
versely affecting neonatal growth. Thus, the 
blockade of the expression of a single G 
protein subunit, Gq2 ,  in tissues prominent in 
metabolism, affects not only the development 
of targeted tissues, but can also result in 
pleiotropic metabolic consequences. 
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Cue-Invariant Shape Selectivity of 
Macaque Inferior Temporal Neurons 

Gyula Sary, Rufin Vogels,* Guy A. Orban 
The perception of shape is independent of the size and position of the shape and also of 
the visual cue that defines it. The same shape can be recognized whether defined by a 
difference in luminance, by motion, or by texture. Experiments showed that the shape 
selectivity of individual cells in the macaque inferior temporal cortex did not vary with the 
size and position of a shape and also did not vary with the visual cue used to define the 
shape. This cue invariance was true for static luminance and texture cues as well as for 
relative motion cues-that is, for cues that are processed in ventral and dorsal visual 
pathways. The properties of these inferior temporal cells meet the demands of cue- 
invariant shape coding. 

Recentlv. it has been shown that the , . 
direction selectivity of cells in the primate 
extrastriate middle temporal area (MT) is 
generally form-cue-invariant (1 ) . This may 
underlie the form-cue invariance in the 
perception of motion direction. Here, we 
present neurophysiological evidence that a 
population of cells in the macaque inferior 
temporal cortex (IT) (2) forms the neural 
correlate of a different type of perceptual 
invariance: the visual cue invariance of 
shape perception (3) (Fig. I). 

Neuropsychological observations in hu- 
mans as well as in animals have shown that 
IT lesions cause severe impairments in vi- 
sual shape discrimination (4). Also, single- 
cell recording studies have revealed that the 
responses of IT cells can be highly selective 
for visual shape, preferring some shapes 
over others (5, 6). It has been shown that 
IT neurons keep their shape selectivity 

irrespective of changes in retinal image size, 
contrast sign, or position (7). These neu- 
ronal response invariances match the in- 
variance in size, contrast, and position of 
shape perception, which suggests that the 
IT is involved in the processes that underlie 
the recognition of shapes and objects. 
These experiments have used shapes de- 
fined by a single visual cue, luminance 
contrast. We stimulated IT cells using 
shapes defined by one of three visual cues 
and determined whether their shape selec- 
tivity was cue-independent. 

Neurons were recorded in the IT cortex 
of two male rhesus monkeys performing a 
fixation task (8). Sets of eight figures (Fig. 
2) created by random dots were used as 
stimuli (9). Each figure could be defined by 
one of three cues: luminance difference, 
relative motion, or texture difference (Fig. 
I). In the case of the luminance-defined 

Fig. 1. Shape perception L U ~ .  Kin. - 
is cue-invariant. A square 
can be defined by a dif- 
ference in luminance be- 
tween figure and back- 
ground (Lum.), by rela- 
tive motion of the dots 
(up versus down) of the 
figure and background 
(Kin,), or bv a difference 

in dbt s i z i  (texture) be- 
tween figure and background (Tex.). For the middle figure (Kin.), the arrows show the direction of 
motion of the dots and the hatching indicates the virtual borders, which are rendered visible solely 
by virtue of relative dot motion. 
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figures, dots inside the figure were darker 
than those outside the figure. For the mo- 
tion-defined figures, dots inside the figure 
moved with the same speed but in a direc- 
tion opposite that of the dots outside the 
figure. In the texture-defined figures, the 
dot size of the fieure was three times the dot 

foveal figure presentation, and for three out 
of four cells tested the shape selectivity was 
not affected by a 16-fold variation of stim- 

providing evidence for grandmother cell- 
like "figure detectors" or "shape-component 
detectors" because the response level of the 
cells is usually not only dependent on the 
shape but also on (the saliency of) the 
defining cue, the position, or size of the 
figure (7, 15). However, a population of 
single units, such as those we recorded 

ulus area. 
We do not know whether these cells 

respond to a component of the figure or to 
the overall shape ("gestalt"). Moreover, 
these results should not be interpreted as 

" 
size of the background, but there was no 
difference in average luminance. A fourth 
set of figures in which the dots inside the 
figure moved with the same velocity as the 
background dots was used as a control for 

Fig. 2. Cue-invariant 
shape selectivity of a 
single inferior temporal 
unit. The figures used in 
the experiment are illus- 
trated on the rows 
above the peristimulus 
time histograms. Lum., 
luminance-defined fig- 
ures; Kin., relative mo- 
tion-defined figures; 
and Tex., texture-de- 
fined figures. The dura- 
tion of the stimulus pre- 
sentation is indicated by 
the horizontal bar below 
each histogram (aver- 
age of at least ten trials). 

other dynamic cues, such as dynamic occlu- 
sion (1 0). 

