
provide a fourth coordination interaction 
for the bridging irons. It is quite clear from 
these maps that no sulfur is present in the 
center of the cluster. 

Functionally, the details of the interac- 
tion between N, and the FeMo-cofactor are 
central to the understanding of the catalytic 
properties of nitrogenase. Although many 
models can be envisioned for the binding of 
substrates to the FeMo-cofactor on the basis 
of the Kim structural model, an intriguing 
hypothesis can be developed for the coor- 
dination mode of N, to the cofactor that 
would facilitate trip&-bond cleavage. The 
FeMo-cofactor contains three weak Fe-Fe 
bonds that are further destabilized by the 
distortion from idealized tetrahedral geom- 
etry. Thus, it is tempting to suggest that N, 
could bind in the center of the FeMo- 
cofactor, thereby replacing the weak Fe-Fe 
bonds with multiple Fe-N bonds having 
approximate sp3 geometry (Fig. 3 ) .  As a 
result of these multiple Fe-N interactions, 
the sp hybridized N=N triple bond should 
be weakened, thereby lowering the activa- 
tion barrier for N, reduction. Features of 
this model of N, coordination have been 
observed for nitrogen analogs binding to 
trinuclear and dinuclear metal clusters 
( I  1 ). Although the cavity size in the FeMo- 
cofactor structure is too small bv -0.5 A for 
N, to fit in this fashion, the ;ore reduced 
forms of the cofactor that are believed to 
actually bind N, (12) may have an in- 
creased separation distance between 
bridged Fe-Fe sites that could accommodate 
N, binding. Unlike most substrates and 
intermediates, however, only N2 is poten- 
tially small enough to coordinate inside the 
FeMo-cofactor, suggesting that alternative 
binding modes may be utilized by different 
substrates, reaction intermediates, and in- 
hibitors. This model for the binding of the 
N, to the FeMo-cofactor mav be useful for 
the understanding of the mechanistic steps 
associated with N, reduction by nitroge- 
nase, and it could guide the development of 
other hosts and catalysts that can specifi- 
cally interact with N,. 
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The lschigualasto Tetrapod Assemblage 
(Late Triassic, Argentina) and 4oArfgAr 

Dating of Dinosaur Origins 

Raymond R. Rogers, Carl C. Swisher Ill, Paul C. Sereno, 
Alfredo M. Monetta, Catherine A. Forster, Ricardo N. Martinez 

40Ar/39Ar dating of sanidine from a bentonite interbedded in the lschigualasto Formation 
of northwestern Argentina yielded a plateau age of 227.8 2 0.3 million years ago. This 
middle Carnian age is a direct calibration of the lschigualasto tetrapod assemblage, which 
includes some of the best known early dinosaurs. This age shifts last appearances of 
lschigualasto taxa back into the middle Carnian, diminishing the magnitude of the proposed 
late Carnian tetrapod extinction event. By 228 million years ago, the major dinosaurian 
lineages were established, and theropods were already important constituents of the 
carnivorous tetrapod guild in the Ischigualasto-Villa Union Basin. Dinosaurs as a whole 
remained minor components of tetrapod faunas for at least another 10 million years. 

Dinosaurs originated sometime during the 
Middle to Late Triassic and rose to domi- 
nate terrestrial tetrapod communities by the 
end of the Triassic. The earliest skeletal 
records of dinosaurs are preserved in Car- 
nian age strata on several continents, in- 
cluding North America (Chinle Group), 
South America (Ischigualasto and Santa 
Maria formations), India (Maleri Forma- 
tion), and Africa (Timesgadiouine Forma- 
tion) (1, 2). The most complete skeletons 
of early dinosaurs, discovered in the Is- 
chigualasto Formation of Argentina, in- 
clude the primitive theropods Herrerasaurus 
and Eoraptor ( 3 )  and the primitive ornithis- 
chian Pisanosaurus (4). These genera, along 
with Staurikosaurus from the Santa Maria 
Formation of Brazil, have long been consid- 
ered the oldest dinosaurs (5 ,  6). Recently, 
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all of these early dinosaur localities were 
assigned a late Carnian (Tuvalian) age on 
the basis of biostratigraphic correlations, 
which suggests that dinosaurs appeared near- 
ly simultaneously across most of Pangea (7). 

