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Regulation of CREB Phosphorylation in 
the Suprachiasmatic Nucleus by Light 

and a Circadian Clock 

David D. Ginty, Jon M. Kornhauser, Margaret A. Thompson, 
Hilmar Bading,* Kelly E. Mayo, Joseph S. Takahashi, 

Michael E. Greenberg? 
Mammalian circadian rhythms are regulated by a pacemaker within the suprachiasmatic 
nuclei (SCN) of the hypothalamus. The molecular mechanisms controlling the synchro- 
nization of the circadian pacemaker are unknown; however, immediate early gene (IEG) 
expression in the SCN is tightly correlated with entrainment of SCN-regulated rhythms. 
Antibodies were isolated that recognize the activated, phosphorylated form of the tran- 
scription factor cyclic adenosine monophosphate response element binding protein 
(CREB). Within minutes after exposure of hamsters to light, CREB in the SCN became 
phosphorylated on the transcriptional regulatory site, Ser'33. CREB phosphorylation was 
dependent on circadian time: CREB became phosphorylated only at times during the 
circadian cycle when light induced IEG expression and caused phase shifts of circadian 
rhythms. These results implicate CREB in neuronal signaling in the hypothalamus and 
suggest that circadian clock gating of light-regulated molecular responses in the SCN 
occurs upstream of phosphorylation of CREB. 

I n  mammals, light-dark cycles synchronize cells of the retina. Impulses carried by these 
hormonal and behavioral circadian rhythms retinohypothalamic projections convey in- 
(1, 2). The primary biological clock, or formation to the SCN about light-dark 
pacemaker, regulating the periodicity of cycles in the environment and thereby syn- 
circadian rhythms resides within the SCN chronize the pacemaker within the SCN 
of the hypothalamus (2, 3). Neurons of the (2, 3). 
SCN receive direct input from ganglion A molecular correlate of photic entrain- 

ment is the rapid and transient induction of 
the c-fos proto-oncogene in SCN cells. The 
Fos protein is a transcription factor that, 
when heterodimerized with a member of 
the Jun family of transcription factors, reg- 
ulates the expression of late response genes 
containing AP-1 binding sites in their reg- 
ulatory regions (4). The selective expres- 
sion of such late response genes may deter- 
mine long-term cellular responses, such as 
adaptive changes in mature neurons (5). In 
the SCN, expression of c-fos is increased by 
exposure of animals to light, but only at 
times when light also induces a phase shift 
of behavioral rhythms (6-8). Furthermore, 
light-induced phase shifting of the circa- 
dian rhythm and light-induced expression 
of c-fos have similar photic illumination 
thresholds (7). These observations suggest 
that Fos plays a key role in light-induced 
phase shifting of circadian rhythms. 

The signaling pathways that regulate the 
expression of c-fos in tissue culture systems 
have been extensively studied (5, 9). In the 
pheochromocytoma cell line PC12, the cy- 
clic adenosine monophosphate (CAMP) re- 
sponse element binding protein (CREB) 
mediates expression of c-fos in response to 
agents that increase intracellular concen- 
trations of CAMP or Ca2+. These signals 
trigger phosphorylation of CREB on Ser133, 
and this phosphorylation event is required 
for CREB to activate the transcription of 
genes- containing CREB binding sites (1 0, 
11). In addition to CREB. several other 
transcription factors that interact with the 
c-fos promoter have been implicated in the 
regulation of c-fos transcription (1 2). To 
identify the signaling pathways that trigger 
the induction of c-fos transcription in the 
intact nervous system, we have generated 
antibodies to the activated, phosphorylated 
form of CREB. We have used these anti- 
bodies to show that light stimuli that phase 
shift circadian rhythms induce the phos- 
phorylation of CREB at Ser'33 in the nuclei 
of neurons of the SCN. 

