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including the mitochondria. These observations 
show that enrichment of the slgnal In the polar 
plasm is not a result of an intramitochondrial 
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Predisposition to Neoplastic Transformation 
Caused by Gene Replacement of H-rasl 

Robert E. Finney* and J. Michael Bishop 
Homologous recombination was used to introduce a nominally transforming mutation into 
an endogenous H-rasl gene in Ratl fibroblasts. Although both the mutant and the re- 
maining normal allele were expressed equally, the heterozygous cells were not neoplas- 
tically transformed. Instead, spontaneously transformed cells arosefrom the heterozygotes 
at a low frequency, and the majority of these cells had amplified the mutant allele. Thus, 
the activated H-rasl allele was not by itself dominant overthe normal allele but predisposed 
cells to transformation by independent events, such as amplification of the mutant allele. 

Certain point mutations within coding 
sequences of ras proto-oncogenes (H-ras, 
K-ras, and N-ras) generate oncogenes that, 
when ectopically expressed, can transform 
rodent cell lines (1). Furthermore, the 
transforming ability of these mutant alleles 
prevails even though the normal alleles are 
also expressed (1, 2). The mutant alleles 
have therefore been referred to as domi- 
nant. Consistent with this assessment, the 
mutant genes are gain-of-function alleles; 
in general, their protein products have lost 
the ability to hydrolyze guanosine triphos- 
phate efficiently and, thus, become consti- 
tutively activated (1, 3). Although the 
mutant ras alleles are strongly implicated in 
human tumorigenesis (1, 4, 5), their pro- 
posed dominance has been questioned (6). 

To address the issue of ras dominance, we 
used homologous recombination to replace 
one copy of normal H-rasl in Ratl fibro- 

R. E. Flnney, The George Williams Hooper Foundation, 
Universitv of California. Box 0552. San Francisco. CA 

blasts [subclone Bla(+/+) (7)] with the 
mutant allele NMU-H-rasl and then as- 
sessed whether the heterozygous cells were 
neoplastically transformed. The NMU-H- 
rasl gene (isolated from rat mammary tu- 
mors after mutagenesis with nitrosomethyl- 
urea) contains a single missense mutation 
that converts Gly12 to Glu (8) and can 
transform Ratl fibroblasts when expressed in 
abundance after DNA transfection (8, 9). 

We replaced H-rasl with NMU-H-rasl 
by a two-step method that resembles strat- 
egies used previously in yeast (10) and 
mammalian cells (1 I). The first step re- 
quired integration of the vector DNA that 
contained a truncated mutant.ras allele into 
the chromosomal H-ras 1 locus by homolo- 
gous recombination (Fig. 1). The resultant 
cells were neopla~ticall~ transformed be- 
cause the recombination event reconstitut- 
ed a full-length NMU-H-rasl allele ex- 
pressed from the strong promoter of tKe 
murine leukemia virus-long terminal repeat 
(MLV-LTR). These transformed cells, re- 

94143. ferred to as ' ~ e 1 2 / + ,  also possessed a trun- 
J. M. Bishop, Departments of Microbiology and Immu- 
nology, Biochemistry, and Biophysics and The cated H-rasl and a of the 
George Willlams Hooper Foundation, University of @t gene driven by the SV40 promoter- 
California, San Francisco, CA 941 43. enhancer (SV-@t) that rendered them re- 
*To whom correspondence should be addressed. sistant to mycophenolic acid. 
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The second step in the gene replacement 
strategy required excision of the integrated 
vector DNA bv intramolecular reci~rocal 
exchange between the truncated H-rasl 
gene and the full-length, mutant allele (Fig. 
1). Cells that had excised DNA including 
the at gene were selected by resistance to 
6-thioguanine (6-TG). When the exchange 
occurred 5' to codon 12, the resultant cells 
retained a full-length mutant ras allele that 
was expressed from its own natural promoter 
rather than from the MLV-LTR. These het- 
erozygous cells, referred to as e12/+, were 
then characterized in detail. 

