
ond. we assumed that the oartial monolaver of 
Bi in the liquid-vapor interface is supported 
on Dure Ga. Third. from the known amoli- 
tude and penetration of the evanescent elec- 
tric field in the bulk liauid we calculated the 
relative illumination by the x-rays of the two 
species in our model. To carry out these 
calculations we must know the densities of the 
several species. Nothing is known of the 
density of the Bi monolayer, but the form of 
the transverse structure function suggests that 
it might be in a supercooled liquid state, so we 
took the density to be 10.0 g/ml, which is 
between the solid- and normal liauid-state 
densities. The results of these calculations are 

- 0.80 and yGa = 0.20. The surface Y B ~  - 
concentration of the segregated Bi determined 
in this fashion is the same as that ~redicted 
from the Gibbs adsorption isotherm' and the 
assumption that the binary alloy is an ideal 
mixture. 

The raw data obtained from our grazing 
incidence x-ray diffraction study of the liq- 
uid-vapor interface of the 0.2%Bi:99.8%Ga 
alloy clearly show that the transverse struc- 
ture function of the interface is different 
from the structure function of the bulk 
liquid. The qualitative character of the 
difference observed is consistent with a 
large excess concentration of Bi in the 
liquid-vapor interface. A simple but plausi- 
ble model leads to the conclusion that the 
mole fraction of Bi in the liquid-vapor 
interface of the alloy is 0.80, in good 
agreement with the value predicted from 
the Gibbs adsorption isotherm. We do not 
have a good way of testing the validity of 
the quantitative details of the results of our 
analysis, but we are confident that the 
aualitative asoects of our observations are 
correct. These are (i) that Bi is strongly 
concentrated at the liquid-vapor interface 
of dilute liquid Bi:Ga and (ii) that the 
segregated Bi in the interface is in a liquid 
state. To unambiguously determine the 
transverse structure function of the excess 
Bi in the liquid-vapor interface it is neces- 
sary to carry out three experiments under 
conditions such that the scattering powers 
of the Bi and Ga atoms are different in each 
experiment. In principle, these conditions 
could be generated by taking advantage of 
the anomalous dispersion of x-rays near an 
absorption edge. We believe the necessary 
experiments should be attempted. 
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Pattern Recognition in Coupled 
Chemical Kinetic Systems 

A. Hjelmfelt, F. W. Schneider, J. Ross* 
A network of open, bistable reaction systems coupled by mass transfer is simulated. The 
mass transfer rates are determined by a Hebb-type rule, and the programmable network 
can store patterns of high and low concentrations in each bistable system. In a parallel 
computation, the network recognizes patterns similar, but not necessarily identical, to 
stored patterns. 

W e  have offered suggestions for the chem- 
ical implementation of computing ma- 
chines (1-3): the chemical coupling of 
reaction mechanisms (4) far from equilibri- 
um whose stationary states have properties 
of a McCullouch-Pitts neuron (5) led to the 
construction of logic gates, a finite state 
machine that generalizes to a universal 
Turing machine ( 6 ) ,  and a parallel neural 
network computer. In this report, we de- 
scribe a class of parallel chemical computers 
based on chemical kinetics systems with 
multiple stable stationary states coupled by 
mass transfer. We demonstrate the comou- 
tational capacity of such a network by 
storing patterns in it and solving pattern 
recognition problems. 

Consider a set of chemical reactions that 
occur homogeneously in an enclosure, 
which may be a cell compartment, a neu- 
ron, or a stirred reaction vessel. Each en- 
closure is an open system: reactants enter, 
and products, intermediates, and unreacted 
material exit. We use a set of chemical 
reactions that is bistable. There are manv 
reaction mechanisms and physical processes 
in which bistability is known, including 
enzymatic reactions (7) and neuronal re- 
sponse (8, 9). For simplicity of illustration, 
we use an inorganic chemical reaction, the 
iodate-arsenous acid reaction (1 0, 1 1) 

for which the kinetics are adequately de- 
scribed by the temporal variation of a single 
variable, the concentration of I- ([I-]). 

A. Hjelmfelt and F. W. Schneider, Institute of Physical 
Chemistry, University of Wurzburg, Marcusstrasse 
911 1, D-8700 Wurzburg, Germany. 
J. Ross, Department of Chemistry, Stanford University, 
Stanford, CA 94305. 

