
(2). In all these cases, the regions of native 
f3 sheet that are detected first are those 
involved in tertiary interactions with a 
helix (or helices) that are also stably formed 
early in the folding process. In the native 
structure of the all-P sheet protein IL-lp, 
on the other hand, the three pseudosym- 
metric elements of B sheet do not form such 
interactions. Each ti strand contributes two 
or three nonpolar residues to a hydrophobic 
core that depends for its stability on the 
hydrophobic and van der Waals interac- 
tions of a large number of tightly packed 
side chains. We therefore suggest that fold- 
ing to the stable native structure for this 
type of protein involves the rapid formation 
of p structure around a nonpolar core, 
followed by the much slower stabilization of 
native secondary structure that accompa- 
nies the progressive final tight packing of 
the core groups or those groups external to 
the p sheets, or both. 
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Substrate Phage: Selection of Protease Substrates 
by Monovalent Phage Display 

David J. Matthews and James A. Wells* 
A method is described here for identifying good protease substrates among approximately 
1 O7 possible sequences. A library of fusion proteins was constructed containing an amino- 
terminal domain used to bind to an affinity support, followed by a randomized protease 
substrate sequence and the carboxyl-terminal domain of MI3 gene Ill. Each fusion protein 
was displayed as a single copy on filamentous phagemid particles (substrate phage). 
Phage were then bound to an affinity support and treated with the protease of interest. 
Phage with good protease substrates were released, whereas phage with substrates that 
resisted proteolysis remained bound. After several rounds of binding, proteolysis, and 
phagemid propagation, sensitive and resistant substrate sequences were identified for two 
different proteases, a variant of subtilisin and factor X,. The technique may also be useful 
for studying the sequence specificity of a variety of posttranslational modifications. 

Proteolysis is a common form of posttrans- 
lational modification and is important in 
regulation and protein turnover ( I ) .  
Knowledge of protease specificity aids in the 
identification of biologically relevant sub- 
strates, helps direct the design of specific 

Department of Protein Engineering, Genentech, South 
San Francisco, CA 94080. 

*To whom correspondence should be addressed. 

inhibitors, and is useful in applying proteases 
for site-specific proteolysis (2). Substrate se- 
quences for proteases often extend over sev- 
en or eight contiguous residues (3), and thus 
one protease can potentially interact with a 
vast number of possible substrates. 

We present a method, called substrate 
phage, in which more than 10' potential 
substrates can be tested concurrently. Each 
substrate sequence is displayed as a single 
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copy on phagemid particles between an 
affinity domain and a truncated form of the 
gene 111 protein of M13 (Fig. 1). The 
affinity domain is a variant of human 
growth hormone (hGH) (4) that binds 
tightly to the hGH-binding protein 
(hGHbp) (5). Substrate phage are bound to 
immobilized hGHbp and then cleaved by 
incubation with a Drotease. The Drotease 
cleaves phage containing good substrate 
sequences in the randomized region; phage 
containing noncleaved sequences remain 
bound to the immobilized support and can 
be eluted with a low pH buffer. The pro- 
tease-sensitive or protease-resistant phage 
pools are propagated by infection of Esche- 
r i c h  coli, and the process is repeated to 
further enrich for phage harboring desirable 
substrate or nonsubstrate sequences. 

We used the substrate phage method to 
investigate the substrate specificity of a 
variant of the bacterial serine protease sub- 
tilisin BPN', in which the catalytic His64 
was replaced with Ala (H64A) (6, 7). The 
mutated enzyme acquired specificity for 
cleaving substrates containing His in the P2 
position (8) by a substrate-assisted catalytic 
mechanism. Further mutation of this en- 
zyme produced a hexamutant (S24C- 
H64A-E156S-G166A-G169A-Y2 17L, re- 
ferred to here as the H64A subtilisin vari- 
ant) that was more active and useful for 
cleaving fusion proteins at specific sites 
containing histidines (9). However, some 
P2 His-containing sequences were much 
better substrates than others, and evidence 
indicated that one substrate could be 
cleaved with the His assisting from the PI' 
position (Fig. 2). Thus, we desired to de- 
termine the best substrates for P2 His- 
directed cleavage or possible PI' His-di- 
rected cleavage because this information is 
critical for the efficient use of this enzyme to 
cleave NH2-terminal (P2 His) or COOH- 

