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Transcription Factor TFllB Sites Important for 
lnter-action with promoter-Bound TFllD 

Shinya Yamashita,* Koji Hisatake, Tetsuro Kokubo, Katsumi Doi,? 
Robert G. Roeder, Masami Horikoshi, Yoshihiro NakataniS 

Transcription initiation factor TFIIB recruits RNA polymerase II to the promoter subsequent 
to interaction with a preformed TFIID-promoter complex. The domains of TFllB required 
for binding to the TFIID-promoter complex and for transcription initiation have been de- 
termined. The carboxyl-terminal two-thirds of TFIIB, which contains two direct repeats and 
two basic residue repeats, is sufficient for interaction with the TFIID-promoter complex. An 
extra 84-residue amino-terminal region, with no obvious known structural motifs, is required 
for basal transcription activity. Basic residues within the second basic repeat of TFllB are 
necessary for stable interaction with the TFIID-promoter complex, whereas the basic 
character of the first basic repeat is not. Functional roles of other potential structural motifs 
are discussed in light of the present study. 

Transcription of eukaryotic protein-encod- 
ing genes requires at least five general tran- 
scription initiation factors (TFIIB, TFIID, 
TFIIE, TFIIF, and TFIIH) in addition to 
RNA polymerase I1 (1) .  The first step in 
preinitiation complex formation involves 
TFIID binding to the TATA box in the 
prornoter region, a process that may be facil- 
itated by TFIIA. Subsequently, TFIIB binds 
to the TFIID-promoter complex and acts as a 
bridging factor to incorporate RNA polymer- 

ase I1 into the complex and to spec~fy the 
transcription initiation site (2). It has been 
proposed that TFIIB (3 ) ,  as well as TFIID ( I ) ,  
are targets for the acidic activation domain on 
the transcriptional activator VP16. There- 
fore, exploring the mechanism by which 
TFIIB interacts with the TFIID-promoter 
complex is necessary for understanding tran- 
scription initiation and regulation. 

The isolation and characterization of 
cDNAs encoding TFIIB from human (4) ,  
Xenopus (5), yeast (2), and Drosophila (6, 

S. Yamashita, T. Kokubo, Y. Nakatan~, National Insti- 7) showed that TFIIB contains a Zn(I1)- 
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tem (Fig. 1B) (1 0). TFIIB lacking residues 2 
to 8 from the NH2-terminus (AZ-8) had full 
activity, whereas TFIIB lacking NH2-terminal 
residues 2 to 21 (A2-21) retained about one- 
half of the activity of intact TFIIB. Because 
the potential Zn(I1)-finger domain is found 
between residues 14 and 36, these data suggest 
that this domain is not essential for basal 
transcription. Deletions extending through or 
beyond residue 25 eliminated basal transcrip- 
tion, indicating that residues 22 to 25 are 
critical for basal transcription. The same series 
of TFIIB mutants were tested for interactions 
with the TATA box binding subunit of TFIID 
(TFIIDT-TBP) in a promoter complex by gel 
retardation analysis (Fig. 1C) (1 1). All mu- 
tants with deletions extending to residue 105 
(including A2-105) still formed a TFIIB- 
TFIIDT-promoter complex, whereas a further 
deletion extending into the first basic repeat 
(62- 126) eliminated complex formation (Fig. 
1C). Thus, the NH2-terminal 105 amino 
acids that just precede the first basic repeat are 
not essential for interactions with the TFIIDT- 
promoter complex, although the NH2-termi- 
nal region is required for subsequent events 
leading to transcription initiation. 

