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GDNF: A Glial Cell Line-Derived Neurotrophic 
Factor for Midbrain Dopaminergic Neurons 

Leu-Fen H. Lin, Daniel H. Doherty, Jack D. Lile, Susan Bektesh, 
Frank Collins* 

A potent neurotrophic factor that enhances survival of midbrain dopaminergic neurons was 

purified and cloned. Glial cell line-derived neurotrophic factor (GDNF) is a glycosylated, 

disulfide-bonded homodimer that is a distantly related member of the transforming growth 

factor-0 superfamily. In embryonic midbrain cultures, recombinant human GDNF pro­

moted the survival and morphological differentiation of dopaminergic neurons and in­

creased their high-affinity dopamine uptake. These effects were relatively specific; GDNF 

did not increase total neuron or astrocyte numbers nor did it increase transmitter uptake 

by 7-aminobutyric-containing and serotonergic neurons. GDNF may have utility in the 

treatment of Parkinson's disease, which is marked by progressive degeneration of midbrain 

dopaminergic neurons. 

Parkinson's disease is characterized by de­

generation of dopaminergic neurons in the 

midbrain that innervate the striatum (1). 

Current treatments are aimed at pharmaco­

logically augmenting striatal dopamine but 

do not prevent continued neuron degener­

ation. Neurotrophic factors that specifically 

prevent this degeneration and increase the 

functional activity of the remaining dopa­

minergic neurons are therefore of substan­

tial clinical interest. 

The search for such neurotrophic factors 

has focused on dissociated cultures of embry­

onic midbrain, where high-affinity dopamine 

uptake and expression of tyrosine hydroxylase 

(TH) can be used as markers for dopaminergic 

neuron survival and differentiation (2). These 

bioassays have established the existence of 

dopaminergic neurotrophic activity in condi­

tioned media derived from primary glial cells 

(3) and from several cell lines with the prop­

erties of glia (4). However, these factors have 

not been characterized. 

Here we report the characterization of a 

specific dopaminergic neurotrophic factor se­

creted by one of these glial cell lines, rat B49 

(5). This factor, termed GDNF (for glial cell 

line-derived neurotrophic factor), was puri­

fied to apparent homogeneity (6) on the 

basis of its ability to promote dopamine 

uptake in midbrain cultures (7). Purified 

GDNF produced a single peak on reversed-

phase high-performance liquid chromatogra­

phy (RP-HPLC) but a broad smear on SDS-
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polyacrylamide gel electrophoresis (SDS-

PAGE), a property suggestive of glycosyla-

tion (Fig. 1). The presence of N-linked 

glycosylation was confirmed by treatment 

with N-glycanase, which decreased the ap­

parent molecular mass of GDNF from ~20 

kD to - 1 5 kD (Fig. 1). GDNF behaved like 

a disulfide-bonded dimer; its apparent mo­

lecular mass on nonreducing SDS gels was 

32 to 42 kD compared with 18 to 22 kD on 

reducing gels (Fig. 1). 

Fig. 1. SDS-PAGE 
of GDNF. Samples 
were heated to 
100°C for 10min with 
or without reducing 
agent (200 mM di-
thiothreitol) or after 
treatment with A/-gly-
canase to remove 
Asn-linked sugars. 
The positions of mo­
lecular weight mark­
ers are indicated on 
the left. Lane 1, puri­
fied B49 cell GDNF 
(25 ng), detected by 
silver staining; lane 2, 
purified B49 cell 
GDNF (25 ng) after reduction of disulfide bonds, 
detected in an immunoblot with antibodies to 
rhGDNF; lane 3, purified B49 cell GDNF (25 ng) 
after treatment with AZ-glycanase, detected in an 
immunoblot with antibodies to rhGDNF; lane 4, 
purified rhGDNF (2 \LQ), detected by Coomassie 
brilliant blue staining; lane 5, purified rhGDNF (2 
fig) after reduction of disulfide bonds, detected 
by Coomassie brilliant blue staining. 



The rat and human genes for GDNF were 
cloned by means of probes that were based 
on the amino-terminal sequence of purified 
GDNF (8). The inferred amino acid se- 
quences of rat and human GDNF are 93% 
identical (Fig. 2A). The sequence data sug- 
gest that GDNF is synthesized as a precursor 
that is processed and secreted as a mature 
protein of 134 amino acids. There are two 
potential N-linked glycosylation sites in the 
mature protein. Interestingly, GDNF con- 
tains the seven conserved Cys residues in the 
same relative spacing found in all members 
of the transforming growth factor+ (TGF- 
p) superfamily (Fig. 2B). Other members of 
the TGF-P superfamily also appear to be 
synthesized as precursors that are processed 
into mature disulfide-bonded dimers (9). 

