
brucei (14). This protein belongs to a novel 
class of glycan-anchored membrane pro- 
teins (1 5) that are thought to function in 
signal transduction (1 6) and intracellular 
targeting (17). The presence of this acidic 
repeat domain suggests that the VHL pro- 
tein may be localized on the cell membrane 
and may be involved in signal transduction 
or cell adhesion. Further clues to the func- 
tion of the VHL protein may emerge as 
more sequence information is obtained. 
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Repression of MHC Class I Gene Promoter Activity 
by Two-Exon Tat of HIV 

T. Kevin Howcroft, Klaus Strebel, Malcolm A. Martin, 
Dinah S. Singer* 

Major histocompatibility complex (MHC) class I molecules are the major receptors for 
viral peptides and serve as targets for specific cytotoxic T lymphocytes. Human immu- 
nodeficiency virus-type 1 (HIV-1) specifically decreased activity of an MHC class I gene 
promoter up to 12-fold. Repression was effected by the HIV-1 Tat protein derived from 
a spliced viral transcript (two-exon Tat). These studies define an activity for two-exon 
Tat distinct from that of one-exon Tat and suggest a mechanism whereby HIV-1-infected 
cells might be able to avoid immune surveillance, allowing the virus to persist in the 
infected host. 

Major histocompatibility complex mole- 
cules play a pivotal role in the initiation 
and propagation of immune responses. 
Immune surveillance for viral infections is 
provided primarily by MHC class I anti- 
gens, which bind intracellularly generated 
viral peptides and act as targets for antivi- 
ral cellular immune responses (1). Many 
viruses are known to repress MHC class I 
expression, among them a number of ret- 
roviruses such as the Moloney leukemia 
virus (2). Decreases in MHC class I levels 
provide a mechanism for the virus to 
evade the host immune response. HIV-1 is 
a complex retrovirus that primarily infects 
CD4+ T cells and monocytes, ultimately 
causing a depletion in the CD4+ T cell 
population and a profound immunodefi- 
ciencv (3). Because HIV-1 is known to , . ,  
establish persistent infections, suggesting 
a viral mechanism to avoid immune sur- 
veillance, we have examined its effect on 
MHC class I expression. 

To assess the effect of HIV-1 on MHC 
class I expression, we transiently trans- 
fected human HeLa cells with an HIV- 
l,,,-derived construct, pNL-Al, which 
expresses all viral gene products except 
Gag and Pol (4), and measured cell surface 

class I expression by staining with an 
antibody to human leukocyte antigen, 
W6132, 48 hours after transfection. To 
distinguish DNL-Al-transfected from non- - 
transfected HeLa cells, we also stained 
cells with an antibody to gp120 (pNL-A1 
encodes gp 120). Two-color flow cytometry 
was performed, and the mean cell surface 
level of class I on gp120+ cells was com- 
pared with that on gp120- cells in the 
same population (5). Whereas gp12OP 
cells stained with a mean fluorescence 
intensity (MFI) of 100 k 8, gp120f cells 
expressed significantly lower levels of 
MHC class I, with an MFI of 49.2 k 2.1 
(P < 0.0004, five independent experi- 
ments). Thus, one or more HIV-1 gene 
products (but not Gag or Pol) are capable 
of markedly decreasing endogenous MHC 
class I expression. The extent of reduction 
observed in the present studies reflects 
onlv the difference that occurs during the " 

transient 48-hour assay and could be an 
underestimate of the actual reduction of 
class I expression occurring in transfected 
HeLa cells. These results are consistent 
with a previous report describing a tran- 
sient decrease in class I expression in 
HIV-1-infected T cell lines (6). Changes 
in class I expression of the magnitude 
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HIV-1 gene products on an MHC class I 
promoter ligated to the reporter gene 
chloramphenicol acetyltransferase (CAT). 
A class I promoter construct containing 
313 base pairs (bp) of 5' flanking se- 
quences (8) was cotransfected into HeLa 
cells with varying amounts of either pNL- 
A1 or a control construct, PAR, which 
expresses only a subset of the pNL-A1- 
encoded viral proteins (Tat, Vpu, an ab- 
errant EnvINef fusion protein, and a trun- 
cated Gag protein) (4). Cotransfection of 
the class I promoter with pNL-A1 mark- 
edly reduced promoter-directed CAT ac- 
tivity to 11.7 ? 1.5% of controls cotrans- 
fected with carrier DNA alone. In con- 
trast, cotransfection with the PAR con- 
struct did not reduce class I promoter 
activity (9). 

