
years ago by Osbome Reynolds, is to be explained 
by limits of stability becoming narrower and nar- 
rower the smaller is the viscosity. 

This view of instability is still standard, but 
to this day, it has never been confirmed in 
detail. In this final section, we speculate 
about what the eventual confirmation may 
look like-about how nonlinear and linear 
mechanisms interact to bring about transi- 
tion to turbulence. 

Consider the 2 x 2 nonlinear model 
problem 

where R is a large parameter. The linear 
term, involving the nonnormal matrix A, 
amplifies energy transiently. The nonlinear 
term, involving the skew-symmetric matrix 
B, rotates energy in the ulu2 plane but does 
not create or destroy energy, for it acts 
orthogonally to the motion (35). Thus, we 
have linear amplification coupled with en- 
ergy-neutral nonlinear mixing, a situation 
that holds also for the equations of fluid 
mechanics (36). 

We consider the norms IIu(t)ll for solu- 
tions to Eq. 14 with R = 25 starting from 
eight different initial vectors u(0) = (0, 
const)= (Fig. lo), where the T denotes 
transpose. For llu(O)ll 5 the curves are 
approximately translates of one another on 
this log scale, indicating that the evolution 
is effectively linear. At llu(O)ll = 4 X 
the nonlinearity has a pronounced effect. 
For llu(O)ll = 5 x and higher ampli- 
tudes, the curves do not decay but blow up 
to a critical point of amplitude = 1. 

These calculations reveal a remarkable 
phenomenon: The amplitude growth is far 
greater than that of the linearized problem 
duldt = Au. We find that E is of order RP3, 
not R-' (Table 2). This "bootstrapping" 
effect can be explained as follows. Suppose 
the solution at t = O consists of a vector of 
amplitude E in a direction that excites 
growth of the linear problem duldt = Au 
(the principal right singular vector of A). 
At a later time, of order R, the solution has 

Time 

Fig. 9. Initial growth and eventual decay of 
Ilexp(-it%)vll resulting from three initial pertur- 
bations v for Couette flow, R = 350. The 
dashed curve is the operator norm as in Fig. 7 .  

Time 

Fig. 10. Ilu(t)ll for solutions to the nonlinear 2 x 
2 model problem of Eq. 14 with initial ampli- 
tudes Ilu(0)ll = lo-', 4 x 
1 0-4, 5 x 1 0-4, 1 0-3, and The threshold 
amplitude is IIu(0)ll = 4.22 x 

grown to order RE by the linear growth 
mechanism but moved into a direction that 
no longer excites growth (the correspond- 
ing 1,eft singular vector). Meanwhile, how- 
ever, the nonlinear term has had the effect 
of transferring some of this energy back to 
the original direction, with amplitude 
R(RE)~ = R3e2 because the nonlinearity is 
quadratic and the time scale is O(R). If R3e2 
is of order less than E, the process is not 
self-sustaining and the energy decays. On 
the other hand, if R3e2 is of order greater 
than E, there is more energy than at the 
start and sustained growth may occur. 
Thus, the threshold amplitude is E = 
O(R-'). A similar experiment shows that if 
the same nonlinear equation is driven by a 
forcing oscillation eiWtv instead of an initial 
vector u(O), the threshold amplitude be- 
comes E = O(R-4). 

It may appear that these results indicate 
the great power and importance of nonlin- 
ear effects. Yet in two senses, these energy 
growth scenarios are essentially linear. 
First, as mentioned above, the nonlinear 
term in Eq. 14 does not add energy but 
merely redistributes it. Second, the appear- 
ance of the bootstrapping phenomenon 
does not depend on the precise nature of 
the nonlinearitv. Anv auadratic nonlinear , . 
term that transfers energy from decaying to 

Table 2. "Transition to turbulence" of a 2 x 2 
nonlinear matrix model problem (Eq. 14). Al- 
though the growth factor M of the linearized 
problem is O(R), nonlinear mixing effectively 
cubes this figure so that the threshold ampli- 
tude E is O(RF). 

R M E Ratio 

growing solution components has the po- 
tential for inducing a threshold amplitude E 

= O(RP3) or O(R-4) with respect to initial 
or forcing data, respectively; a random per- 
turbation, for example, will often suffice. 
Higher order nonlinearities lead to similar 
effects, though the exponents may be low- 
ered, for example, to E = O(R-2) and 
O(R-3) for a cubic nonlinearity. 

The Navier-Stokes equations are more 
complicated than our 2 x 2 model. One 
difference is that instead of 2-vectors. thev , , 
act on functions with infinitely many de- 
grees of freedom, most of which do not 
experience nonnormal linear growth. 
There will always be some energy in the 
growing pseudomodes, however, and in a 
pipe or channel of substantial extent, ran- 
dom fluctuations can be ex~ected to raise 
the energy levels in such components local- 
ly well above the statistical average (37, 
38). Another difference is that the nonlin- 
ear interactions in the Navier-Stokes eaua- 
tions act across different wave numbers a 
and p (12, 13), making the quadratic non- 
linearity of Eq. 14 perhaps unrealistically 
strong. Notwithstanding these qualifica- 
tions, we conjecture that transition to tur- 
bulence of eigenvalue-stable shear flows 
proceeds analogously to our model in that 
the destabilizing mechanism is essentially 
linear in the senses described above and the 
amplitude threshold for transition is O(RY) 
for some y < -1 (39). 

Conclusion 

We have discussed three linear approaches 
to the phenomenon of instability of shear 
flows: (i) pseudoresonance, (ii) transient 
growth of flow perturbations, and (iii) de- 
stabilizing operator perturbations. These 
ideas are by no means independent. Math- 
ematically, all are related to the pseu- 
dospectra of the operator 2, and physically, 
all depend on the same mechanisms of 
extraction of energy from the mean flow by 
structures such as streamwise vortices. One 
should not expect that one of these ideas 
will prove to be right and the others wrong. 
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More likely, each may prove relevant to a 
particular class of experiments, for it is 
natural to speculate that transition to tur- 
bulence may be triggered in distinct circum- 
stances by distinct causes, such as, respec- 
tively, (i) laboratory vibrations, (ii) initial 
or inlet disturbances, or (iii) deviations of 
the pipe or channel geometry from the 
Poiseuille or Couette ideal. In the coming 
decade, as numerical simulations of the 
nonlinear Navier-Stokes equations become 
routine, much progress will be made in the 
elucidation of these details and a fuller 
picture will emerge of the interaction of 
linear and nonlinear effects in fluid me- 
chanics. 

Besides hydrodynamic stability, there 
are other fields in which nonorthogonal 
eigenfunctions arise and eigenvalues may be 
misleading. Examples in fluid mechanics 
include the instability of magnetic plasmas 
(40) and the formation of cyclones (41). 
Examples in numerical analysis include the 
stiffness and numerical instability of discret- 
ization~ of differential equations (42) and 
the convergence of iterative algorithms for 
nonsymmetric matrix problems (43). The 
recurring theme in these and other applica- 
tions is that although the long-time behav- 
ior of an evolving system may be controlled 
by nonlinearities, some important phenom- 
ena are of a short-time nature and are 
essentially linear (44). If the linearized 
problem is far from normal, eigenvalues 
may be precisely the wrong tool for analyz- 
ing it, for eigenvalues determine the long- 
time behavior of a nonnormal linear pro- 
cess, not the transient. 
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