The TGF-P superfamily has been divided 
into five subfamilies within which the mature 
proteins share 42 to 92% amino acid sequence 
homology (10). Mature GDNF shares less 
than 20% homology with any of these sub- 
families and thus may represent a new subfam- 
ily. There are no other homologies between 
GDNF and sequences in the databases. 

A nucleotide sequence coding for the 
mature human GDNF was expressed in 
Escherichia coli (I 1 ) . Recombinant human 
GDNF (rhGDNF) was refolded to restore 
biological activity and purified to apparent 
homogeneity (I 1 ) . The rhGDNF is a disul- 
fide-bonded homodimer (Fig. 1) that is not 
glycosylated (1 1) but exhibits the full bio- 
logical activity of the native protein. 

To determine the activity of GDNF in 
midbrain cultures, we idended dopaminergic 
neurons by immunohistochemistry (12) with 
antibody to TH. The THf neurons did not 
react with antibody to dopamine P-hydroxy- 
lase (DPH) , supporting their identification as 
dopaminergic, rather than noradrenergic, 
neurons (1 2). Consistent with this finding, 
dopamine uptake in midbrain cultures was 
specifically inhibited by antagonists of dopa- 
minergic, but not noradrenergic, monoamine 
uptake ( 7 ) .  Total neurons were identified 
with antibody to neuron-specific enolase 
(NSE). Astrocytes were identified with anti- 
body to glial fibrillary acidic protein (GFAP) . 

GDNF specifically promoted the survival 
of dopaminergic neurons in dissociated rat 
embryo midbrain cultures. In control cul- 
tures, the number of dopaminergic (TH+) 
and total (NSE+) neurons decreased by 
-70% between days 2 and 21 (Fig. 3). In 
rhGDNF-treated cultures, the number of 
total neurons also decreased by -70%, but 
the number of dopaminergic neurons did not 
decrease significantly (Fig. 3). In five sepa- 
rate experiments carried out to day 2 l, there 
were 2.7 -+ 0.5 times more dopaminergic 
neurons in cultures treated with rhGDNF (1 
ng/ml) than in control cultures (P < 0.001 
Mann-Whitney U test). 

High-ahty  uptake of dopamine, a bio- 

chemical marker of dopaminergic neuron 
function, was also enhanced by GDNF (Fig. 
3). In 20 independent determinations, GDNF 
caused a 2.5- to 3-fold increase in dopamine 
uptake per TH+ neuron, with an average 
half-maximal effective concentration (EC50) 
of 1.2 pM or 36 pglml. In contrast, GDNF 
had no effect on high-affinity uptake of y-ami- 

nobutvric acid (GABA) or serotonin bv 
GABAergic and serotonergic neurons in mid- 
brain cultures at concentrations that were 
-30,000-fold higher than the EC50 for in- 
creasing dopamine uptake (Fig. 3). 

GDNF also dramatically increased the 
morphological differentiation of THf neu- 
rons, resulting in more extensive neurite out- 

A Fig. 2. (A) Sequences of rat 
PLPAGKRLLEAPAEDH36 and human GDNF. The ini- 
PLPAGKRPPEAPAEDR tial Met at position 1 is f0l- 

lowed by a potential secre- 

SLGHRRVPFALTSDSNMPEDYPDQFDDVMDFIQAT 71 
tion signal (boxed area I )  

SLGRRRAPFALSSDZNMPEDYPDQFDDVMDFIQAT 
predicted to be cleaved be- 
tween Alai9 and Phe20 (18). 

I I I The sequence Arg-Leu-Lys- 
PDKQAAALPRRERNRQAAAASPENSRGK 106 Arg7' (boxed area I I ) ,  which 
PDKQMAVLPRRERNRQAAAANPENSRGK matches the consensus se- 

+ quence for proteolytic pro- 
GRRGQRGKNRGCVLTAIHL~~VTDLGLGYETKEELI 141 cesslng in tne constitutive 
GRRGQRGKNRGCVLTAIHLNVTDLGLGYETKEELI secretion pathway (19), IS 

the  resumed cleavaae site * 
FRYCSGSCEAAETMYDKILKNLSRSRRLTSDKVGQ 176 for release of mature GDNF. 
FRYCSGSCDAAETTYDKILKNLSRNRRLVSDKVGQ Consistent with this hypoth- 

esis, the amino-terminal se- 

ACCRPVAFDDDLSFLDDSLVYHILRKHSAKRCGCI211 
quence of purified B49 cell 

ACCRPIAF'DDDLSFLDDNLVYHILRKHSAKRCGCI 
GDNF begins with the Ser78 
immediately after this poten- 

B tial c~eavahe site.  he pre- - 
TGF-p family dicted amino acid se- 
.... LCys (25.28) LCysI~qlCysl (2832) 

(30J4) . . . - [CYS](I)[~~(I)COOH - . . . ,. . . . quence of mature GDNF is 
.... 