The repression mediated by pNL-A1 was 
not due to nonspecific effects of HIV-1- 
encoded products on the class I promoter, 
because expression of CAT under the con- 
trol of SV40, Rous sarcoma virus (RSV), or 
murine leukemia virus (MuLV) promoters 
was not significantly affected when the pro- 
moter was cotransfected with pNL-A1 into 
HeLa cells (Table I). Because the con- 
structs examined were identical except for 
the upstream promoter region, the failure of 
pNL-A1 to decrease CAT activity other 
than in the class I promoter construct also 
eliminates possible posttranscriptional ef- 
fects. Furthermore, pNL-A1 inhibited the 
expression of a second reporter gene, lu- 
ciferase, directed by the class I promoter 
[( lo);  see also Table 21, indicating that the 
pNL-A1 effect did not specifically target the 
CAT reporter. These experiments demon- 
strate that HIV-1-mediated repression of 
MHC class I expression occurs transcrip- 
tionally. 

To map the target site of the HIV-1- 
mediated repression, we tested deletion 
constructs of the class I promoter for their 
sensitivity to pNL-A1. A variety of regu- 
latory elements have been identified be- 
tween - 209 and - 68 bp in the 5 '  flanking 
region of the MHC class I gene (I I ) ,  
including a constitutive enhancer (en- 
hancer A),  an interferon response ele- 
ment, a CAMP (adenosine 3',5'-mono- 
phosphate) response element (CRE) , and 
a weak enhancer (enhancer B). Enhancer 
A has been shown previously to bind a 
homodimer of the p50 NFKB; alternative 
processing of the NFKB precursor after 
HIV-1 infection has been reported (12). 
Deletion to within 68 bp of the initiation 
of transcription did not abrogate repres- 
sion by pNL-A1 (Fig. 1). Thus, the effect 
was not mediated by enhancer A-NFKB, 
the CRE, or the enhancer B regions, all of 
which are deleted from this construct. 
Rather, the HIV-1-responsive element 
maps to within the 68-bp region of the 

minimal promoter, a region that is only 
known to contain the CAT and TATA 
boxes. 

Because pNL-A1 but not pAR reduced 
class I promoter activity, HIV-1 sequences 
responsible for class I promoter repression 
map to a region of the proviral genome 3 '  
of the pol gene (Fig. 2). Contained within 
this region are seven genes: vif, upu, vpr, 
rev, tat ,  enu, and nef. Mutations affecting 
six of these genes were introduced into the " 

pNL-A1 construct and cotransfected into 
HeLa cells with the class I promoter con- 
structs, - 135CAT and -3 13CAT. Each 
of these mutant derivatives of pNL-A1 
efficiently repressed the class I promoter 
(Fig. 2) (1 0, 13). Indeed, deletion of nef 
significantly augmented the repression of 
the class I promoter. Thus, the six HIV-1 
gene products-Nef, Rev, Vif, Vpr, Vpu, 
or Env-were not responsible for repress- 
ing the promoter. The effects of the Nef 
and Rev proteins were also tested directly; 
expression vectors containing rev or nef 
under the control of a cytomegalovirus 
(CMV) promoter did not reduce class I 
promoter activity over a range of concen- 
trations (1 to 6 kg of plasmid DNA) tested 
(10). Of the seven gene products encoded 
by pNL-A1, the only one not ruled out in 
this experiment is Tat (14). 