We tested IT cells (261) with each of 
the three types of figures (I I). Sixty-five 
percent of the cells responded to each of the 
three types of cues, and 28% of these 

Lum. u- . 

Kin, ,,,,.,,,... 

Tex. 

responsive neurons were shape-selective for 
each of the three cues. The cell shown in 
Figs. 2 and 3 preferred the three star-like 
figures out of the set of 24 luminance-, 
motion-, and texture-defined figures (Fig. 
2). The same cell was also tested with the 
control figures (Fig. 3): The preference was 
the same, but its response was about half 
that for the kinetic fieures. which indicates 

Vlll 

Lum. 

Kin. JLLLJLL 

- ,  

that the response to the kinetic stimulus 
arises at least partly from the figure defined 
by relative motion. This was a general 
finding because the average net response 
was larger for the kinetic than for the 
control figures in 26 neurons that had been 
tested with both control and kinetic figures 
and that had responded significantly to 
either stimulus (1 2). Also, this shape selec- 

Fig. 3. Shape selectivity of a sin- 
gle inferior temporal unit. The fig- 
ures have the same numbers as 
those in Fig. 2. Lum., foveal pre- 
sentation of luminance-defined 
shapes; Kin., foveal presentation 
of motion-defined shapes; Cont., 
foveal presentation of control fig- 
ures; Tex., foveally presented tex- 
ture-defined shape; Lum. ecc., 
presentation of the luminance-de- 
fined figures at an eccentricity of 
4" on the horizontal meridian in 
the contralateral visual field; Kin. 
ecc., peripheral presentation of 
the figure defined by relative mo- 
tion. Each point corresponds to 
the mean net firing rate averaged 
over at least ten trials. All standard 

tivity was not a result of some local pecu- 
liarity of the cell's receptive field because 
presentation of the figures at 4" eccentricity 
(13) had no effect on its stimulus selectivity 
for the motion- and luminance-defined fig- 
ures (Fig. 3). 

For the 47 cells that showed shape selec- 
tivity for the three visual cues, the average 
figure rank, determined by the response 
strength to the figures, was similar for the 
three visual cues (Fig. 4), which indicates 
that for this population of IT cells the 
preference and selectivity for shape is in- 
variant with respect to the defining visual 
cue (1 4). For some of these cells, we deter- 
mined whether the shape selectivity, in 

I 1 1  I l l  IV  v V I  V I I  V l l l  
Figure 

errors had a magnitude similar to the three shown 

Fig. 4. The average normalized 1.1 

response and standard errors 1 
plotted as a function of the figure . 
rank for those cells (40 cells of 2 0.9 

monkey A and 7 cells of monkey $ 0.8 

I), showing shape selectivity for g 0.7 
each visual cue. For each cell and 3 
visual cue, we normalized the net 

0.6 

0.5 responses by expressing them as 
a fraction of the maximal net re- = 0.4 

sponse for that cue. The figures 
0,3 

were ranked according to the 
cell's response strength for the 0.2 

luminance-defined figure, and 0.1 
this ranking was applied to all 0 
three types of figures. For each 1 2 3 4 5 6 7 8  
figure rank and cue, the normal- flgure rank 

ized net responses were then av- 
eraged for the 47 cells. 

addition to being cue-invariant, was also 
independent of changes in the position and 
size of the shape. The results of these 
stimulus-invariance tests confirmed those of 
previous studies that reported position and 
size invariance of shape selectivity in the IT 
(7): All seven cells tested with peripheral 
presentation (4" to 5" eccentricity) of the 
figures showed the same selectivity as with 
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from, each having a different preference, 
can code unambiguously the shape of a 
figure independent of its retinal size, posi- 
tion, contrast, and defining cue. 

Our results provide further evidence for 
the role of the IT in the representation of 
shapes, even for shapes defined by relative 
motion. The latter is an important point 
because the IT is part of the ventral stream 
of the visual pathway, whereas motion anal- 
ysis is traditionally assumed to be part of the 
dorsal pathway, which consists of visual 
areas such as the MT and the medial superior 
temporal area. Our results, however, show 
that the IT processes shapes even in those 
cases in which the shape can be computed 
from motion information only, which indi- 
cates a high degree of convergence of infor- 
mation from dorsal and ventral visual areas 
in the IT area (16). Hence, our finding of 
cue invariance for shape selectivity in IT 
neurons shows that single IT cells can ab- 
stract invariant shape properties from widely 
varying stimulus conditions. 
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