To determine the requirement for 
COOH-terminal residues for both activi- 
ties, we constructed a series of COOH- 
terminal deletions (Fig. 2A). The deletion 
of 11 COOH-terminal residues (8305-315) 
had no effect on basal transcription, where- 
as elimination of 21 residues (6295-315) 
decreased activity to about 20% of the 
original value (Fig. 2B). Deletions extend- 
ing into the direct repeat (A285-315, A275- 
3 15, and A265-3 15) completely eliminated 
transcription activity. The 1 I-residue dele- 
tion mutant (A305-3 15) stabilizes TFIIB- 
TFIIDT-promoter complex formation, indi- 
cating that the COOH-terminal region 
(305-315) inhibited interaction with the 
TFIIDT-promoter complex (Fig. 2C). Con- 
struct A295-315, which still retains signifi- 
cant transcription activity, yielded almost 
no complex (Fig. 2C). In several mutants, 
including 6295-3 15, the ability of TFIIB to 
interact stably with TFIIDT-promoter com- 
plex did not quantitatively reflect transcrip- 
tion activity, although both activities were 
qualitatively correlated. This may reflect 
the formation of a complex that is too 
unstable to be detected by gel retardation 

Fig. 1. Analysis of the NH,-terminal A 
region of TFIIB. (A) Construction of Chrm r w a B  - - NH,-terminal delet~ons. The Zn(ll)-fin- ~ i r ~ l  second 

ger, first and second basic repeats, basc repeal basc repeal 

Zinc Anger 1W 
++++ +-+ 

and imperfect direct repeats are indi- 2~ 3w 

cated for the Drosophila TFllB se- lntacl F 1 
quence. Numbers indicate the amino 62 11. i__ - =E=2 
acid position from the NH,-terminus. 
Bars represent the portion of TFllB 
retained in the deletion mutants. Num- 
bers on the left indicate the residues 
deleted. (B) Analysis of basal tran- 

-=-, "., L 

scription activity. Transcription activity 62.126 

was determined in a TFIIB-dependent 
reconstituted transcription system 
with intact TFllB (lane I ) ,  mutant TFllB 
(lanes 2 to 1 I ) ,  or no TFllB (lane 12). A 
plasmid containing the adenovirus 
major late core promoter attached to 
the 380-bp G-less cassette was used 
as a template. The position of the 
accurately initiated transcripts is indi- 
cated by an arrow. (C) Analysis of 
TFIIB-TFIIDT-promoter interactions by 
gel retardation assay. All lanes except 
lane 1 contained TFIIDT. Reaction 
mixtures contained TFIIDT (lanes 2 to 
13) and intact (lane 3) or mutant 
(lanes 4 to 13) TFIIB. The positions of 
the TFIIDT-TFIIB-DNA complex (DB) 
and TFIIDT-DNA complex (D) are in- 
dicated. Note that TFIIDT-DNA com- 
plex can be observed faintly in the 
buffer system used. (D) SDS-poly- 
acrylamide gel electrophoresis 
(PAGE) analysis of mutant TFllB pro- 
teins. Mutant proteins in this figure 
were analyzed by SDS-PAGE and 
stained with Coomassie brilliant blue 
R250. The positions of the TFllB spe- 
cies are shown. 

analvsis but still functional as a result of 
stabilizing interactions with other factors 
that enter the preinitiation complex subse- 
quent to TFIIB (12). Further deletions ex- 
tending into the direct repeats (A285-315, 
A275-315, and A265-315) resulted in the 
loss of both activities. Together with the 
results from the NH,-terminal deletion ex- 
periments, our data suggest that 198 amino 
acids (from positions 106 to 304) of TFIIB 
are sufficient to produce an efficient inter- 
action with the TFIIDT-promoter complex, 
whereas an additional 84 NH2-terminal res- 
idues, which do not contain any recogniz- 
able motifs, are required for transcription. 

The NH,-terminal deletion extending 

A Direct repeak -- 
Fint Second 

baskAepeat basicpeal 
ZinEmger 200 3W 

1 2 3 4 5 6 7 8 9 1 0 1 1  
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1 2 3 4 5 6  
Fig. 2. Analysis of the COOH-terminal region of 
TFIIB. Structures of COOH-terminal deletion 
mutants (A), basal transcription activity (B), 
TFIIB-TFIIDT-promoter interaction analysis by 
gel retardation experiments (C), and SDS- 
PAGE analysis (D) of mutant TFllB proteins are 
represented as in Fig. 1. 
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* EB Fig. 3. Analysis of basic repeats. (A) Structures of mutants in the first and 
second basic repeats. The Zn(ll)-finger, first and second basic repeats. 
and imperfect direct repeats are indicated as described (Fig. 1A). Only 
substituted amino acids in each mutant are indicated. Basal transcription 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 activity (B). TFIIB-TFIIDT-promoter interaction analysis by gel retardation 
experiments (C), and SDS-PAGE analysis (D) of mutant TFllB proteins are 
represented as in Figure 1. 