Fig. 1. Scheme for protease substrate phage 
selection. 

terminal (P 1 ' His) fusion proteins. 
We inserted a known P2 His-containing 

substrate sequence (AAHYTRQ) between 
the hGH variant and a truncated form of 
gene 111 protein (10) and bound it to 
hGHbp immobilized on microtiter plates. 
After treatment with the H64A subtilisin 
variant, - 100 times more phagemid parti- 
cles harboring the substrate sequence insert 
were released compared to the number of 
similar phagemid particles released that 
lack the insert (I I). 

We constructed two substrate phage li- 
braries by inserting the sequence GPG- 
G (X) ,GGPG or GPAA(X) ,AAPG between 
the hGH variant and gene 111, where X 
represents any of the 20 naturally occurring 
amino acids (7). Thus, each library represents 
3.2 x 106 possible protein sequences. We 
flanked the random substrate sequence with 
Gly-Pro followed by Pro-Gly to break any 
secondary structure imposed by the hGH or 
gene 111 domains, and we included Gly-Gly 
linkers in one library to possibly improve 
protease susceptibility by increasing segmental 
flexibility (12). We allowed each library of 
substrate phage (containing 5 x 106 or 2 x 
106 independent transformants for the Gly- 
Gly-flanked and Ala-Ala-flanked libraries, 
respectively) to bind to the hGHbp in wells of 
polystyrene plates. The wells were treated 
with protease, and the released phage were 
propagated (protease-sensitive pool). Those 
that remained bound were eluted at pH 2 and 
propagated (protease-resistant pool). 

After three rounds of protease selection 
from the GPGG(X),GGPG library, all 
clones that were protease-sensitive con- 
tained a His residue in their sequence (Table 
1). His occurred almost exclusively at posi- 
tion 2 or 4 within the randomized sequence. 
After compensating for the predicted codon 
frequency for each amino acid type, we 

Fig. 2. Computer model 
showing the proposed inter- 
actions of subtilisin BPN' 
with substrates containing 
His at the P2 (green) or PI' 
(light blue) position. The 
substrate is colored yellow, 
the main chain of the en- 
zyme is white, and the cata- 
lytic triad (Ser221, His64, and 
Asp3=) is magenta. Molecu- 
lar modeling studies were 
based on x-ray crystal struc- 
tures of subtilisin BPN' 

found His, Met, and Tyr to be overrepre- 
sented in the protease-sensitive library. 
Closer analvsis of the seauences in Table 1 
shows a consensus sequence with His prefer- 
entially flanked by Tyr, Met, Leu, and Thr 
residues. Hydrophobic residues, particularly 
Tyr, Met, Leu, and Phe, are preferred at the 
P1 position of subtilisin (I 3). No Pro or Cys 
residues were found among substrate se- 
quences. Sequences containing a Pro from 
positions PI to P2' are poor substrates (9). 

Clones that were resistant to three rounds 
of protease selection exhibited no sequence 
consensus. Only one sequence containing His 
was isolated (GGHPSEPGG). However, this 
sequence cannot be cleaved with His assisting 
from the P2 ~osition because subtilisin is 
unable to cleave substrates with Pro at PI. 
Thus. motease-sensitive seauences resemble , . 
good substrates, whereas resistant clones re- 
semble poor substrates. We also sorted the 
substrate phage library containing the GP- 
AA(X),AAPG linker between hGH and the 
gene 111 with results that were s i da r  to those 
seen in Table 1 (I I). After six rounds of 
selection, all selected clones contained at 
least one His residue in position two or four 
within the randomized region. None of the 
resistant clones contained a His residue, and 
many contained one or more Pro residues. 

