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Complex Patterns in a Simple System 

John E. Pearson 

Numerical simulations of a simple reaction-diffusion model reveal a surprising variety of 
irregular spatiotemporal patterns. These patterns arise in response to finite-amplitude 
perturbations. Some of them resemble the steady irregular patterns recently observed in 
thin gel reactor experiments. Others consist of spots that grow until they reach a critical 
size, at which time they divide in two. If in some region the spots become overcrowded, 
all of the spots in that region decay into the uniform background. 

Patterns occur in nature at scales ranging 
from the developing Drosophila embryo to 
the large-scale structure of the universe. At 
the familiar mundane scales we see snow- 
flakes, cloud streets, and sand ripples. We 
see convective roll patterns in hydrodynamic 
experiments. We see regular and almost 
regular patterns in the concentrations of 
chemically reacting and diffusing systems 
( I ) .  As a consequence of the enormous 
range of scales over which pattern formation 
occurs, new pattern formation phenomenon 
is potentially of great scientific interest. In 
this report, I describe patterns recently ob- 
served in numerical experiments on a simple 
reaction-diffusion model. These Datterns are 
unlike any that have been previously ob- 
served in theoretical or numerical studies. 

The system is a variant of the autocata- 
lytic Selkov model of glycolysis (2) and is 
due to Gray and Scott (3). A variety of 
spatio-temporal patterns form in response 
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to finite-amplitude perturbations. The re- 
sponse of this model to such perturbations 
was previously studied in one space dimen- 
sion by Vastano et al. (4), who showed that 
steady spatial patterns could form even 
when the diffusion coefficients were equal. 
The response of the system in one space 
dimension is nontrivial and depends both 
on the control parameters and on the initial 
perturbation. It will be shown that the 
patterns that occur in two dimensions range 
from the well-known regular hexagons to 
irregular steady patterns similar to those 
recently observed by Lee et al. (5) to cha- 
otic spatio-temporal patterns. For the ratio 
of diffusion coefficients used, there are no 
stable Turing patterns. 

Most work in this field has focused on 
pattern formation from a spatially uniform 
state that is near the transition from linear 
stability to linear instability. With this 
restriction, standard bifurcation-theoretic 
tools such as amplitude equations have 
been developed and used with considerable 
success (6). It is unclear whether the pat- 

terns presented in this report will yield to 
these now-standard technologies. 

The Gray-Scott model corresponds to 
the following two reactions: 

Both reactions are irreversible, so P is an 
inert product. A nonequilibrium constraint 
is represented by a feed term for U. Both U 
and V are removed by the feed process. The 
resulting reaction-diffusion equations in di- 
mensionless units are: 

where k is the dimensionless rate constant 
of the second reaction and F is the dimen- 
sionless feed rate. The svstem size is 2.5 bv 
2.5, and the diffusion cdefficients are Du = 

2 x lo-' and D. = lo-'. The boundarv 
conditions are periodic. Before the numer- 
ical results are presented, consider the be- 
havior of the reaction kinetics which are 
described by the ordinary differential equa- 
tions that result upon dropping the diffusion 
terms in Eq. 2. 

In the phase diagram shown in Fig. 1, a 
trivial steady-state solution U = l ,V = 0 
exists and is linearly stable for all positive 
F and k. In the region bounded above by 
the solid line and below by the dotted 
line, the system has two stable steady 
states. For fixed k, the nontrivial stable 
uniform solution loses stability through 
saddle-node bifurcation as F is increased 
through the upper solid line or by Hopi 
bifurcation to a periodic orbit as F is 
decreased through the dotted line. [For a 
discussion of bifurcation theory, see chap- 
ter 3 of (7).] In the case at hand, the 
bifurcating periodic solution is stable for k 
< 0.035 and unstable for k > 0.035. 
There are no veriodic orbits for varameter 
values outside the region enclosed by the 
solid line. Outside this region the system is 
excitable. The trivial state is linearly sta- 
ble and globally attracting. Small pertur- 
bations decay exponentially but larger per- 
turbations result in a long excursion 
through phase space before the system 
returns to the trivial state. 

The simulations are forward Euler integra- 
tions of the finite-difference equations result- 
ing from discretization of the diffusion opera- 
tor. The s~atial mesh consists of 256 bv 256 
grid points. The time step used is 1. 'spot 
checks made with meshes as large as 1024 by 
1024 and time steps as small as 0.01 produced 
no ~ualitative difference in the results. 