The relative expression of normal and 
mutant H-rasl RNA in Bla(+/+), Me12/+, 
and e12/+ cells was assessed. Total H-rasl 
expression in Me12/+ cells was ten times 
greater than that in the parental Bla(+/+) 
cells (Fig. 2A), and the majority of this 
RNA contained the C-to-T mutation at 
nucleotide 35 (the nucleotide responsible for 
the codon 12 mutation) (Fig. 2B). In con- 

Fig. 1. Strategy for replacing 
H-rasl with NMU-H-rasl. Step 1: 
integration of plasmid pRINHR3'A 
into a chromosomal copy of 
H-rasl by homologous recombi- 
nation (20). Step 2: excision of 
DNA by intramolecular homolo- 
gous recombination 5' to codon 
12. The genotype of cloned cells 
was determined by restriction en- 
zyme digestion of genomic DNA 
and Southern (DNA) blot analysis 
(9, 21). After step 2, DNA se- 
quencing was used to demon- 
strate that the mutant allele con- 
tained the same G-to-A mutation 
observed in NMU-H-rasl (9). 

trast, total H-rasl expression in e12/+ cells 
was similar to that in Bla(+/+) cells (Fig. 
2A), and about half of this RNA contained 
the C-to-T mutation (Fig. 2B). We there- 
fore conclude that both the normal and 
mutant alleles of H-rasl were expressed in 
normal amounts in e12/+ cells. 

To determine whether mutant Ras pro- 
tein was expressed in the various cells, we 
performed immunoprecipitations with anti- 
bodies Y 13-238 and Y 13-259, which recog- 
nize all forms of Ras, and then immunoblot- 
ted them with pan-Ras Glu12, an antibody 
specific for mutant Ras. The mutant protein 
was readily detected in both e12/+ and 
Me12/+ cells but not in Bla(+/+) cells 
(Fig. 2C). The amount expressed in 
Mel2/+ cells was about 20 times greater 
than that in e12/+ cells, most likely because 
of the strong MLV-LTR promoter. Normal 
Ras was readily detected in Bla(+/+) cells 
when the immunoblot was stripped of anti- 
body and reprobed with pan ras (Ab2), an 

RV 2 N 3  RV 
L, -- nln \ I n ! A Chromosomal H-rasl 

" " g y ~ y  L, g 
Truncated H-rasl SV-gpt LTR Full-length NMU-H-rasl 

RV le12 2 R l g  RV 
LA A I - lJ Chromosomal NMU-H-rasl 

Table 1. Frequency of spontaneous transformation. We plated Bla(+/+), e12/+, Rl(+/+), or 
R2(+/+) cells onto 60-mm tissue culture dishes (60 dishes per cell line, 500 cells per dish) and 
counted the number of cultures that did not contain foci 3 weeks after the cultures reached 
confluence. The average number of cells per 60-mm culture at confluence was determined with a 
hemocytometer. A Luria-Delbriick fluctuation analysis (14) was used to compute the rate of 
spontaneous transformation. 

Cell type Experiment Cell divisions 
per culture 

Cultures 
without foci 

(%) 

Frequency of 
spontaneous 

transformation 

<5.0 X lo-' 
<5.6 X lo-' 

3.7 x 10-8 
9.5 x 
3.4 x 10-8 

a . 0  x lo-' 
<5.4 x lo-' 
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antibody that recognizes both mutant and 
normal Ras. (Fig. 2D). 

To test whether the mutant allele in 
e12/+ cells was dominant over the normal 
allele, we analyzed the cells for morpholog- 
ical transformation, disturbance of actin ca- 
bles, growth in suspension, and tumorigen- 
esis in nude mice. The parental Bla(+/+) 
and the e12/+ cells were not morphologi- 
cally transformed; the cells were flat and 
nonrefractile and grew as a monolayer, and 
they exhibited normal actin cables (Fig. 
2E). In contrast, Me12/+ cells were mor- 
phologically transformed; the cells were 
highly elongated and refractile, did not 
grow as a monolayer, and did not exhibit 
actin cables (Fig. 2E). To test the ability of 
cells to grow in suspension (1 2) ,  we plated 
Bla(+/+) and e12/+ cells (lo6 cells each) 
and lo3 Me12/+ cells in soft agar cultures. 
After 18 days, 10% of the plated Mel2/+ 
cells produced colonies. In contrast, no 
colonies were obtained from Bla(+/+) 
cells and only three colonies (a cloning 
efficiency of 6 x were obtained from 
e12/+ cells. Finally, to assess the tumori- 
genic capacity of Me12/+ and e12/+ cells, 
we grafted lo6 cells of each line under the 
kidney capsule in nude mice (1 3). After 3 
weeks, tumors were present in six out of six 
Mel2/+ grafts but in none of six e12/+ 
grafts (9). 