just through the first basic repeat region 
(A2-126) abolished formation of a TFIIB- 
TFIIDT-promoter complex (Fig. 1C). Ami- 
no acid substitution mutants were con- 
structed for a more detailed analysis of this 
region (Fig. 3A). The four basic amino 
acids in the first basic repeat region were 
replaced completely with either His (F-I) 
or Pro (F-2). No significant effect on either 
transcription (Fig. 3B) or complex forma- 
tion (Fig. 3C) was observed for F-l, sug- 
gesting that a strong basic character such as 
Arg and Lys in the first basic region is not 
necessary for TFIIB activities. The F-2 mu- 
tant decreased transcription activity (Fig. 
3B) and almost completely abolished com- 
plex formation (Fig. 3C). With the NH2- 
terminal deletion experiments, these data 
suggest that a structural feature of the first 
basic repeat region, but not its basic char- 
acter, contributes to a stable interaction 
with the TFIIDT-promoter complex as 
monitored by gel retardation assay. 

To test the requirement for the second 
basic repeat, we replaced all five basic amino 
acids located on the same side of the putative 
CY helix (4) with either His (S-1), Ala (S-2), 
or Pro (S-3). Each replacement substantially 
reduced both basal transcription and TFIIB 
TFIIDT-promoter complex formation (Fig. 3, 
B and C). These results suggest that the basic 
side chains in the second basic repeat are 

face area are relatively close to those for Arg 
and Lys. Significant inhibition of both basal 
transcription and TFIIB-TFIIDT-promoter 
complex formation was observed in mutant 
S-4, whereas there was only a minor diminu- 
tion of these activities with mutants S-5 and 
S-6. This indicates that the particular posi- 
tions of the basic amino acids, rather than the 
total number, are important for both activities 
(Fig. 3, B and C). To test the contribution of 
each of the altered basic amino acids in 
mutant S4 to the two TFIIB activities, we 
prepared single and double mutants (Fig. 3A, 
S8-S12). The double mutants, S-8 and S-9, 
had less inhibitory effect on the two activities 
as compared with the triple mutant S4 (Fig. 3, 
B and C). Moreover, the single mutants S9, 
S10, and S11 had almost no effect on either 
activity. These data suggest that of the three 
basic amino acids changed in mutant S4, any 
two basic residues are sufficient for both TFIIB 
activities. 

To test whether the TFIIB activities 
require a particular basic residue or whether 
any positively charged residue would suffice, 
we constructed mutant S-7 (Fig. 3A). Be- 
cause there was no significant decrease of 
activities with S-7 (Fig. 3, B and C), we 
concluded that positive charges at positions 
188, 192, and 195, rather than particular 
basic residues, are important for both basal 
transcription and for TFIIB-TF1ID.r-pro- 

this TFIIB-DNA interaction may be medi- 
ated by a potential Zn(I1)-finger domain 
(Cys-X2-His-X15-Cys-X2-Cys; between resi- 
dues 14 and 36). However, our results 
showed that removal of the entire potential 
Zn(I1)-finger domain (A2-41, 82-60, A2- 
76, 82-86, A2-96, and A2-105 in Fig. 1) 
has no effect on complex formation. It is 
therefore unlikely that the Zn(I1)-finger 
domain is important for TFIIB-TF1ID.r-pro- 
moter complex formation. As a possible 
function of this domain, its interaction 
with a transcriptional activator fushi-tarazu 
has recently been proposed (1 5). 