Initially, the entire system was placed in 
the trivial state (U = l ,V = 0). The 20 by 
20 mesh point area located symmetrically 
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about the center of the grid was then 
perturbed to (U = ln,V = 114). These 
conditions were then perturbed with f 1% 
random noise in order to break the square 
symmetry. The system was then integrated 
for 200,000 time steps and an image was 
saved. In all cases, the initial disturbance 
propagated outward from the central 
square, leaving patterns in its wake, until 
the entire grid was affected by the initial 
square perturbation. The propagation was 
wave-like, with the leading edge of the 
perturbation moving with an approximately 
constant velocity. Depending on the param- 
eter values, it took on the order of 10,000 to 
20,000 time steps for the initial perturbation 
to spread over the entire grid. The propaga- 
tion velocity of the initial perturbation is 
thus on the order of 1 x space units per 
time unit. After the initial period during 
which the perturbation spread, the system 
went into an asymptotic state that was either 
time-independent or time-dependent, de- 
pending on the parameter values. 

Figures 2 and 3 are phase diagrams; one 
can view Fig. 3 as a map and Fig. 2 as the key 
to the map. The 12 patterns illustrated in 
Fig. 2 are designated by Greek letters. The 
color indicates the concentration of U with 
red representing U = 1 and blue represent- 
ing U = 0.2; yellow is intermediate to red 
and blue. In Fig. 3, the Greek characters 
indicate the pattern found at that point in 

parameter space. There are two additional 
symbols in Fig. 3, R and B, indicating 
spatially uniform red and blue states, respec- 
tively. The red state corresponds to (U = 
l,V = 0) and the blue state depends on the 
exact parameter values but corresponds 
roughly to (U = 0.3,V = 0.25). 

Pattern CY is time-dependent and consists 
of fledgling spirals that are constantly col- 
liding and annihilating each other: full 
spirals never form. Pattern is time-depen- 
dent and consists of what is generally called 

phase turbulence (8), which occurs in the 
vicinity of a Hopf bifurcation to a stable 
periodic orbit. The medium is unable to 
synchronize so the phase of the oscillators 
varies as a function of position. In the 
present case, the small-amplitude periodic 
orbit that bifurcates is unstable. Pattern y is 
time-dependent. It consists primarily of 
stripes but there are small localized regions 
that oscillate with a relatively high frequen- 
cy (- The active regions disappear, 
but new ones always appear elsewhere. In 

o . I ~ ,  _..-. .... , ,I 
___...-- ._..-- 
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Fig. 1. Phase diagram of the reaction kinetics. 
Outside the region bounded by the solid line, 
there is a single spatially uniform state (called 
the trivial state) (U = 1, V = 0) that is stable for 
all (F, k). Inside the region bounded by the solid 
line, there are three spatially uniform steady 
states. Above the dotted line and below the 
solid line, the system is bistable: There are two 
linearly stable steady states in this region. As F 
is decreased through the dotted line, the non- 
trivial stable steady state loses stability through 
Hopf bifurcation. The bifurcating periodic orbit 
is stable for k < 0.035 and unstable for k > 
0.035. No periodic orbits exist for parameter 
values outside the region bounded by the solid 
line. 

. Ig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which 
are used in Fig. 3 to indicate the pattern found at a given point in parameter space. 

Flg. 3. The map. The Greek letters 
indicate the location in parameter 
space where the patterns in Fig. 2 
were found; B and R indicate that 
the system evolved to uniform blue 

0.06 and red states, respectively. 
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Fig. 2 there is an active region near the top 
center of pattern y. Pattern 6 consists of 
regular hexagons except for apparently sta- 
ble defects. Pattern 11 is time-dependent: a 
few of the stripes oscillate without apparent 
decay, but the remainder of the pattern 
remains time-independent. Pattern L is 
time-dependent and was observed for only a 
sinele Darameter value. " A 

Patterns 0, K, and CL resemble those 
observed by Lee et d. (5). When blue waves 
collide, they stop, as do those observed by 
Lee et d. In pattern CL, long stripes grow in 
length. The growth is parallel to the stripes 
and takes place at the tips. If two distinct 
stripes that are both growing are pointed 
directly at each other, it is always observed 
that when the growing tips reach some 
critical separation distance, they alter their 
course so as not to collide. In patterns 0 and 
K, the perturbations grow radially outward 
with a velocity normal to the stripes. In 
these cases if two stripes collide, they sim- 
ply stop, as do those observed by Lee et d. 
I have also observed, in one space dimen- 
sion, fronts propagating toward each other 
that stop when they reach a critical separa- 
tion. This is fundamentally new behavior 
for nonlinear waves that has recently been 
observed in other models as well (9). . , 