Antibodies (anti-PCREB) were ob- 
tained from rabbits immunized with a phos- 
phopeptide corresponding to amino acids 
123 to 136 of CREB (13). Anti-PCREB 
recognized CREB that was purified from 
cells infected with baculoviius. and- phos- 
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phorylated in vitro on Ser"' but failed to 
recognize CREB that was not phosphorylat- 
ed on Ser133 (Fig. 1A). Both the phospho- 
rylated and unphosphorylated forms of 
CREB were detected with an antibody (an- 
ti-CREB) that was raised to a TrpE-CREB 
fusion protein (14). 

Anti-PCREB specifically recognized the 
phosphorylated form of CREB present in 
whole cell lysates of various cell types. In 
PC12 cells, CREB becomes newly phos- 
phorylated on Ser13' when the cells are 

stimulated with forskolin to activate ade- 
nylate cyclase or after membrane depolar- 
ization, which stimulates Ca2+ influx (10, 
15). Anti-CREB, which recognizes CREB 
regardless of the phosphorylation state of 
Ser133, immunoprecipitated comparable 
amounts of the 43-kD CREB protein from 
extracts of 32P-labeled PC12 cells prepared 
before or after stimulation with forskolin or 
increased concentrations of extracellular 
KC1 (Fig. 1B). CREB can be detected as a 
phosphoprotein even in untreated cells be- 
cause, although it is not phosphorylated on 
Ser13' in these cells, it is phosphorylated on 
other sites (16). Anti-PCREB did not im- 
munoprecipitate CREB from extracts of 
unstimulated cells but did specifically rec- 
ognize CREB present in PC12 cells minutes 
after treatment with forskolin or KC1 (Fig. 
1B). In addition to recognizing CREB (1 7), 
anti-PCREB immunoprecipitated at least 
two other phosphoproteins from PC12 cell 
extracts. Because of their relative molecular 
sizes, we suspect that these proteins may be 
two members of the CREB-ATF family, 
ATF-1 and CREM, that are known to be 
similar in sequence to CREB in the region 
that includes Ser133. Thus, anti-PCREB 
should be useful in determining the phos- 
phorylation state of CREB and other relat- 
ed proteins under different conditions of 
cell stimulation. 

Anti-PCREB was used to examine 

whether CREB activation occurs during 
trans-synaptic signaling in neurons. In the 
central nervous system in general, and in 
the SCN in particular, excitatory trans- 
synaptic signaling is predominantly mediat- 
ed by the neurotransmitter glutamate. In 
the SCN, stimulation of the NMDA sub- 
type of glutamate receptor appears to be 
critical for induction of c-fos mRNA (18) 
and for behavioral phase shifting by light 
(19). To determine if the induction of 
phosphorylation of CREB on Ser13' is cor- 
related with glutamate-induced transcrip- 
tion of c-fos, anti-PCREB was used to assess 
the phosphorylation state of CREB in cul- 
tured hippocampal neurons before and after 
exposure to glutamate. Treatment of cul- 
tured hippocampal neurons with either glu- 
tamate (10 p,M) or KC1 (55 mM), condi- 
tions that lead to increased transcription of 
c-fos (20), led to an increase in the amount 
of phosphorylated CREB immunoprecipi- 
tated with anti-PCREB from extracts of 
[32P]-labeled cells (Fig. 2A). The induction 
by glutamate, KCl, or forskolin of phos- 
phorylation of CREB was also detected by 
immunoblot analysis of whole cell extracts 
of hippocampal cells (Fig. 2B). In these 
experiments, a doublet that migrated with 
the 43-kD molecular weight marker was 
detected by anti-PCREB but not by preim- 
mune serum (20). The two inducible bands 
detected by immunoblot may be CREBa 
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phosphorylated on Ser133. (A) Baculovirus-ex- 
pressed CREB was incubated with (lanes 1 and 
3) or without (lanes 2 and 4) CAMP-dependent 
protein kinase and adenosine triphosphate to 
phosphorylate Ser133. CREB was resolved by 
SDS-PAGE and immunoblot analysis was car- 
ried out (24) with anti-CREB (a-CREB) (lanes 1 
and 2) or anti-PCREB (a-PhosphoCREB) (lanes 
3 and 4). Identical results were obtained when 
CREB was phosphorylated with Ca2+/calmod- 
ulin-dependent protein kinase I I ,  which also 
phosphorylates Ser133 (20). Preimmune serum 
did not detect CREB (20). (B) Immunoprecipi- 
tation of CREB phosphorylated on Ser133 from 
PC12 cell extracts with anti-PCREB. The 32P- 
labeled PC12 cells were treated for 10 min as 
follows: no addition (NIA) (lanes 1 to 3), 10 p,M 
forskolin (lanes 4 to 6), or 60 mM KC1 (lanes 7 to 
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5, and 8), anti-CREB (lanes 3, 6, and 9), or 
affinity-purified anti-CREB (A.P. a-CREB) (lane 
10). Immune complexes were collected, boiled, 
and resolved by SDS-PAGE as described (25). 
The arrow indicates CREB. 
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and CREBA, which differ in sequence by 
14 amino acids. The increased phosphor- 
ylation of CREB on Ser'33 appeared to 
result from activation of the NMDA sub- 
type of glutamate receptor because it was 
blocked by the specific NMDA receptor 
antagonist D(-)-2-amino-5-phosphonov- 
alerate (APV) (Fig. 2A). The effects of 
APV appeared to be specific to glutamate 
because this inhibitor did not block phos- 
phorylation of CREB induced by membrane 
depolarization (Fig. 2A) or treatment of 
cells with forskolin (20). Glutamate also 
rapidly induced anti-PCREB immunoreac- 
tivity in the nuclei of hippocampal neurons 
in the absence but not the presence of the 
NMDA antagonist APV (Fig. 2C). 