Tat is a viral-encoded regulatory pro- 
tein that transactivates HIV long terminal 
repeat (LTR)-directed gene expression. 
Tat is synthesized as either an 86 (or 
somewhat longer)-amino acid protein de- 

Table 1. pNLA1 selectively reduces class I 
promoter activity. HeLa cells were cotrans- 
fected (9) with the indicated promoter CAT 
construct (5 kg) and with the HIV-1 proviral 
constructs PAR or pNL-A1 (5 k g )  Values (an 
average of four duplicate samples) represent 
CAT activity normalized to control transfec- 
tions without an HIV-1 proviral construct. All 
assays were normalized to p-galactosidase 
activity. 

Promoter pAR1control pNL-Al/control 

Class 1 1.35 2 0.095 0.46 2 0.02 
SV40 1.29 2 0.13 1.51 5 0.26 
RSV 0.99 5 0.003 1 .OO 5 0.003 
M u  LV 3.16 5 0.04 1.90 5 0.135 

rived from a spliced mRNA (two-exon 
Tat) or a 72-amino acid ~ roduc t  contain- 
ing only the first coding exon (one-exon 
Tat), the latter appearing after the onset 
of Rev expression. Whereas pNL-A1 di- 
rects the synthesis of both forms of Tat, 
only the single-exon form is expressed by 
PAR. Although both Tat species transac- 
tivate the HIV LTR in tissue culture 
systems (1 5),  the functional significance 
of the two forms of Tat in vivo is not 
presently understood. Because pNL-A1 
but not pAR inhibited the class I promot- 
er, the results obtained in the pNL-A1 
mutagenesis experiment (Fig. 2) suggested 
that the observed re~ression was due to 
the two-exon species of Tat. 

To examine this possibility further, we 
cotransfected expression vectors encoding 
HIV-l,,,-derived two-exon Tat (86 amino 
acids in length) and one-exon Tat (72 
amino acids in length) into HeLa cells with 
a class I promoter construct (-135Lu- 
ciferase) (16). Two-exon Tat, in the ab- 
sence of anv other HIV-1 transcri~ts. mark- 

& ,  

edly decreased class I promoter activity, 
whereas one-exon Tat had only a minor 
effect (Table 2). This suggests that the 

Table 2. Repression of class I promoter activ- 
ity by two-exon Tat in the absence of any 
other viral gene products. HeLa cells were 
cotransfected (9) with a class I promoter 
construct containing 135 bp of promoter prox- 
imal sequence ligated to the luciferase report- 
er gene (-135 luciferase; 5 pg) and the 
indicated Tat expression vectors (5 kg) or with 
a control expression vector consisting of the 
SV40 early promoter with a nonfunctional in- 
sert (16). The effect of Tat on MHC class I 
promoter activity is expressed relative to that 
of the control expression vector. Luciferase 
activity was determined on a Monolight 2010 
luminometer (Analytical Luminescence Labo- 
ratory) and was normalized to p-galacto- 
sidase activity. 

Relative 
Tat Form Origin promoter activity 

(Tatlcontrol) 

Tat 86 Two-exon HIV-1 ,, 0.1 72 5 0.009 
Tat 72 One-exon HIV-I,, 0.767 2 0.088 
Tat 49 Truncation HIV-I,, 0.867 2 0.089 
Tat 101 Two-exon HIV-I,,, 0.412 2 0.024 

Fig. 1. HIV-1-mediated Class I promoter constructs Relative effect of HIV constructs 
negative regulation of the 
class I promoter requires -135 pAWcontrol pNL-Allcontrol 

only 68 bp of promoter- p @ CAT I - I ~~CAT  i.26+o.i7 0.25 + 0.05 
prox~mal sequences. Trun- 
cated MHC class I promot- 
er CAT constructs (5 kg) -95 l L ~ l  -95 CAT 0.96 + 0.03 0.32 + 0.09 
were cotransfected with 
PAR or pNL-A1 (5 pg) into -68 