Patterns E, 5, and X share similarities. 
They consist of blue spots on a red or yellow 
background. Pattern A is time-independent 
and patterns E and 5 are time-dependent. 
Note that spots occur only in regions of 

parameter space where the system is excit- 
able and the sole uniform steady state is the 
red state (U = l,V = 0). Thus, the blue 
spots cannot persist for extended time un- 
less there is a gradient present. Because the 
gradient is required for the existence of the 
s~ots. thev must have a maximum size or 

- 7 ,  

there would be blue regions that were es- 
sentially gradient-free. Such regions would 
necessarily decay to the red state. Note that 
these gradients are self-sustaining and are 
not imposed externally. After the initial 
perturbation, the spots increase in number 
until thev fill the svstem. This Drocess is 
visually similar to cell division. After a spot 
has divided to form two spots, they move 
away from each other. During this period, 
each spot grows radially outward. The 
growth is a consequence of excitability. As 
the spots get further apart, they begin to 
elongate in the direction perpendicular to 
their motion. When a critical size is 
achieved, the gradient is no longer sufficient 
to maintain the center in the blue state, so 
the center decays to red, leaving two blue 
spots. This process is illustrated in Fig. 4. 
Figure 4A was made just after the initial 
square perturbation had decayed to leave the 
four spots. In Fig. 4B, the spots have moved 
away from each other and are beginning to 
elongate. In Fig. 4C, the new spots are 
clearly visible. In Fig. 4D, the replication 
process is complete. The subsequent evolu- 
tion depends on the control parameters. 
Pattern X remains in a steady state. Pattern 5 

remains time-dependent but with long-range 
spatial order except for local regions of ac- 
tivity. The active regions are not stationary. 
At any one instant, they do not appear 
qualitatively different from pattern 5 (Fig. 2) 
but the location of the red disturbances 
changes with time. Pattern E appears to have 
no long-range order either in time or space. 
Once the system is filled with blue spots, 
they can die due to overcrowding. This 
occurs when many spots are crowded togeth- 
er and the gradient over an extended region 
becomes too weak to support them. The 
spots in such a region will collapse nearly 
simultaneously to leave an irregular red hole. 
There are always more spots on the boundary 
of any hole, and after a few thousand time 
steps no sign of the hole will remain. The 
spots on its border will have filled it. Figure 
5 illustrates this process. 

Pattern E is chaotic. The Lia~unov exDo- 
nent (which determines the rate of separa- 
tion of nearby trajectories) is positive. The 
Liapunov time (the inverse of the Liapunov 
exponent) is 660 time steps, roughly equal to 
the time it takes for a spot to replicate, as 
shown in Fig. 4. This time period is also 
about how low it takes for a molecule to 

u 

dihse across one of the spots. The time 
average of pattern E is constant in space. 

All of the patterns presented here arose 
in response to finite-amplitude perturba- 
tions. The ratio of diffusion coefficients used 
was 2. It is now well known that Turing 
instabilities that lead to spontaneous pattern 

Fig. 4 (left). Time evolution of spot multiplication. This figure was I .g. 5 (right). Time evolution of pattern E. The images are 250 time units 
produced in a 256 by 256 simulation with physical dimensions of 0.5 by apart. In the corners (which map to the same point in physical space), one 
0.5 and a time step of 0.01 : The times tat which the figures were taken can see a yellow region in (A) to (C). It has decayed to red in (D). In (A) and 
are as follows: (A) t = 0; (8) t = 350; (C) t = 510; and (D) t = 650. (B), the center of the left border has a red region that is nearly filled in (D). 
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formation cannot occur in systems in which 
all diffusion coefficients are eaual. [For a 
comprehensive discussion of these issues, see 
Pearson and co-workers (1 0, 1 1) ; for a dis- 
cussion of Turing instabilities in the model 
at hand, see Vastano et al. (12) .] The only 
Turing patterns that can occur bifurcate off 
the nontrivial steady uniform state (the blue 
state). Most of the patterns discussed in this 
report occur for parameter values such that 
the nontrivial steady state does not exist. 
With the ratio of diffusion coefficients used 
here, Turing patterns occur only in a narrow 
parameter region in the vicinity of F = k = 
0.0625, where the line of saddle-node bifur- 
cations coalesces with the line of Hopf bi- 
furcations. In the vicinity of this point, the 
branch of small-amplitude Turing patterns is 
unstable (12). 

