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From the time of Jenner's first cowpox in- 
oculations until the most recent vaccine tri- 
als for human immunodeficiency virus (HIV), 
immunization has been an em~irical science. 
In spite of the large body o? accumulated 
knowledge about mechanisms of immunity, 
the ability to induce a specific type of im- 
mune resDonse remains more art than sci- 
ence. Advances of the last few years, how- 
ever, promise to initiate a new era in vaccine 
development. We now know that T lympho- 
cytes, which are required for both cell-medi- 
ated immune responses and the production 
of antibody by B lymphocytes, are composed 
of two distinct subsets-T helper 1 (TH1) 
and T helper 2 (TH2) cells (1 ). TH1 cells 
produce interleukin-2 (IL-2) and interferon- 
y (IFN-y) and execute cell-mediated im- 
mune responses (delayed hypersensitivity 
and macrophage activation); whereas TH2 
cells ~roduce IL-4. IL-5. and IL-10 and assist 
in antibody production for humoral immu- 
nity. This paradigm has been and continues 
to be a powerful driving force in the field of 
immunology (2). However, the mechanisms 
by which a particular T cell lineage is steered 
down the path toward a TH1 or TH2 fate have 
remained unclear. In this issue of Science, 
Hsieh and colleagues (page 547) demon- 
strate that interleukin-12 (IL-12), a recently 
described cytokine that stimulates IFN-.I 
~roduction (3). induces the differentiation . ,. 
of TH1 cells from an uncommitted T cell and, 
consequently, initiates cell-mediated immu- 
nity. We can now rationally design vaccines 
for those diseases that are best controlled by 
cell-mediated immunity. 

The immune system uses many mecha- 
nisms for attacking pathogens, but not all of 
these are activated after either infection or 
immunization. Many bacterial, protozoal, 
and viral infections trigger a cell-mediated 
immune response, while other pathogens, 
such as helminths, primarily induce an an- 
tibody response (4) (Fig. 1). Preferential 
development of one T helper cell subset is 
often apparent at the early stages of an infec- 
tion, suggesting that the mechanisms that 
drive the immune response in one direction 
or the other operate soon after exposure to 
antigen. Several factors influence the dev- 
elopment of T helper cell subsets, but the 
most important may be the early exposure 
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to cytokines. The decisive role of cytokines 
in T cell differentiation is best exemplified 
in cutaneous leishmaniasis, a disease caused 
by a parasitic protozoan. Experimental Leish- 
mania major infections in different mouse 
strains induce either a TH1 or a TH2 response. 
If THl cells are induced, the animal lives; if 
TH2 cells are induced, it dies (5). In vivo 
depletion of IFN-y with monoclonal anti- 
bodies ablates TH1 cell development and pro- 
motes TH2 cell differentiation, while IL-4 
depletion inhibits TH2 expansion, leading 
to TH1 cell development (6). IL-4 promotes 
TH2 cell development in vitro as well (7). 
Although IFN-y augments TH1 cell expan- 
sion and may be required for TH1 cell dif- 
ferentiation, it is nevertheless not in itself 
sufficient to bias the immune response to- 
wards TH1 cell development, and other 
cytokines may be required (8). 

IL-12, originally called natural killer cell 
stimulatory factor, is a logical candidate for 
participation in the differentiation of TH1 
cells. IL-12 is produced by macrophages and 
B lymphocytes, and stimulates the produc- 
tion of IFN-.I from T cells and natural killer 
cells (9,lO). Furthermore, IL-12 enhances 
the expansion of human TH1 cells in vitro 
(1 1 ). However, in order to determine directly 
whether IL-12 initiates TH1 cell differentia- 
tion after exposure to antigen, a population 

of na'ive T cells is required. To  accomplish 
this, Hsieh and colleagues took advantage of 
the fact that CD4+ T cells derived from T 
cell receptor transgenic mice only express 
the transgenic T cell receptor, in this case a T 
cell receptor that recognizes ovalbumin. Be- 
cause these mice had not been previously 
exposed to ovalbumin, all of their CD4+ T 
cells were na'ive, providing a system in which 
differentiation into TH1 or TH2 cells after 
antigenic stimulation could be studied. Us- 
ing this approach, Hsieh and colleagues and 
Seder and colleagues confirmed earlier stud- 
ies indicating that IL-4 drives the differen- 
tiation of T cells towards the TH2 type (8). 
Now Hsieh and colleaeues demonstrate that 

L. 

IL-12 acts in an opposite manner and drives 
the lineage toward TH1 cell development (Fig. 
1). Furthermore, they link the capacity of 
Listeria to induce a THl cell response with its 
ability to stimulate IL-12 production (Fig. 2). 
Thus, Listeria-infected macrophages also 
stimulate TH1 cell differentiation in this sys- 
tem, a process that was inhibited when IL-12 
was depleted with antiserum to IL-12. Thus, 
certain pathogens may preferentially induce 
cell-mediated immunity because they can 
stimulate IL-12 production. Indeed, the 
abilitv of several other m at hoe ens or their " 
~roducts, including lipopolysaccharide from 
Gram-negative bacteria, Staphylococcus 
aurew , Mycobacterium tuberculosis, Toxoph- 
ma gondii, and L. major, to induce a TH1 re- 
sponse correlates with their capacity to stim- 
ulate the production of IL-12 (9,12,13). 
Taken together, these data indicate that a 
central component of TH1 cell development 
in response to infection may be the stimula- 
tion by the pathogen of IL-12 producing cells, 
such as macrophages (Fig. 1). 