HeLa cells, and CAT activ- CAT 1-60 CAT 1.17+0.07 0.25+0.01 

ity was determined (9). Results are expressed relative to control values. Figure summarizes data 
obtained from two independent experiments performed in duplicate. 
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1 2  3 4 5 7 8 9 kb 
Class I promoter constructs 

Genes not -135 3 1 3  

Gag (27 kD) 

- - 

expressed (relative to control) 
tat vyu EnvINef (25 kD) 

PAR (gag), pol, vif, 
vp'; rev env 1.030+0.140 1.100+0.026 
(neV 

pNL-A1 gag,pol 0.097 + 0.003 0.295 + 0.005 
USA Deletion of 

pNLAdVif 
Nde 1-1 MI 

-%---- gag, pol, vif 0.060 + 0.005 0.084 + 0.01 0 
SA E[tl$$e 

pNLAdVpr n gag, pol, vpr 0.108 + 0.010 0.515+0.038 Ti?---- SA 10-bpXho Imker in 
Ssp I site - pNLA-dVpu 

S-A {$FrJ{e gag, pol, vpu 0.084 + 0.024 0.490 + 0.087 
pNLA-dEnv SD SA 

v gag, pol, env 0.086 + 0.002 0.395 + 0.01 5 
Fill-in of 

pNLA-dRev gag, pol, env 

-A Fill-in of vif, vpr?, vpu, 0.164 + 0.040 N D 
Xho I site - pNLA-dNef 

S% S A 
gag, pol, nef 0.012 + 0.001 ND 

Fig. 2. Repression of class I promoter activity not eliminated by HlV-1 mutations that eliminate the 
expression of Gag, Pol, Vlf, Vpr, Vpu, Rev, Nef, or Env. Derivative pNL-A1 constructs (5 pg) 
contain~ng the ind~cated mutations to eliminate expression of specific HIV-1 genes were generated 
and cotransfected along with -135CAT or -313CAT (5 pg) into HeLa cells, and CAT activity was 
determined (9). Results are expressed relative to control values. 

repression of the class I promoter by pNL- 
A1 but not bv its derivative DAR resulted 
from its capacity to express two-exon Tat 
and indicates that the COOH-terminal 
domain of two-exon Tat is essential for 
repression. These experiments define a 
function of two-exon HIV-1 Tat distinct 
from that of one-exon Tat and indicate 
that the HIV-1 Tat protein can act both as 
a transcriptional repressor as well as a 
transcriptional activator. 

A two-exon Tat (101 amino acids in 
length) derived from the HIV-I,,, isolate 
also repressed class I promoter activity, 
but to a lesser extent than the HIV-I,,,- 
derived two-exon Tat (Table 2) .  This may 
reflect differences in the amino acid se- 
quence between positions 73 and 86 or in 
the 15 additional residues in the HIV-lsF2 
Tat. The present studies raise the possibil- 
ity that differences in the strength of 
Tat-mediated repression of class I expres- 
sion may influence the persistence and 
pathogenicity associated with different vi- 
ral strains. 

The mechanism by which two-exon Tat 
represses class I promoter activity is not 
known. Tat may act directly by regulating 
class I promoter activity or function indi- 
rectly by transactivating a gene that regu- 
lates class I promoter activity. Tat has been 
reported to interact with cellular factors 
such as Tat-binding protein (TBP)-1 and 
mammalian suppressor of sgvl (MSSI) dur- 
ing the transactivation of the HIV LTR 
(1 7 ) .  Whether these factors are involved in 
regulating class I gene expression, either 

alone or in concert with Tat, is not known. 
Because MHC class I molecules are the 

primary presenters of viral peptides to T 
cells, reduction in cell surface levels of class 
I might lead to a reduced ability of an 
infected cell to be recognized by HIV-1- 
specific cytotoxic T lymphocytes. Down- 
regulation of class I molecules in an HIV- 
1-infected cell could provide a mechanism 
for that cell to avoid normal immune sur- 
veillance. 
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