With eaual diffusion coefficients. no oat- , & 

terns formed in which small asymmetries in 
the initial conditions were amplified by the 
dynamics. This observation can probably be 
understood in terms of the following fact: 
Nonlinear plane waves in two dimensions 
cannot be destabilized by diffusion in the 
case that all diffusion coefficients are equal 
(13). During the initial stages of the evolu- 
tion, the comers of the square perturbation 
are rounded off. The perturbation then 
evolves as a radial wave, either inward or 
outward depending on the parameter values. 
Such a wave cannot undergo spontaneous 
symmetry breaking unless the diffusion coef- 
ficients are unequal. However, I found sym- 
metry breaking over a wide range of param- 
eter values for a ratio of diffusion coefficients 
of 2. Such a ratio is physically reasonable 
even for small molecules in aaueous solu- 
tion. Given this diffusion ratio and the wide 
range of parameters over which the replicat- 
ing spot patterns exist, it is likely that they 
will soon be observed experimentally. 

Recently Hasslacher et al. have demon- 
strated the plausibility of subcellular chem- 
ical patterns through lattice-gas simulations 
of the Selkov model (14). The patterns 
discussed in the Dresent article can also be 
found in lattice-gas simulations of the 
Selkov model and in simulations carried out 
in three space dimensions. Perhaps they are 
related to dynamical processes in the cell 
such as centrosome replication. 
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Pattern Formation by Interacting Chemical Fronts 

Kyoung J. Lee, W. D. McCormick, Qi Ouyang, Harry L. Swinney* 
Experiments on a bistable chemical reaction in a continuously fed thin gel layer reveal a 
new type of spatiotemporal pattern, one in which fronts propagate at a constant speed until 
they reach a critical separation (typically 0.4 millimeter) and stop. The resulting asymptotic 
state is a highly irregular stationary pattern that contrasts with the regular patterns such 
as hexagons, squares, and stripes that have been observed in many nonequilibrium 
systems. The observed patterns are initiated by a finite amplitude perturbation rather than 
through spontaneous symmetry breaking. 

I n  recent years, pattern formation has be- 
come a very active area of research, moti- 
vated in part by the realization that there 
are many common aspects of patterns 
formed by diverse physical, chemical, and 
biological systems and by cellular automata 
and differential equation models. In exper- 
iments on a chemical system, we have 
discovered a new type of pattern that differs 
qualitatively from the previously studied 
chemical waves [rotating spirals (I)], sta- 
tionary "Turing" patterns (2-4), and cha- 
otic patterns (5). These new patterns form 
only in response to large-amplitude pertur- 
bations-small-amplitude perturbations de- 
cay. A large perturbation evolves into an 
irregular pattern that is stationary (time- 
independent) (Fig. 1). The patterns have a 
length scale determined by the interaction 
of the chemical fronts, which propagate 
toward one another at constant speed until 
they reach a critical distance and stop, as 
Fig. 2 illustrates. The growth of these front 
patterns is markedly different from Turing 
patterns: The front patterns develop locally 
and spread to fill space, as in crystal growth, 
whereas Turing patterns emerge spontane- 
ously everywhere when the critical value of 
a control oarameter is exceeded. 

The front patterns are highly irregular, 
in contrast with Turing patterns, which 
emerge as a regular array of stripes or hexa- 
gons (in two-dimensional systems) at the 
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transition from a uniform state (4). The 
interaction of fronts illustrated in Fig. 2 also 
contrasts with the behavior in excitable 
chemical media, where colliding fronts an- 
nihilate one another ( I ) ,  and with solitons, 
where nonlinear waves pass through one 
another (6). 

Our experiments have been conducted 
using an iodate-ferrocyanide-sulfite reac- 
tion, which is known to exhibit bistability 
and large oscillations in pH in stirred flow 
reactors (7). The other reactions that yield 
stationary chemical patterns are the well- 
studied chlorite-iodide-malonic acid reac- 
tion (3-5) and a variant reaction (8) that 
uses chlorine dioxide instead of chlorite. 
We chose the iodate-ferrocyanide-sulfite re- 
action as a new candidate for studies of 
pattern formation because a pH indicator 
could be used to visualize patterns that 
might form. 

The following experiments illustrate the 
differences between our patterns and those 
previously observed in reaction-diffusion 
systems. A diagram of the gel disc reactor is 
shown in Fig. 3. Gel-filled reactors were 
developed several years ago (9) to study 
reaction-diffusion systems maintained in 
well-defined states far from equilibrium. 
These reactors are now widely used for 
studying sustained patterns that arise solely 
from the interplay of diffusion and chemical 
kinetics-the gel prevents convective mo- 
tion. A thin polyacrylamide gel layer (0.2 
mm thick, 22 mm in diameter) is fed 
diffusively by a continuously refreshed res- 
ervoir of chemicals (10). There are two 
thin membranes between the polyacrylam- 
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