Optimal substrates are those with the 
highest ratios of the turnover number (k,,,) 
[for the enzyme (E)-substrate (S) complex 
(E-S)] to the Michaelis constant (K,). For 
the enzyme and substrate concentrations 
used during the protease selection, we ex- 
pect that substrate phage are sorted on the 
basis of relative kc,&, values (14). We 
developed a simple assay to evaluate the 
selected substrate seauences in the context 
of a fusion protein containing the hGH and 
substrate sequences linked to alkaline phos- 
phatase (AP). Seven individual clones from 

[Brookhaven protein data 
bank reference 1SBT (27)] 
and Streptomyces subtilisin 
inhibitor [Brookhaven Dro- 
tein data bank reference.2~~1 (28)l. The substrate His was introduced at the P2 or P1 ' position, and 
the torsion angles were varied so that the N61 and Nr2 nitrogens of the substrate were in close 
proximity to those of His64. In both cases, no unreasonable torsion angles were introduced in the 
substrate. Thus, a His from either the P2 or P1 ' position of the substrate can virtually occupy the 
position of the missing catalytic His64 in the H64A subtilisin variant. 
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the protease-selected library (Table 1) were 
inserted into an hGH-AP expression vector 
(1 5). Fusion proteins were expressed in E. 
coli KS330 and assayed for release of AP 
activity after incubation with the H64A 
subtilisin variant. Dimeric hGH-AP fusion 
proteins were immobilized on beads coated 
with hGHbp and incubated with the H64A 
subtilisin variant to release AP activity 
(1 6). The assay used identical conditions to 
those in the phage selection procedure 
(1 6). The NH,-termini of the AP cleavage 
products were also determined (1 7). 

The relative amounts of cleavage for the 
seven different sequences in the AP fusion 
assay varied more than tenfold between the 
different substrate sequences (Table 2). No 
activity was observed above the background 
concentration for the nonsubstrate se- 
quence HPSEP. In a high proportion of 
sequences (four out of seven), cleavage was 
directed from the PI '  residue. Two of the 
most efficiently cleaved sequences isolated 
(TSMEJT and YHLKM) were cleaved with 
PI '  His-assisted catalysis. Thus, catalysis 
assisted by PI' His can be as efficient as that 
assisted by P2 His. In each case, one mode 
of cleavage was significantly preferred, even 
though some of the substrates (such as 
DGYHY) were expected to be cleaved from 

either the P2 or PI' His oositions. The PI '  
His-assisted cleavage is interesting because 
once the acyl-enzyme intermediate is formed 
the PI '  His residue may possibly be released 
and therefore not be available to assist in 
deacylation. This is consistent with other 
studies that suggest that P2 His is critical in 
acylation but not in deacylation (20). 

Fusion proteins are a convenient means of 
expressing a recombinant protein that is 
linked to an affinity handle to facilitate puri- 
fication (2). Knowledge of good P2 His sub- 
strates can be used to design efficient sites to 
cleave the affinity handle linked on the NH,- 
terminus of the protein of interest. Converse- 
ly, the information about efficient PI' His 
substrates may allow the use of the H64A 
subtilisin variant for cleaving affinity handles 
linked to the COOH-terminus of a orotein. 

To investigate the generality of the sub- 
strate phage technique, we used the library 
containing the GPAA(X),AAPG linker to 
study the specificity of human factor X,, a 
blood-clotting protease that has also been 
used for cleaving fusion proteins (2, 19). 
Factor X, has specificity determinants that 
extend over more than four contiguous 
residues and is known to have a strong 
preference for cleaving P1 Arg substrates 
(20, 21). After four rounds of protease 

Table 1. Sequences sensitive and resistant to 
cleavage by the H64A variant of subtilisin BPN' Sensitive Resistant 
that were isolated from the GPGG(X),GGPG 