In this report, we present radioisotopic 
age data from the Ischigualasto Formation 
and describe the stratigraphic ranges and 
abundances of Ischieualasto dinosaurs rela- " 
tive to other tetrapods in the paleofauna. 
These data calibrate the first appearance of 
dinosaurs and permit a more rigorous eval- 
uation of major extinction and origination 
events during the Late Triassic (8, 9). 

The Ischigualasto Formation is part of 
the Agua de la Pefia Group, a succession of 
nonmarine Triassic rocks exposed in the 
Ischigualasto-Villa Uni6n Basin of north- 
western Argentina (Fig. 1). This basin is 
one of several small rift basins that formed 
along the western margin of South America 
before the breakup of Pangea (1 0). The 
Ischigualasto Formation is composed of flu- 
vial sandstone bodies and fine-grained over- 
bank facies. Deposition occurred on an 
upland alluvial plain characterized by low 
sinuosity, shallow streams, occasional 
lakes, and a seasonal climate (1 1). 
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Fig. 1. Location of Ischigualasto-Villa Union 
Basin in San Juan and La Rioja provinces, 
northwestern Argentina (inset). This basin pre- 
serves an almost 4000-m-thick succession of 
Triassic nonmarine strata (15) that includes the 
Ischigualasto Formation and other important 
tetrapod-bearing units (the overlying Los Colo- 
rados Formation and the Chariares Formation). 
We focused near the southern end of the basin 
in the Valle de la Luna region of lschigualasto 
Provincial Park (the section we measured and 
the location of the Herr Toba bentonite are 
marked) 

Tetrapods of the Ischigualasto paleo- 
fauna include primitive dinosaurs (Herrera- 
saurus, Eoraptor, and Pisanosaurus) , nondi- 
nosaurian archosaurs, herbivorous and car- 
nivorous cynodonts, dicynodonts, rhyncho- 
saurs, and temnospondyl amphibians. We 
found 228 tetrapod fossils representing 
eight genera in the VaIIe de la Luna region 
of Ischigualasto Provincial Park (Fig. 1) 
(12). Stratigraphic ranges for these genera 
were determined bv direct correlation of the 
specimens to a local stratigraphic section 
spanning the formation (Fig. 2). 

Most Ischigualasto tetrapods occur in the 
lower two-thirds of the formation, where the 
rhynchosaur Scaphonyx and the cynodont 
Exaeretodon are most abundant (Fig. 2). The 
decrease in abundance and eventual loss of 
S c a p h y x  in the upper part of the section 
aooear to reoresent a true local extinction. 
The fossils of Exaeretodon, which occur in 
the same facies as those of S c a p h y x  but 
extend much higher in the section, provide 
taphonomic control (13) to support this 
interpretation. A correlation has been pro- 
posed between the extinction of the rhyn- 
chosaurs and the demise of the Dicroidium 
flora (14); however, fossil plants of Dicro- 
idium affinitv occur throuehout the Ischi- 
gualasto ~o'rmation andvare also pres- 
ent in the overlying Los Colorados Forma- 
tion (1 5 )  . 