We conclude that e12/+ cells are not 
transformed and the mutant H-rasl allele is 
not dominant over the nprmal allele. How- 
ever, because the soft agar assays with e12/+ 
cells did occasionally produce a few colonies, 
in contrast to assays with Bla(+/+) cells 
that never produced colonies, we hypothe- 
sized that e12/+ cells may be "predisposed" 
to neoplastic transformation. To test this 
hypothesis, we measured the rate of sponta- 
neous focus formation for both Bla(+/+) 
and e12/+ cells by Luria-Delbriick fluctua- 
tion analysis (14) (Table 1). The results 
indicated that e 12/+ cells spontaneously 
produced cells capable of focus formation at 
a frequency between 3.4 x lod8 and 9.5 x 
lop8 per e12/+ cell per generation. In con- 
trast, no foci were observed in Bla(+/+) 
cultures (a frequency less than 5.0 x 
per e12/+ cell per generation). Wild-type 
revertants of Mel2/+ cells [re-ferred to as 
Rl(+/+) and R2(+/+) cells, in which the 
intramolecular reciprocal exchange excising 
the gpt gene was 3' to codon 121 similarly did 
not produce spontaneously transformed cells 
(Table 1). Thus, the augmented frequency,, 
of spontaneous transformation observed 
within the e12/+ cells was not a residual 
effect of the transformed phenotype of the 
Mel2/+ cells from which they were derived. 

We used restriction analysis of DNA to 
investigate the spontaneous-transformation 
of the e12/+ cells (Fig. 3). Because of an 
Eco RI restriction site polymorphism within 



Fig. 2. Expression of and mor- 
phological features of B l  a(+/+), 
Me1 2/+, and e l  2/+ cells. (A) Ribo- 
nuclease protection analysis of 
H-rasl expression. The probe was 
the 151-nucleotide Sac I fragment 
of rat H-rasl and included 131 nu- 
cleotides at the 5' end of the first 
exon (the protected portion) plus 20 
nucleotides of the first intron (the 
unprotected portion). Samples of 
total RNA (10 pg) from Bla(+/+) 
(+I+), Me12/+, and e12/+ cells 
were hybridized (22). (B) Relative 
expression of normal and mutant 
H-rasl RNA. The polymerase chain 
reaction (PCR) was used to amplify 
H-rasl sequences, including nucle- 
otide 35 (arrow). from Me12/+ and 

m 
o 3 5  Mel2/+ e l  2/+ s A C G T  A C G T  a 151rv- - a -- -: 

131, 1 E= 

145-nucleotide PCR product was 
purified by agarose gel electropho- 
resis and then sequenced directly 
(US. Biochemical, Cleveland, Ohio). 
(C) Expression of mutant Ras pro- 
tein. Ras protein from subconfluent -- 
cultures was immunoprecipitated 
with antibodies ~13-238.and ~13-259 and protein GSepharose (Zymed Laboratories, South San 
Francisco, California). After separation on 12.5% acrylamide gels, the immunoprecipitated protein 
was immunoblotted with pan-Ras Glu12 (Oncogene Science, Uniondale, New York) and visualized 
with a sheep antibody to mouse immunoglobul6 G conjugated to horseradish peroxidase (Organon 
Tecknika. Durham. North Carolina) and enhanced chemiluminescence IArnersham. Arlinaton 
Heights, illinois) (23). (D) Expressio;l of normal Ras protein. The immunoblot'in (C) was stripp& of 
antibodies and reprobed with pan ras (Ab2) (Oncogene Science). (E) Bla(+/+), Me12/+, and 
e12/+ cells were each grown to a density of 106 cells per 100-mm plate and observed by phase 
microscopy at x200 magnification (top micrographs). We determined the presence of actin cables 
(bottom micrographs) by plating cells onto fibronectin-coated glass slides by fixation with 2% 
paraformaldehyde and by staining with rhodamine-conjugated phalloidin (Molecular Probes, 
Eugene. Oregon). 