*To whom correspondence should be addressed 

Bistabilitv occurs in this isothermal reac- 
tion: for a. given range of input flows of 
reactants (given constraints), the homoge- 
neous reaction system at steady state may 
have either a high or low [I-]. 

The systems communicate with each 
other by mass transfer; either diffusional, in 
which case it is reciprocal, or active trans- 
port, in which case we require it to be 
reciprocal. Although all the different chem- 
ical species are transported, the temporal 
evolution of the ith svstem (i = 1. . . .. N) , , 

in the network is adeiuately'described by its 
[I-] (1 1-13) 

+ k[I-Io + hCkij([l-lj - [I-Ii) (2) 
j t i  

in which [I-], and [103-1, are, respective- 
ly, the concentrations of iodide and iodate 
in the reactant flows that maintain each 
system away from equilibrium, kA and k, 
are effective rate coefficients, and k is the 
reactant flow rate. The mass transfer coef- 
ficients, kji = ki, r 0, are reciprocal and are 
chosen by a Hebbian rule (14), and A 1 0 
is a scaling parameter that is chosen such 
that the final state of each system is influ- 
enced by the other systems but not so 
strongly that the network is always driven 
to homogeneity. There exists a Liapunov 
function for chemical systems described by 
Eq. 2 (1 3), which is an evolution criterion 
toward stable stationary states (analogous to 
the Gibbs free energy of a system approach- 
ing equilibrium). If each system has only 
one stable stationary state, then the only 
stable stationary state of N coupled systems 
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is spatially homogeneous. However, be- 
cause the systems are bistable, there are ZN 
possible stable stationary states of the net- 
work; the bistability of a single system is 
essential to the network operation. Each 
system represents a pixel, and thus the 
stable stationary states of the network are 
patterns of low and high [I-], two of which 
are homogeneous. 

Patterns are stored in this chemical net- 
work analogously to such storage in neural 
networks. Let Rf be the activity of the ith 
system in pattern p; R, = 1 for the high [I-] 
state and 0 for the low [I-] state. We use a 
Hebbian rule (14-18) to determine the 
mass transfer coefficients. If two systems i 
and j are in the same state in a stored 
pattern, either both have high [I-] or both 
have low [I-], and the connection weight is 
increased; otherwise, the connection weight 
is decreased. The contributions to the con- 
nection weight between systems i and j is 
summed over each stored pattern. The Heb- 
bian rule is 

in which 01x1 = x ifx 2 0 and 81x1 = 0 ifx 
< 0. Thus, only if two systems are in the 
same state in the majority of patterns will 
they be connected. This Hebbian rule 
stores both the pattern and its negative 
image (1 6). 

A mathematical analysis (19) of Eq. 2 
shows that, if the network is presented with 
a pattern with a few pixels in error relative 
to a stored pattern, then the network will 
correct the errors provided that sufficiently 
small numbers of patterns are stored in the 
network. The computational process car- 
ried out with Eq. 2 consists first of the 
storage of a number of patterns in the 
network by the Hebbian rule (Eq. 3); thus, 
the network is programmable. Second, the 
entire network is given initial conditions 
(that is, each system is given an initial [I-] 
of one of the two stable stationary states of 
an uncoupled system). These initial condi- 
tions constitute the presented pattern (20). 
If the presented pattern is similar to a stored 

Fig. 1. Sample time series obtained from a 
chemical network with 36 coupled systems and 
three stored patterns. The shading gives the I- 
concentrafion with pure black and white repre- 
senting the high and low states of an uncoupled 
system. Because systems in the high and the 
low iodide states are coupled in the network, the 
concentrations of I-  in the recalled pattern (at t 
= 10) do not match exactly those of a collection 
of isolated systems, and the white and black in 
the recalled pattern are not as intense as in the 
presented pattern (at t = 0) in which the sys- 
tems have I-  concentrations set to those of 
uncoupled systems. The presented pattern has ter 
10, a stored pattern is recalled perfectly. 

pattern, then the pattern recognition pro- 
cess consists of the temporal evolution of 
the network from the presented pattern to 
the stable stationary state corresponding to 
the similar stored pattern; the network cor- 
rects errors in a recognized pattern so that it 
more closely resembles the most similar 
stored pattern. If the presented pattern is 
not recognized, the network evolves to a 
homogeneous state. The number of errors 
in recognized patterns are not always re- 
duced to zero; extraneous steady states de- 
velop because of the "mixing" of stored 
patterns (16). The network may wrrect 
many errors but may recall an extraneous 
pattern instead of a stored pattern. The 
number of such extraneous states increases 
as the number of stored patterns increases. 