Among dinosaurs, Herrerasaurus is most 
abundant and appears to be restricted to the 
lower third of the formation (Fig. 2). The 
single specimen of Pisanosaurus was collect- 
ed from the middle third of the formation 
(4, 16). Dinosaur specimens comprise only 
5.9% of the total tetrapod sample but ac- 

Fig. 2. Range chart illustrating 
the stratigraphic distributions 
(vertical axis is elevation in 
meters above the Los Rastros 
Formation) and relative abun- 
dances of eight major Ischigua- 
lasto taxa. The position of the Herr 
Toba bentonite is also indicated. 
Taxa include the dinosaurs Eorap- 
tor and Herrerasaurus, the rauisu- 
chian Saurosuchus, the protero- 
champsid Proterochampsa, the 
aetosaur Aetosauroides, the rhyn- 
chosaur Scaphonyx, the travers- 
odont cynodont Exaeretodon, and 
the dicynodont Isch~gualastia. The 
sampling interval is 20 m Speci- 
men abundance at each interval is 
indicated numerically and is also 
scaled to the width of the bars 
Each of the 228 tetrapod speci- 
mens recorded represents one in- 
dividual (29). Not included in this 
diagram are two specimens of am- 
phibians (140 to 160 m and 200 to 
220 m), a specimen of Trialestes 
(140 to 160 m), and six unde- 
scribed specimens of carnivorous cynodonts (40 to 100 m, 240 to 260 m, and 280 to 300 m). All 
specimens in the diagram were mapped in 1988 and 1991, except for the highest Proterochampsa 
(MCZ 3408) and Saurosuchus (PVL 2062) (30). MCZ, Museum of Comparative Zoology, Harvard 
University; PVL, lnstituto Miguel Lillo, Tucuman, Argentina. 

count for 37% of all terrestrial carnivores. If 
small-bodied carnivores (cynodonts) are ex- 
cluded, dinosaurs comprise approximately 
45% of the carnivore sample (1 7). The 
scarcity of fossils in the upper third of the 
Ischigualasto Formation remains enigmatic, 
as neither sedimentary facies nor preserva- 
tional styles (18) differ significantly from 
those that characterize the lower part of the 
section. 

The age of the Ischigualasto tetrapod 
assemblage was determined by 40Ar/39Ar 
incremental laser heating of fine-grained 
sanidine crystals extracted from a bento- 
nite (Herr Toba site) that intersects the 
ranges of most Ischigualasto taxa (Fig. 2) 
(1 9). Two 40Ar/39Ar incremental heating 
analyses of the Herr Toba sanidine (Table 
1) yielded well-defined spectra (Fig. 3). 
The plateau ages were calculated as the 
weighted (by inverse variances) mean of 
all increments defining the plateau. Both 
of the spectra are essentially flat; the 
plateaus consist of more than three con- 
tiguous increments that overlap the mean 
at the 20 level and include over 90% of 
the total 39Ar released (20). Approxi- 
matelv 75% of the total 39Ar was released 
in th; last three increments of highest 
temperature as a result of a coupling effect 
of the Ar-ion laser with the sanidine 
crystals. The plateau ages for the two 
spectra 1228.06 ? 0.78 million years ago 
(Ma) and 227.78 k 0.30 Ma (SE)] are 
virtually identical. A slightly revised heat- 
ing schedule for the second analysis result- 

i) 1'0 i o  30 40 60 60 jo *o ibo 
Cumulative 39Ar released (%) 

Fig. 3. Incremental heating spectra (40Ar/39Ar) 
for the Herr Toba bentonite. Sample 6260-01, 
open; sample 6260-02, solid (31). 

ed in a much refined spectrum; we consid- 
er it to be the best estimate of the age of 
the Herr Toba bentonite. 

The Herr Toba bentonite is only 20 m 
above the base of the Ischigualasto Forma- 
tion (Fig. 2), indicating that deposition of 
the formation began approximately 228 
Ma, during the middle Carnian (2 1). Al- 
though the age of the upper boundary of the 
formation remains unconstrained, sedimen- 
tation rates in comparable rift-basin settings 
(22) suggest that the 340-m-thick Ischi- 
gualasto section would have accumulated 
rapidly, probably in 1 to 4 million years (85 
to 340 m per million years). Hence, the 
Carnian-Norian boundary, which has been 
placed arbitrarily between the Ischigualasto 
and Los Colorados formations (15, 23), 
probably occurs within the Los Colorados 
Formation. The Ischigualasto paleofauna, 
which is essentially restricted to the lower 
two-thirds of the Ischigualasto section, is 
most likely middle Carnian in age. 