F-WV library. Substrate libraries were constructed by 
NHYTL 

S PAQN 

cassette mutagenesis as described (4). The THYFL 
LSPNM 

phagemid phGH-LIB-g3 (24) was digested with 
myL 

MPRTF 
KSMVA 

Apa I and then with Sal I ,  precipitated with Y-HMMA INDTL 
ethanol, and purified by gel electrophoresis. A YHLKM DVNKP 
substrate cassette was synthesized comprising THTTQ ARRTV 
the oligonucleotides 5'-CGGTGGTNNSNNSNN- UYTI GNSQS 
SNNSNNSGGTGGTCCTGGC-3' and 5'-TC- ~ Y V N  EWALL 
GAGCCAGGACCACCSNNSNNSNNSNNSN- DGYHL I S P L I  
NACCACCGGGCC-3', where N represents an T S N ~ I  ALMDS 
equal mixture of G, A, T, and C and S represents LLRHT TNFSA 
an equal mixture of G and C bases. This creates ATLHL TGNNT 
a peptide sequence GPGG(X),GGPG between AOMHM SRISL 
the Apa I and Sal I sites of the cassette. We T S m T  NLELN 
annealed the cassette by heating the oligonu- YSLHV VYSTN 
cleotides to 90°C and then slowly cooling them Y-F - HPSEP 

to room temperature. The resulting oligonucleo- Fu PSKSY 
tide cassette was ligated with approximately 1 
kg of the digested vector (in a 1 :10 molar ratio of vector to cassette), and the ligation product was 
transformed into E. coliXL-1 Blue by electroporation as described (25). A control transformation was 
also done with no oligonucleotide cassette present. We used transformed cells to prepare a phage 
library by growing them overnight with M13K07 helper phage that were added at a concentration to 
give a multiplicity of infection (MOI) of approximately 100. Sorting of the phage library was done 
essentially as described (10) but in 1-ml polystyrene plates. Protease-sensitive phage were eluted 
after incubation for 10 min at room temperature with 500 nM H64A subtilisin variant (9). The plates 
were washed in PBS containing 0.01 %Tween 20. Any phage still bound to the plates were eluted with 
50 mM glycine (pH 2.0). (This phage pool contained protease-resistant phage.) We propagated 
protease-sensitive and protease-resistant phage by infecting a fresh culture of E. coli XL-1 and 
growing the bacteria overnight with M13K07 (MOI of 100). After transduction of 1 hour at 37"C, the 
cells were centrifuged and resuspended in 2YT [I ml; 16 g of bacto-tryptone, 10 g of bacto-yeast 
extract, and 5 g of NaCl per liter (pH 7.0)]. This selection procedure was then repeated. After three 
rounds of selection, the ratio of phage eluted with enzyme to nonspecifically eluted phage was -40: 1 .  
At this stage, 18 clones from the protease-sensitive and protease-resistant libraries were sequenced 
(26). Amino acids are denoted by single-letter codes (7); 0 denotes an amber stop codon, which is 
translated as Gln in the supE strain of E. coli, XL-1 . 
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selection. almost everv clone contained at 
least one Arg in the substrate linker se- 
quence, and four of them contained two 
Arg residues (Table 3). Of the 16 sequences 
isolated, 6 match tripeptide P-nitroanilide 
substrates (20) or tripeptide-+methyl 
coumaryl-7-amide substrates (2 1) that are 
efficiently hydrolyzed by factor X,, includ- 
ing EGB, LG_R (isolated twice), EAB, 

Table 2. Results of hGH-AP fusion assay of 
clones from the GPGG(X),GGPG substrate 
phage library. We assayed substrates by con- 
structing hGH-AP fusion proteins. The amount of 
AP activity released and the site of cleavage 
(indicated by J ) were determined as described 
(16, 17). The numbers have been corrected for 
the background release of AP in the absence of 
protease (50 to 90 nglml). For the nonsubstrate 
sequence HPSEP, no activity above the back- 
ground concentration was detected. 