In Fig. 1, we show a typical temporal 
evolution of the numerical solution of Eq. 2 
(I  2). The [I-] in each system as a function 
of time is indicated by shading. A stored 
pattern is recalled perfectly at t = 10 from a 
presented pattern with 10 pixels in error 
relative to the recalled pattern. The total 
experimental time of the computer simula- 
tion is about 5 hours (the numerical solu- 
tion of Eq. 2 requires only a few seconds) 
(2 1). If we look at system 13, we see that it 
is initially in the darker state, but by t = 3, 
it has been corrected to the lighter state. 
On the other hand, system 12 is initially in 
the lighter state but is corrected at t = 7 to 
the darker state. 

We characterized the chemical comput- 
er by examining the percentage of present- 
ed patterns with a known number of errors 
relative to a stored pattern p' (20), which 
result in recall of patterns in the following 
classes: (i) p' or its associated extraneous 
patterns, (ii) other stored patterns or their 
associated extraneous patterns, or (iii) a 
homogeneous final state in the case of 
nonrecognition (Fig. 2). The minimum 
number of pixels that must be reversed to 
convert an extraneous pattern to a stored 
pattern (that is, the minimum Hamming 
distance) determines with which stored pat- 
tern an extraneous pattern is associated. 
Presented patterns with ten or fewer errors 
almost always result in the recall of patterns 

01 06 11 16 21 26 31 36 
System number 

1 errors relative to the stored pattern, and, at t = 

in class 1. The homogeneous state (class 3) 
is never found (in 100 trials) and patterns in 
class 2 are rarely recalled. The recall of 
patterns in class 1 is still the most likely 
result for patterns with 14 to 22 initial errors, 
but vatterns in class 2 are occasionallv re- 
calleh, and homogeneity is the second k t  
wmmon tinal state. For presented patterns 
with large numbers of initial errors, homo- 
geneity is the most likely tinal state. Present- 
ed patterns with more than 36 initial errors 
are attracted to the negative image of p'. If 
presented patterns are chosen randomly, less 
than 5% will have 25 or fewer errors relative 
to one of the stored patterns or their nega- 
tives. Most of the other 95%, with more 
than 25 errors, will result in homogeneous 
tinal states. The number of basins of attrac- 
tion for the stored patterns, although sub 
stantial, is small compared with the total 
number of possible presented patterns. The 
stored patterns are well separated in concen- 
tration space and surrounded by large areas 
of nonrewgnizable patterns. 

To measure the extent of the error cor- 
rection in recognized patterns, we calculat- 
ed the average number of errors, relative to 
p', from the recalled patterns in class 1 (Fig. 
2). The pattern P' is almost always recalled 
perfectly if the presented pattern has fewer 
than 14 errors. For example, 99% of the 
presented patterns with ten initial errors 
result in the recall of patterns in class 1, 
and, of these recalled patterns, the average 
number of errors relative to p' is 0.17, an 
improvement of a factor of about 50. Only 
part of the presented patterns with large 
numbers of errors result in the recall of 

- - - 
0 6 12 18 24 30 36 

Number of initial errors 
Flg. 2. Percentage of final patterns which are 
(0) homogeneous (class 3), (0) most closely 
related to p' (class I), or (A) most closely 
related to the other stored patterns (class 2) 
against the number of errors, relative to p', in 
the presented pattern. Of those final patterns in 
class 1 the (V) average number of errors, 
relative to p', is also plotted. The network has 
72 systems and three stored patterns. The 
stored patterns are generated randomly; 100 
different sets of three stored patterns and a 
presented pattern were simulated for each 
number of initial errors. 
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patterns in class 1, but, for those in class 1, 
there is a substantial reduction in the num- 
ber of errors. The network typically corrects 
most of the errors or rejects a pattern as 
nonrecognizable. A network of 72 systems 
would be difficult to implement experimen- 
tally, but simulations of a smaller network, 
which could be implemented experimentally 
(22), show that this smaller network also 
possesses pattern recognition abilities, albeit 
to a lesser extent than the larger networks. 