In the SCN, CREB was also newly 
phosphorylated at Ser133 at times when 
light triggers an induction of c-fos expres- 
sion and a phase shift of the circadian 

ark C 

Fig. 3. Phosphorylation of a CREB-like protein 
in cells of the SCN after exposure of animals to 
light. Light-dark entrained hamsters were 
placed in constant darkness for 5 days and 
subsequently stimulated during (A) subjective 
night (CT 19) or (B) subjective day (circadian 
time 6) without or with light for 5 min and then 
killed. Brain sections were immunostained 
with anti-PCREB, anti-PCREB that had been 
preadsorbed with an equal amount of phos- 
phopeptide (PEP) (1 pglul), or anti-CREB as 
described (21). The experiment shown in (A) 
has been performed four times with a total of 
nine animals in each group (light and dark). 
The experiment shown in (B) has been done 
three times with a total of six animals in each 
group; I l l ,  third ventricle; OC, optic chiasm. 

rhythm. Hamsters were placed in constant 
darkness for 5 days and subsequently ex- 
posed to light for 5 min during their 
subjective night, and brain sections were 
stained with anti-PCREB (2 1). Exposure 
to light for 5 min during subjective night 
at circadian time (CT) 19 (Fig. 3A) or 
CT14 (20) led to increased anti-PCREB 
immunoreactivity in cells of the SCN 
(Fig. 3A). The immunostaining appeared 
to be specific because it was not detected 
with anti-PCREB that was preadsorbed 
with a peptide containing phospho-Ser133. 
Whereas the induction of anti-PCREB 
immunoreactivity was rapid (within 5 to 
10 min) and robust, synthesis of CREB 
appeared not to change as a function of 
photic stimulation because anti-CREB im- 
munoreactivity was similar in the absence 
or presence of light (Fig. 3A). These 
results demonstrate that exposure of ham- 
sters to light during the subjective night 
leads to the phosphorylation of a CREB 