Fig. 1. Cytokine-driven T helper cell differentiation. Several bacteria and protozoa (and likely 
some viruses) stimulate the production of IL-12 by macrophages or other cells. IL-12 then directs 
the differentiation of ndiveTcells toward theTH1 subset, which control cell-mediated immunity. Other 
pathogens, particularly helminths, stimulate IL-4 production, which drives naive T cells in the T,2 
direction. TH2 cells primarily mediate help for antibody production. The characteristics of the 
pathogen that determine which pathway will dominate are unknown. 
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Because the clever technical ap- 
proach used by Hsieh and colleagues 
cannot be applied in humans, it is 
difficult to address the role of IL-12 
in human T cell development. Nev- 
ertheless, recent studies by Manetti 
and colleagues (9) indicate that IL- 
12 may have a similar role in the 
differentiation of T cell subsets in 
man. Although diseases are often 
associated with a dominant T helper 
cell phenotype, as discussed above, 
T cells taken from patients include 
a mixture of TH1 and TH2 cells, as 
well as T helper cell subsets with 
other c~tokine patterns. Manetti and 
colleagues (I I ) found that such a 
mixed T cell population from pa- 
tients with allergies could be shifted 
from the normally dominant TH2 
phenotype toward an experimen. 
tally induced TH1 phenotype b~ 
the addition of IL-12. One implica- 

I 
tion of these results is that IL-12 
may have therapeutic applications 
in a wide range of diseases. ''-I2 -eriB. Listeri~inciuces a T,,I ce;/ 
might be in the treatment of response by triggering IL-12 secretion from rnacrophages. 
allergies, in which an inappropriate Maanification: ~27.000. Ilrnaae: CNRIIScience Photo Li- 
TH2 immune response mediates bra$~ 
immunopathology, as well as in- 
fections and malignancies that could best 
be controlled by cell-mediated immunity. 
IL-12 might make a particularly important 
contribution in HIV infection, which is 
associated with a progressive loss of TH1 
cells, decreased natural killer cell function, 
and a corresponding increase in TH2 cells 
(14). IL-12 significantly enhances the cy- 
totoxic function of natural killer cells from 
HIV-infected patients (1 5) and may also be 
able to enhance TH1 cell function, although 
it is not clear whether this would have a 
therapeutic effect against the virus. It is en- 
couraging that, in immunodeficient mice, 
IL-12 induction of natural killer cells can 
protect against T. gondii, a major opportun- 
istic infection in patients with acquired im- 
munodeficiency syndrome (1 3). 

cell development, possibly by providing a 
more powerful stimulus for TH2 cell develop- 
ment than IL-12 provides for TH1 cell devel- 
opment. Furthermore, both IL-4 and IL-10 
can inhibit IL-12 ~roduction by human 
monocytes (16). Similarly, in the T cell re- 
ceptor transgenic system, IL-10 inhibited 
the ability of Listeria-infected macrophages 
to drive TH1 cell differentiation,   rob ably by 
decreasing IL-12 production. Because IL-10 
is ~roduced by macrophages, macrophages 
either augment or inhibit TH1 cell develop- 
ment, depending upon the relative amounts 
of IL-12 and IL-10 produced by these cells. 

The implication of these studies is clear: 
IL-12 is a critical component in the develop- 
ment of cell-mediated immunity. This infor- 
mation can be directly applied to vaccine 

Cytokines also provide inhibitory signals development against diseases known to be 
for T cell subset differentiation. As reported controlled by cell-mediated immunity. In 
by Hsieh and colleagues, IL-4 itself appears such vaccines, IL-12 might be included as an 
to inhibit the ability of IL-12 to promote TH1 adjuvant. In fact, the efficacy of adjuvants 

incorporating bacteria or their products may 
be related directly to their ability to induce 
IL-12 production. Whether this is the case or 
not, the recognition that cytokines gener- 
ated by cells without antigen specificity are 
the principal signals for T helper cell subset 
differentiation is of major importance. This 
knowledge will become even more powerful 
when we succeed in identifying the source of 
the IL-4 that drives TH2 cell differentiation 
(possibly mast cells, basophils, or T cells); in 
defining the factors responsible for the induc- 
tion of cytokines, such as IL-10, which inhibit 
TH1 cell differentiation; and in determining 
the molecular mechanism by which particular 
pathogens stimulate IL-12 or IL-4 production. 
The recent rapid advances in this field suggest 
that we will soon be able to apply our under- 
standing of T helper cell subset selection to 
improved immunotherapy and vaccines. 
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