X-ray crystallography of TFIID, (16) 
showed that the COOH-terminal core do- 
main, which includes both the direct repeats 
and the basic repeat (17), forms a highly 
symmetric structure that contains a DNA 
binding structure, resembling a molecular sad- 
dle that sits astride the DNA. Because both 
TFIIDT and TFIIB have similar structural 
motifs and function as monomers, TFIIB 
might have a similar structure to TFIIDT. 
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Direct Association of Adenosine Deaminase with a 
T Cell Activation Antigen, CD26 

Junichi Kameoka, Toshiaki Tanaka, Yoshihisa Nojima, 
Stuart F. Schlossman, Chikao Morimoto* 

CD26, the T cell activation molecule dipeptidyl peptidase IV (DPPIV), associates with a 
43-kilodalton protein. Amino acid sequence analysis and immunoprecipitation studies 
demonstrated that this 43-kilodalton protein was adenosine deaminase (ADA). ADA was 
coexpressed with CD26 on the Jurkat T cell lines, and an in vitro binding assay showed 
that the binding was through the extracellular domain of CD26. ADA deficiency causes 
severe combined immunodeficiency disease (SCID) in humans. Thus, ADA and CD26 
(DPPIV) interact on the T cell surface, and this interaction may provide a clue to the 
pathophysiology of SCID caused by ADA deficiency. 

C ~ 2 6 ,  a T cell activation molecule (1, 2) ,  
is a 110-kD glycoprotein that is also present 
on epithelial cells of various tissues, includ- 
ing the liver, kidney, and intestine. CD26 
is identical with dipeptidyl peptidase IV 
(DPPIV) ( 3 ) ,  which can cleave NH2-termi- 
nal dipeptides from polypeptides with either 
L-proline or L-alanine at the penultimate 
position. No physiological substrates have 
yet been identified. We isolated cDNA 
encoding human CD26 and established 
CD26-transfected Jurkat T cell lines (4). 
Functional analysis of these Jurkat transfec- 
tants showed that cross-linking of the 
CD26 and CD3 antigens with their respec- 
tive antibodies (Abs) resulted in enhanced 
intracellular calcium mobilization and in- 
terleukin-2 production, providing direct ev- 
idence that the CD26 antigen plays an 
integral role in T cell activation. The 
cDNA sequence of CD26 predicted a type 
I1 membrane protein with only six amino 
acids in the cytoplasmic region (4, 5), 
suggesting that other association molecules 
are involved in CD26-mediated signal 
transduction. CD26 associates with CD45 
(6), which might be involved in regulat- 
ing the ~ 1 5 6 " ~  activity through its protein 
phosphatase activity. Another candidate 
for the signal transduction molecule was a 
43-kD protein, p43, which can be copre- 
cipitated by antibody to CD26 (anti- 
CD26) from lZ5I-labeled T cells, phyto- 
hemagglutinin (PHA) blast cells, and 
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from CD26-transfected Jurkat cell lines 
(4). 

To identify p43, we purified the protein 
by immunoaffinity chromatography from 
CD26-transfected Jurkat cells. The purified 
protein was separated by SDS-polyacryl- 
amide gel electrophoresis (PAGE), trans- 
ferred to a nitrocellulose membrane, and 
stained by Ponceau S,  resulting in a single 
band of 43 kD in addition to the CD26 
110-kD protein (Fig. 1). The 43-kD protein 
was then digested with trypsin, separated by 
reversed-phase high-pressure liquid chro- 
matography (rpHPL,C), and subjected to 
amino acid sequencing. According to the 
homology search, the amino acid sequences 
of the two peptides derived from p43 were 
completely identical to those of residues 35 
to 64 and 172 to 206 of the human adeno- 
sine deaminase (ADA) (7). 

ADA is a 41-kD protein, expressed in all 
tissues (highest expression in lymphocytes), 
that catalyzes the conversion of adenosine 
and deoxyadenosine to inosine and deoxy- 
inosine, respectively. ADA is present on 
the cell surface, as well as in the cytoplasm, 
of human fibroblasts, rabbit renal tubular 
cells, and human mononuclear blood cells 
(8). ADA deficiency causes severe com- 
bined immunodeficiency disease (SCID) in 
humans ( 9 ) ,  yet no direct interaction be- 
tween ADA and T cell surface molecules 
has been identified. 

The possibility that CD26 is associated 
with ADA was investigated by biochemical 
analysis with polyclonal rabbit Ab to ADA 
(anti-ADA) (1 0). Immunoblotting with 
anti-ADA after immunoprecipitation from 
CD26 transfectants by various Abs demon- 
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