Control Light 
I- 

& W P 

P W P 

Fig. 4. Light-induced phosphorylation of 
CREB in the SCN. Hamsters were maintained 
for 5 days in constant darkness and were 
subsequently treated without (lanes 1 to 4) or 
with (lanes 5 to 12) light for 5 min during 
subjective night (CT19). Brains were rapidly 
removed in darkness and the SCN was dis- 
sected (8). Extracts were prepared and DNA 
mobility-shift assays were performed as de- 
scribed (22). Binding reactions (25 pl) con- 
tained extract and probe alone (lanes 1, 5, 
and 10) or also included 2.4 pmol of consen- 
sus CRE oligonucleotide (lanes 2 and 6), 
anti-PCREB (0.15 pg) (lanes 3 and 7), anti- 
PCREB preadsorbed with PCREBtide (0.15 
pg) (lanes 4 and 8), affinity-purified anti-CREB 
(0.08 pg) (lane 1 I ) ,  or affinity-purified anti-SRF 
(antibody to serum response factor) (0.20 pg) 
(lane 12). The arrow labeled A indicates spe- 
cific CREB-Ca-CRE binding complex. The ar- 
row labeled B indicates complex formed by 
the addition of anti-PCREB. PEP, immunizing 
phosphopeptide. Lane 9, no extract. 

family member in neurons of the SCN. 
To determine if light stimulation spe- 

cifically leads to an increase in phospho- 
rylation of CREB on Ser133, rather than 
phosphorylation of another member of the 
CREB family, tissue extracts were pre- 
pared from the SCN and DNA mobility- 
shift assays were performed with the CaZ+- 
CAMP response element (Ca-CRE; se- 
quence TGACGTTT) of the c-fos pro- 
moter as a probe (22). A factor that binds 
to the Ca-CRE was detected in extracts 
from the SCN (Fig. 4). The binding of 
this factor to the Ca-CRE was abolished 
by including an excess of an oligonucleo- 
tide (25 times the amount of the Ca-CRE 
probe) containing a consensus CRE 
(TGACGTCA) in the binding reaction. 
The formation of this complex was also 
blocked by including in the binding reac- 
tion affinity-purified anti-CREB but was 
not blocked by an antibody to an unrelat- 
ed transcription factor (Fig. 4). Because 
anti-CREB immunoprecipitates CREB, 
but not ATF-1 or CREM (Fig. lB), these 
results suggest that CREB is the major 
Ca-CRE binding factor in the SCN. 

To determine if CREB phosphorylated 
on Ser133 was present in SCN extracts and 
regulated by light, anti-PCREB was in- 
cluded in the DNA binding reactions. 
Rather than blocking CREB binding to 
the Ca-CRE, incubation of the SCN ex- 
tracts with anti-PCREB reduced the elec- 
trophoretic mobility of a fraction of the 
Ca-CRE-CREB complex (Fig. 4). This 
shifted complex was not detected when 
anti-PCREB was incubated with the im- 
munizing phosphopeptide before use. 
Consistent with results of the immunohis- 
tochemistry experiments (Fig. 3), the 
amount of the shifted complex was in- 
creased in'animals that were exposed to 
light for 5 min at CT19. Thus, CREB in 
the SCN becomes newly phosphorylated 
in response to synaptic activity elicited by 
light at a transcriptional regulatory site, 
Ser133. 

To determine if circadian phase affects 
light-induced phosphorylation of CREB, 
anti-PCREB immunoreactivity was exam- 
ined in animals stimulated with light dur- 
ing the subjective day phase of the circa- 
dian cycle. Light induces expression of 
c-fos and phase shifts behavioral rhythms 
during the subjective night period of the 
circadian cycle but not during the subjec- 
tive day (6, 7, 23). Light also failed to 
induce anti-PCREB immunoreactivity if 
the stimulus was given during subjective 
day at CT6. The failure to detect anti- 
PCREB immunoreactivity was not due to a 
lack of CREB in these neurons during 
subjective day because at this time neu- 
rons within the SCN were positively 
stained with anti-CREB. Because there is 
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a correlation between the circadian 
phase-dependence of light-induced phos- 
phorylation of CREB and light-induced 
transcription of c-fos and because CREB 
participates in the control of early gene 
expression in cultured cells, it is likely 
that CREB Ser'33 phosphorylation plays a 
role in the control of transcription of c-fos 
in cells of the SCN. Regulation of gene 
expression in the SCN by CREB may be 
important for the entrainment of the pace- 
maker that orchestrates hormonal and be- 
havioral rhythms. In addition, the compo- 
nents of the circadian clock that gate 
light-sensitive molecular responsiveness in 
the SCN may act upstream of phosphory- 
lation of CREB. 
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