The chemical network has many similar- 
ities and some differences with a neural 
network of the Little (15) or Hopfield 
(16-18) type: patterns are stored in both 
the chemical and the Hopfield network by a 
Hebbian rule, but the connection weights 
(k,.) may have either sign in a Hopfield 
network; the chemical systems must be 
bistable, but the neurons in a Hopfield 
network are typically monostable; and in 
both, stored patterns are stable steady states 
and are recalled when the network is ini- 
tialized in their basins of attraction. In an 
electrical realization of a neural network 
(1 7), the neurons are amplifiers, the con- 
nections are wires, the connection weights 
are resistors; their analogs in the chemical 
computer are the bistable reaction mecha- 
nisms, mass transfer, and the mass transfer 
rates. The chemical network shares many of 
the desirable features of neural network 
models: both are robust in the uresence of 
noise, both retain some computational 
power when damaged, and, in both, the 
computational abilities are not strongly de- 
pendent on model parameters. Because the 
connection weights can be either positive 
or negative in the Hopfield network, as well 
as in our earlier chemical networks (1-3), 
they perform better than the network pre- 
sented here. The chemical implementation 
of parallel computers given here and in the 
earlier papers (1-3) provides a chemical 
basis of neural networks. 

There are many biological reaction 
mechanisms and biological systems with 
multiple stationary states; mass transfer 
among compartments in biological systems 
is ubiquitous. These are the necessary com- 
ponents of the pattern recognition device 
presented here, and the components are at 
least available in living systems. The pre- 
dictions for a small chemical network are 
experimentally verifiable. 
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Controlling Chemical Reactivity with Antibodies 

Linda C. Hsieh, Shirlee Yonkovich, 
Lynn Kochersperger, Peter G. Schultz* 

The remarkable specificity of an antibody molecule has been used to accomplish highly 
selective functional group transformations not attainable by current chemical methods. 
An antibody raised against an amine-oxide hapten catalyzes the reduction of a diketone 
to a hydroxyketone with greater than 75 :  1 regioselectivity for one of two nearly equivalent 
ketone moieties. The antibody-catalyzed reaction is highly stereoselective, affording the 
hydroxyketone in high enantiomeric excess. Similarly, the reduction of ketones con- 
taining branched and aryl substituents, including the highly symmetrical l-nitrophenyl- 
3-phenyl-2-propanone, was enantioselective. The simple strategy presented herein may 
find general applicability to the regio- and stereoselective reduction of a broad range of 
compounds. 

T h e  development of catalytic methods for 
the regio- and stereoselective svnthesis of - 
optically pure compounds has become an 
im~ortant  focus in recent vears (1). A ~, 

number of chemical reagents have been 
designed for demanding asymmetric trans- 
formations, including titanium (IV) tar- 
trate complexes for chiral epoxidations 
(2), rhodium and ruthenium catalysts for 
enantioselective hydrogenations (3, 4), 
osmium complexes for asymmetric dihy- 
droxylations (3, and chiral boranes for 
stereoselective ketone reductions (6). . , 
However, while existing asymmetric cata- 
lysts have demonstrated impressive enan- 
tioselectivities, the rational design of such 
catalysts is still in its infancy, and high 
stereoselection is usually contingent upon 
neighboring ligands or restricted sets of 
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substituents (7). Moreover, the ability to 
discriminate between chemically similar 
functional groups in the same molecule 
can often be achieved only by the appli- 
cation of extensive protecting group strat- 
egies, as in the synthesis of complex mol- 
ecules such as the macrolide antibiotics, 
carbohydrates, and peptides (8). 

The search for selective catalysts has 
also led to the increased use of enzymes in 
organic synthesis. Although high chemo-, 
regio-, and enantioselectivities have been 
achieved, enzymes often require expensive 
cofactors and are limited in number and 
selectivity (9-1 1). Given the extraordinary 
specificity of the immune system, we asked 
whether simple yet general strategies exist 
for generating antibodies that catalyze re- 
gio- and stereoselective functional group 
transformations. We chose the reduction of 
simple prochiral ketones as our initial tar- 
get, specifically the regio- and stereoselec- 
tive conversion of &-diketone 5 to hydroxy- 
ketone 9 (Fig. 1). The similar chemical 
environments of the two carbonyl moieties 
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