In consideration of this middle Carnian 
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Table 1. Incremental heating analyses (40Ar/3gAr) of sanidine from the Herr Toba bentonite (19). 

Sample 39Ar 
step (%I 

Sample 6260-0 1 
0.05836 4.39076 
0.0371 8 5.40057 
0.00493 8.57073 
0.001 12 1 1.97466 
0.00080 1 1.921 74 
0.00023 11.92592 
0.00021 11.89602 
0.00029 12.03504 
0,0001 5 11.94074 
0.00001 12.03424 

-0.00001 11.8281 4 
0.00008 11.97425 
0.00007 11.85427 
0,00018 11.87683 
0.0001 9 11.96594 
0.00008 11.95942 

Sample 6260-02 
0.20737 -32.56149 
0.25549 5.99131 
0.02346 9.38026 
0.01336 9.37912 
0.00258 12.40402 
0.001 55 12.341 05 
0,001 11 11.96762 
0.00030 11.93005 
0.00002 11.92798 
0.00006 11.95078 
0.0001 1 11.93568 
0.00001 11.95100 
0.0001 7 11.92957 
0.0001 0 1 1.9351 3 
0.0001 2 12.02337 
0,00008 11.97526 
0.00023 11.92756 
0.00024 11.91 851 
0.00030 11.95432 
0.0001 5 1 1.97343 
0.00002 11.94464 
0.00010 11.97156 
0,0001 0 11.93248 

Mean 10 

age, there are two possibilities regarding the 
first appearance of the dinosaurs: (i) the 
Ischigualasto dinosaurs (Herrerasaurus, 
Eoraptor, and Pisanosaurus) are the oldest 
known dinosaurs, and dinosaurs do not ap- 
pear in the fossil record simultaneously or 
(ii) all early dinosaur localities currently 
correlated with the Ischigualasto tetrapod 
assemblage are also middle Carnian in age. 
We know of no taphonomic reason to sus- 
pect a nearly synchronous global'first appear- 
ance of dinosaurs. However, more radioiso- 
topic dating is required before temporal re- 
lationships can be fully resolved. 

The age, relative abundance, and range 
data also bring evidence to bear on the 
proposed late Carnian tetrapod extinction 
event (8). The Ischigualasto tetrapod as- 
semblage has been used in conjunction with 
other paleofaunas of presumed late Carnian 
age to support a mass extinction among 
tetrapods at the end of the Carnian Age. A 

shift of the Ischigualasto paleofauna further 
back into the Carnian, away from the 
Carnian-Norian boundary, brings the mag- 
nitude of this event into question by reduc- 
ing the number of last appearance events 
known in the late Carnian (24). Recent 
discoveries in the Chinle Formation of Ar- 
izona further indicate that herrerasaurids 
range into the Norian (25) and can no 
longer be used to support an end Carnian 
event. 

The Ischigualasto tetrapod record has 
also been cited as an example of compet- 
itive replacement (9) in which the decline 
of the therapsids (cynodonts and dicyn- 
odonts) is attributed to competitive pres- 
sure from contemporary archosaurs and 
rhynchosaurs (16). This notion is not 
supported by our data on relative abun- 
dances and ranges (Fig. 2). Theropod 
dinosaurs (Herrerasaurus and Eoraptor) oc- 
cur in the same facies as other archosau- 

rian (Saurosuchus and Proterochampsa) and 
cynodont carnivores, but inverse trends in 
svecies richness and relative abundance 
are not evident. Similarly, inverse trends 
in the abundances of Scabhonvx and Ex- 

& ., 
aeretodon are lacking, and Exaeretodon per- 
sisted within the Ischigualasto-Villa 
Uni6n Basin while Scaphonyx became lo- 
cally extinct. 