Sequence AP released His 
(nglml) position 

NHY J TL 
TSM J HT 
Y J HLKM 
Fm J NV 
DGY J HY 
THY J FL 
TSN J H I  
HPSEP 

Table 3. Sequences sensitive or resistant to 
cleavage by human factor X, that were select- 
ed from the GPAA(X),AAPG library after four 
rounds. The library was constructed in a fash- 
ion analogous to that for the GPGG(X),GGPG 
library described in Table 1 ,  except that the 
oligonucleotide directed the production of two 
Ala codons flanking the random pentacodon 
sequence. Production of phagemid particles, 
binding to plates, and protease selection were 
done as described in Table 1 ,  except that the 
concentration of human factor X, (Haemato- 
logic Technologies, Essex Junction, Vermont) 
was 50 n M  in the first round and 5 nM in 
subsequent rounds. Protease treatment was 
done in 50 mM tris (pH 7 3 ,  150 mM NaCI, 
0.005% Triton X-100, and 2 mM CaCI, for 15 
min at 25°C. 

Sensitive Resistant 

LLGBT 
EGBGR 
NEGEG 
NFHPR 
QMVLE 
SLLGE 
RSLTE - 

QYRFR 
NKY FR 
TBEAB 
TPSTR 
HSRFE 
RIADA - 
PET-A 
QGAQN 
WSEKV 

ISNSN 
FTLDM 
YTVKP 
STLLG 
TFQVR 
AVLHV 
SLPHY 
RSKEN - 
KMSFY 
AIINK 
LLLTH 
PTPLP 
PKYEA 
IQYEH 



STR, and LTR. Also, several sequences 
were isolated with Phe in the putative P2 
position; such sequences are known to be 
relatively good factor Xa substrates (20), 
Although at this point we do not know the 
cleavage sites and relative rates of hydroly
sis for these selected sequences, the kcaJKm 

values for EGR and LGR tripeptides (the 
only two compared directly) are within a 
factor of 2 to 4 of each other (20, 21). 
Substrate phage sequences containing Arg 
were found far more frequently than se
quences containing Lys, and PI Arg sub
strates are preferred over PI Lys substrates 
by up to a factor of ~10 4 (20). In contrast, 
only a few Arg-containing sequences were 
found in the protease-resistant library. 
Thus, as with the H64A subtilisin variant, 
many of the sequences selected for hydro
lysis by factor Xa resemble good substrates. 

We have also conducted some experi
ments with the aspartyl protease from hu
man immunodeficiency virus type-1 (HIV-
1) (22). We inserted a known HIV-1 pro
tease substrate (SQNYPIVQ) between 
hGH and the truncated form of gene III 
protein. Approximately ten times more 
phagemid particles were released, as com
pared with similar phagemid particles that 
lacked the substrate sequence (11). 

A number of factors may limit the gen
erality of the substrate phage method. First, 
the preferential site of cleavage must occur 
at the random substrate linker and not at 
the affinity domain or gene III protein. In 
the event that proteolysis of competing sites 
is too rapid to allow selection, mutations 
can be made or a different affinity domain 
can be chosen that resists proteolysis. It is 
unlikely that the protease will digest the 
phage itself because it is resistant to prote
olysis. A second limitation is that proteases 
in E. coli may cleave some of the substrate 
sequences. Thus, it may be desirable to use 
protease-deficient strains of E. coli so that 
the substrate phage cannot be cleaved by 
endogenous proteases. Editing during ex
pression can be detected by a lack of par
ticular residues in both the sensitive and 
resistant substrate phage pools. For exam
ple, the fact that Cys was missing from both 
resistant and sensitive substrate phage pools 
in our experiments suggests that it was 
edited out. This may reflect difficulties in 
expressing a properly folded in hGH-gene 
III fusion protein if it were to contain an 
unpaired Cys in the substrate linker. Final
ly, proteases with broad specificities will 
probably not yield a consensus substrate 
sequence by substrate phage selection. 
However, this is a limitation of any method 
used to define protease specificity. 