the second intron of the mutant H-rasl 
allele (Fig. l), this allele was represented by 
bands at 5 and 3.5 kb. The 8.5-kb band 
represented the normal allele. Because all 
spontaneously transformed cell lines exam- 
ined contained the normal allele of H-rasl, 
spontaneous transformation did not corre- 
late with the loss of the normal allele. 
Instead, in 14 out of 15 transformed lines, 
hybridization to the mutant allele of H-rasl 
was augmented. Only one transformed cell 
line retained the mutant allele as a single 
copy (9). Thus, spontaneous transforma- 
tion of e 12/+ cells correlated with amplifi- 
cation of the mutant ras allele. The number 
of copies of mutant H-ras 1 ranged from two 
or three in A8e 12/+ and Aloe 12/+ cells to 
11 to 12 in A5e12/+ cells (1 5). 

We have directly demonstrated that a 
single point mutation in H-rasl i s  not in 
itself sufficient for neoplastic transformation 
of even established cell lines; at least one 
additional event, such as gene amplifica- 
tion, i s  required. Because the e12/+ cells 

are heterozygous for mutant H-ras 1, they 
are a reasonable model of cells enroute to 
neoplastic transformation in vivo. Consis- 
tent with this conclusion, expression of 
mutant ras genes i s  frequently augmented in 
tumor cells by gene amplification or other 
mechanisms (4,5, 16). Even EJ H-ras 1, the 
original activated ras allele isolated from 
human cells, i s  now known to contain not 
only a codon 12 mutation (17) but also a 
mutation within the last intron that aug- 
ments expression of the gene over tenfold 
(18). But other independent events may 
also suffice. For example, loss of normal 
H-ras'l has been observed in human tumors 
(4, 5) and i s  a consistent feature of mouse 
skin tumor development (1 9), which sug- 
gests that the absence of the normal gene 
product may facilitate transformation by 
the remaining mutant product. In addition, 
many human tumors (4, 5) and at least one 
spontaneously transformed cell line derived 
from e12/+ cells (9) retain a single copy of 
mutant H-ras 1, which indicates the impor- 

Fig. 3. Southern analysis of H-rasl sequences in 
spontaneously transformed cell lines. Genomic 
DNA (15 pg)-was cut with Eco RV and Eco RI 
and subjected to electrophoresis through 0.7% 
agarose gels and a Southern blot probed with a 
nick-translated 2-kb Bam HI fragment from 
pRINHR3'A. Lane 1, Bla(+/+); lane 2, e12/+; 
lane 3, Alela+; lane 4, A4e12/+; lane 5, 
A5e12/+; lane 6, A6e12/+; lane 7, A7e12/+; 
lane 8, A8e12/+; lane 9, A9e12/+; lane 10, 
AlOe12/+; lane 11, A1 1e12/+. This figure is a 
composite from two gels. Molecular size mark- 
ers are shown to the left in kilobases. 

tance of events unrelated to gene dosage. 
The el2/+ cell line described here may 
facilitate identification of these events. 
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&I,! TECHNICAL COMMENTS 

Metal-Metal Bonds in Bimetallic Surfaces 

J. A. Rodriguez and D. W. Goodman show 
( I )  an interesting correlation between core- 
electron binding-energy shifts and desorp- 
tion temperatures for monolayer metal ad- 
sorbates on transition metal substrates. 
From the shift they deduce a charge transfer 
that turns out to be "completely contrary to 
that observed in bulk alloys." This deduc- 
tion is most unexpected and warrants fur- 
ther discussion. We used a Born-Haber 
cycle to clarify the origin of the observed 
correlation of binding-energy shift with de- 
sorption temperature and point out that 
there are other important contributions to 
the shift, not mentioned in the article, that 
preclude a simple connection with charge 
transfer. 