Together, the age and abundance data 
indicate that, by 228 Ma, the major dino- 
saurian lineages (Omithischia, Sauropodo- 
morpha, and Theropoda) were established. 
Thus, the initial dinosaurian radiation oc- 
curred before the middle Carnian. By 228 
Ma, theropods were already important con- 
stituents of the carnivorous tetrapod guild 
(26) within the Ischigualast~Villa Uni6n 
Basin. Plant-eating ornithischians and sau- 
ropodomorphs, on the other hand, were 
apparently rare components of the herbivo- 
rous tetrapod community. Despite the early 
appearance of key dinosaurian adaptations, 
such as tooth-to-tooth slicing among dino- 
saurian herbivores (27) and manual grasping 
and other modifications among dinosaurian 
predators (3), dinosaurs as a whole remained 
relatively minor components of Late Triassic 
tetrapod faunas for at least 10 million years. 
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Copernicus: A Regional Probe of the Lunar Interior 

Patrick C. Pinet, Serge D. Chevrel, Patrick Martin 
Earth-based telescopic spectral imaging techniques were used to document the spatial 
distribution of crater materials within the large lunar crater Copernicus at the subkilometer 
scale on the basis of spectral ultraviolet-visible-near-infrared characteristics. The pro- 
posed spectral mixing analysis leads to a first-order mapping of the impact melt material 
within the crater. Olivine was detected not only within the three central peaks but also 
along a significant portion of the crater rim. Consideration of an olivine-bearing end- 
member in the mixing model emphasizes the overall morphological pattern of the rim and 
wall terraces in the associated fraction image. The identification of widely exposed olivine 
units supports the idea that the lower crust and possiblythe lunar mantle itself are regionally 
at shallow depth. 

Large impact craters such as Copernicus 
excavate materials from different deoths 
and thus provide information at the target - 
site on the preimpact stratigraphy and min- 
eralogical heterogeneities of the lunar crust, 
both laterallv and verticallv (1-3). The 

, \ ,  

recent ~ a l i l e k  lunar flyby revealed that the 
stratification of the lunar crust may be 
regionally affected by the presence of cryp- 
tomaria, especially on the western farside 
and nearside (4). However, the global mul- 
tispectral information retrieved from the 
solid-state imaging (SSI) experiment on- 
board the Galileo spacecraft was limited in 
both spatial and spectral resolution, pre- 
cluding any detailed geological analysis of 
morphological surface units such as impact 
craters. New Earth-based remote-sensing 
techniques have allowed powerful investi- 
gations of the nature and layering of the 
lunar crust by means of spectro-imaging 
analyses. In this report, we document the 
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spatial distribution of crater materials with- 
in Copernicus at the subkilometer scale on 
the basis of their spectral ultraviolet (UV)- 
visible (V1S)-near-infrared (NIR) charac- 
teristics and compare these data with the 
results of previous spot-spectroscopic inves- 
tigations (1, 2, 5). 

We carried out an extensive Earth-based 
spectral mapping (UV-VIS-NIR domain) of 
Copernicus (93 km in diameter) with 
charge-coupled device (CCD) images that 
had high spatial (0.7 km) and spectral 
(wavelengthband pass = A/AA = 100) res- 
olution. The observations were carried out 
in the September 1989 full-moon period, 
with a Thomson CCD camera mounted at 
the focus of the 2-m aperture (focal lengtw 
diameter = 25) telescope of the Pic-du-Midi 
Observatory (France) (6, 7), under 6" and 
19" of phase angle, during two successive 
photometric nights (excellent atmospheric 
stability and less than 30% hygrometry). 
The optical configuration corresponds to a 
theoretical spatial sampling of 0.17 km per 
pixel at the subterrestrial point. 
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