(2B) ~ C ~ ~ ] ( , ) ~ C ~ ; I  -- ... . . - . (28) . . - . . . . . ... I-C~S&~;'~ - . - . . . (28) I . . Cys . . . .. -. . - .. . . , .. .. . . j(l)cooH 
underlined; the ~-1inked gly- 

CnNF cosylation sites are indicat- 
ed by asterisks; and the po- 

sition of an intron within the human GDNF gene is denoted by an arrow. Abbreviations for the amino acid 
residues are: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H ,  His; I ,  Ile; K, Lys; L, Leu; M,  Met; N,  Asn; 
P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. (B) Alignment of the seven Cys residues 
in GDNF with those conserved in members of the TGF-p superfamily (10). The number of amino acids 
between each conserved Cys is indicated in parentheses. There is only one amino acid between the final 
Cys and the COOH-terminus of the mature protein. 

Fig. 3. (A and B) Enhanced survival of 
dopaminergic neurons in rat embryo 
midbrain cultures treated with GDNF. % 
Cultures in defined medium (7) were I 5 O  

untreated (W and filled bars) or exposed $120 
to rhGDNF (1 ngiml) (+ and open bars) 
added every 3 days starting on day 0. 
After 2 to 21 days, dopaminergic (THC, 60 

left) or total (NSEf right) neurons were 
counted (12). Neuron counts are the 
average & SD of four determinations. 2 7 14 21 
Significance of the difference between Dava In culture ~ a v s  In culture 
control and GDNF was P < 0.01 (+) or P 200 2 
< 0.001 (*) in the Mann-Whitney U test. g 
(C) Increased dopamine uptake in mid- 4 160 

E 1.65 - 
brain cultures treated with GDNF. Dopa- w 

2 
mine, serotonin (5-HT), or GABA uptake 5 120 1.2 2 
(7) was determined after 12 days of ,/, g 
treatment with the indicated concentra- S 80 0.8 2 
tions of rhGDNF every 3 days from day E - 
0. Uptake values (expressed as fempto- 5 40 0.4 P 

moles per minute per lo5 cells plated) 2 i5 
Q 

are the average +. SD of three determi- " O 
0 

O . - . - - , r O O O  

nations. (D) GDNF does not affect GFAP g o  - 0 °  - o ' - f  ti 

immunoreactivity. Cultures were untreat- GDNF (ng/ml) - Days In culture 
ed (filled bars) or exposed to rhGDNF (1 
ng/ml) (open bars) added every 3 days starting on day 0. GFAP immunoreactivity (12) is plotted in 
optical density units in the ELlSA (12) as the average & SD of four determinations. 
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Fig. 4. Effect of GDNF on the morphology of 
TH+ neurons. Dissociated midbrain cultures 
were incubated as in Fig. 3 for 21 days without 
(A) or with (6) rhGDNF (1 ngtml) and pro- 
cessed for TH immunohistochemistry (12). The 
bar represents 100 pm. 

growth and i n c d  cell body size (Fig. 4). 
Such morphological differences between 
GDNF-treated and control cultures were o b  
vious by day 7 and increased with time. After 
21 days, the average cell body area of TH+ 
neurons in control cultures was 207 & 15 p,mZ 
compared with 340 2 32 p,m2 (P < 0.001) in 
cultures treated with rhGDNF (1 ng/ml). 

GDNF did not increase the density of 
astrocytes nor their expression of GFAP in 
the midbrain cultures. In four separate ex- 
periments, GFAP immunoreactivity (12) 
was not significantly affected out to day 21 
(Fig. 3). 

GDNF is both more specific and more 
potent than other factors that promote 
dopamine uptake or TH+ neuron survival 
in embryonic midbrain cultures. Insulin- 
like growth factors (IGF-I and -II), epider- 
mal growth factor (EGF), fibroblast growth 
factors (a- and b-FGF) , and brain-derived 
neurotrophic factor (BDNF) all increase 
GABA or serotonin uptake in addition to 
their effects on dopaminergic neurons (1 3, 
14). Furthermore, IGFs, EGF, and FGFs 
are glial mitogens in midbrain cultures (1 3, 
15). All of these factors exhibit an EC50 in 
the 1 to 100 ng/ml range (1 5, 16), which is 
25 to 2500 times higher than the EC,, of 
GDNF. 

The effect of GDNF on midbrain dopa- 
minergic neurons in vitro has been con- 
firmed in intact adult animals (1 7). Our 
work provides the basis for defining at the 
molecular level the physiological role of 
GDNF and for exploring its potential utility 
as an alternative approach to the treatment 
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of Parkinson's disease, a neurodegenerative 
disorder of midbrain dopaminergic neurons. 
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