The correlation between binding energy 
and desorption temperature has a well- 
known theoretical basis. It arises because the 
desorption temperature provides a measure 
of the adsorption enthalpy. A simple expres- 
sion for the core-electron binding-energy 
shift from the bulk metal to the adsorbed 
monolayer, each measured relative to its 
own Fermi level, is readily obtained from the 
corresponding Born-Haber cycles (2): 

In this formulation the Eads are adsorption 
enthalpies, the Ecoh are bulk cohesive en- 
ergies, and the superscripts Z and Z + 1 
denote the adsorbate element and the ele- 
ment with next high atomic number. The Z 
+ 1 term enters the equation through an 
equivalent-cores argument (2). The cohe- 
sive energy terms are properties of the bulk 
metals and are independent of the sub- 
strate. The last term is the difference be- 
tween the monolayer and bulk implanta- 
tion energies (2). These are the energies 
obtained when a Z + 1 atom is moved from 
an environment of Z + 1 atoms to one of Z 
atoms. This term should be small, but it is 
important if quantitative results are re- 
quired. Thermodynamically sound Born- 

Haber expressions of this type provide good 
estimates of core-electron binding energies 
in metals (2) as well as of binding-energy 
shifts of adsorbates (3). The important 
point is that the Z and Z + 1 adsorption 
enthalpies enter the equation on equal 
terms but with opposite signs. The simple 
correlations shown in the figures of the 
article by Rodriguez and Goodman tell only 
half the story. One should not conclude 
that such correlations are tv~ical  of all , 

adsorbate systems, because even the sign of 
the shift will change if the Z + 1 atom is 
more strongly adsoried than the Z atom. It 
would be interesting to compare the data in 
the article (I)  with the predictions of Eq. 1. 

Unfortunately, the Born-Haber treat- 
ment gives no clue about the charge trans- 
fer between adsorbate and substrate. How- 
ever, binding-energy shifts in metals and 
alloys depend not only on charge transfer, 
but also on changes in reference level, 
hybridization, and final-state screening (4). 
The fact that charge transfer alone cannot 
exolain the observations became inesca~- 
able when it was found experimentally in 
manv noble and transition metal allov svs- , . 
tems that the core-electron binding-energy 
shift of both components has the same sign. 
This demonstrates that some of the other 
terms can be as large or larger than the 
charge-transfer contribution. Changes in 
screening and hybridization are likely to 
make large contributions for allovs with Ni " 
and Pd. Changes in reference level are 
important when metals with different work 
functions are combined. Correlations be- 
tween differences in work function and 
core-electron binding energy demonstrate 
the importance of the reference-level term. 
These additional terms are eauallv relevant . , 
to adsorbate layers. There is no more justi- 
fication for using the core-electron binding- 
energy shift as a simple indicator of charge 
transfer in bimetallic systems than there is 
for using it in alloys. When the charge 
transfer in these systems is properly evalu- 
ated, the disagreement with the behavior of 

bulk alloys is likely to vanish. 
There are cases in which charge transfer " 

is the major source of core-electron bind- 
ing-energy shifts (5), for example, in mo- 
lecular systems and insulating solids. In 
these systems the charge transfer is between 
well-defined, localized electronic orbitals; 
while in bimetallic systems the charge flow 
is between delocalized conduction band 
states that may contain contributions from 
both substrate and overlaver orbitals, mak- 
ing it difficult even to define the charge 
transfer (5). 

For the adsorbate systems discussed in 
the article by Rodriguez and Goodman (I ) , 
it would be of great interest to measure not " 
only the core-electron binding-energy shift 
of the adsorbate but also the effect of the 
adsorbate on the surface layer of the sub- 
strate. This should Dresent no difficulty 
because the signal from the first atomic 
layer of the substrate is readily resolved in 
photoemission (6) for some of the metals 
discussed in the article. Such data could 
add an im~ortant  new dimension to this 
study and might lead to a better under- 
standing of the interaction between sub- " 

strate and adsorbate. 
G. K. Wertheim 

J. E. Rowe 
ATBT Bell Laboratories, 

Murray Hill, NJ 07974 
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Response: The conclusions in our article 
were based not only on a correlation be- 
tween core-level binding-energy (CLBE) 
shifts and desor~tion temDeratures of metal 
adsorbates but also on correlations between 
CLBE shifts and results of work function 
measurements, ultraviolet photoemission 
spectroscopy (UPS), C O  thermal desorp- 
tion mass spectroscopy (CO-TDS) , C O  
Fourier transform infrared spectroscopy 
(CO-FTIR), and C O  high-resolution elec- , . - 
tron energy loss spectroscopy (CO- 
HREELS). As pointed out by Wertheim 
and Rowe, CLBE shifts may "depend not 
only on charge transfer, but also on changes 
in reference level. hvbridization. and final- , , 

state screening. . . ." Taking this into con- 
sideration, we compared the charge-transfer 
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