There are some 300 different amino acid 
derivatives that occur in nature (23). Sub
strate phage are potentially useful for deter
mining the substrate specificity for post-
1116 

translational modifications. The method re
quires only that a randomized substrate 
domain be displayed in such a way that it 
can be specifically modified in vitro and 
separated from unmodified substrates. For 
example, to study protein phosphorylation 
one could use an antibody to phosphoty-
rosine for separating substrate phage that 
react with a tyrosine kinase. We view the 
substrate phage method as a screening tool 
to be used to provide a manageable number 
of substrates from a myriad of possibilities 
that can then be further evaluated by tra
ditional kinetic methods. 
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Structure of the Retinoid X Receptor a 
DNA Binding Domain: A Helix Required for 

Homodimeric DNA Binding 

Min S. Lee,* Steven A. Kliewer, Joan Provencal, 
Peter E. Wright,"fonald M. Evans? 

The three-dimensional solution structure of the DNA binding domain (DBD) of the retinoid 
X receptor a (RXRa) was determined by nuclear magnetic resonance spectroscopy. The 
two zinc fingers of the RXR DBD fold to form a single structural domain that consists of 
two perpendicularly oriented helices and that resembles the corresponding regions of the 
glucocorticoid and estrogen receptors (GR and ER, respectively). However, in contrast to 
the DBDs of the GR and ER, the RXR DBD contains an additional helix immediately after 
the second zinc finger. This third helix mediates both protein-protein and protein-DNA 
interactions required for cooperative, dimeric binding of the RXR DBD to DNA. Identification 
of the third helix in the RXR DBD thus defines a structural feature required for selective 
dimerization of the RXR on hormone response elements composed of half-sites (5'- 
AGGTCA-3') arranged as tandem repeats. 

T h e  mechanisms by which transcription 
factors bind to regulatory sequences and 
control expression of target genes is a central 
problem in eukaryotic molecular biology. 
Members of the nuclear hormone receptor 
superfamily contain a highly conserved re- 
gion of -70 amino acids, including two zinc 
fingers, that is required for specific binding 
to DNA sequences termed hormone re- 
sponse elements (HREs) (1). Typically, 
members of the family bind as dimers to 
HREs composed of two copies of a six- 
nucleotide motif, termed half-sites. A subset 
of the nuclear receptors, including the GR 
and ER. bind as homodimers to HRE half- 
sites oriented as inverted repeats ( I ) .  In 
contrast, other members of the nuclear re- 
ceptor family, including the peroxisome pro- 
liferator-activated receptor (PPAR) , vita- 
min D receptor (VDR), thyroid hormone 
receptor (TR), and retinoic acid receptor 
(RAR) , preferentially bind and activate 
through HREs composed of half-sites ar- 
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ranged as direct repeats (DRs), with speci- 
ficity conferred by both the half-site se- 
quence and the number of nucleotides sep- 
arating the two half-sites (2). Instead of 
binding as homodimers, these receptors form 
heterodimers with the RXR that bind with 
high affinity to target DNA (3, 4). In addi- 
tion to its role in heterodimeric complexes, 
the RXR also forms a homodimer that acti- 
vates in response to 9-cis retinoic acid 
through HREs composed of DRs (5, 6). 

To determine the structural features of 
the RXR that promote binding to tandem 
repeat HREs, we expressed a 94-residue 
peptide (Fig. 1) that comprised the DBD of 
RXRa in Escherichia coli and purified it to 
near homogeneity (7). In gel mobility-shift 
assays (a), the RXR DBD peptide bound 
weakly to an oligonucleotide containing a 
single AGGTCA half-site (Fig. 2A). In 
contrast, the RXR DBD bound coopera- 
tively to an oligonucleotide that contained 
two half-sites oriented as direct repeats, 
which indicates the presence of a dimeriza- 
tion signal in the DBD (Fig. 2A). The 
isolated RXR DBD retained the binding 
specificity of the full-length RXR protein 
(6), binding preferentially as a homodimer 
to a direct repeat of AGGTCA with a 
single nucleotide spacer relative to the oth- 
er spacing options (Fig. 2B). 
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