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Force of Single Kinesin Molecules Measured with 
Optical Tweezers 

Scot C. Kuo* and Michael P. Sheetz 
Isometric forces generated by single molecules of the mechanochemical enzyme kinesin 
were measured with a laser-induced, single-beam optical gradient trap, also known as 
optical tweezers. For the microspheres used in this study, the optical tweezers was 
spring-like for a radius of 100 nanometers and had a maximum force region at a radius 
of -150 nanometers. With the use of biotinylated microtubules andspecial streptavidin- 
coated latex microspheres as handles, microtubule translocation by single squid kinesin 
molecules was reversibly stalled. The stalled microtubules escaped optical trapping 
forces of 1.9 + 0.4 piconewtons. The ability to measure force parameters of single 
macromolecules now allows direct testing of molecular models for contractility. 

Biological forces in motile systems, such 
as those involving ciliary dynein and ac- 
tomyosin, are usually studied as the sum of 
contributions from many force-generating 
units (1). However, the mechanochemical 
enzyme kinesin can function as an indi- 
vidual molecule. Kinesin that is adsorbed 
to glass moves microtubules so that they 
pivot around a single attachment point 
(2). The concentration dependence of the 
motility, cakulated as an effective Hill 
coefficient of 1 for kinesin adsorbed to 
glass cover slips (2) or as a Poisson distri- 
bution for kinesin adsorbed to glass beads 
(3), indicates that one molecule alone can 
generate force and move microtubules. 
We have directly measured the force gen- 
erated by an individual kinesin molecule 
using the single-beam optical gradient 
trap, also known as optical tweezers (4). 

To characterize the optical trap, we 
used viscous drag to displace trapped mi- 
crospheres that were 0.55 p,m in diameter. 
All calibration experiments were per- 
formed at least 2 pm from the cover slip 
surface to minimize viscous coupling to 
the glass surface, so deviations from Stokes 
drag were < 7 %  (5). For all biological 
force measurements, we calibrated the es- 
cape force (F,,,) from the optical tweezers 
by using a laminar flow cell (6). However, 
optical forces during escape from the op- 
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tical tweezers are spatially complex, re- 
quiring nanometer-level characterization 
of the optical trap to interpret subsequent 
experiments. Such characterization would 
be biased by the shear gradient of the flow 
cell. 60 we used viscous forces that were 
generated by moving the microscope spec- 
imen with a piezoceramic-driven stage 
(7). The stage had a maximal usable 
velocity of -150 pm s-' (-0.8 pN of 
viscous drag), making it less appropriate 
for direct calibration of biological force - 
measurements. Trapped particles were al- 
ternately displaced by the piezoceramic 
stage moving at constant velocity, and 
their positions were monitored while laser 
irradiation was reduced (Fig. 1A). Nor- 
malized to the laser irradiation at the 
specimen, a force and displacement profile 
can be constructed (Fig. 1B). Force is 
proportional to the displacement for the 
first - 100 nm. This force-displacement 
profile qualitatively agrees with theoreti- 
cal models of the optical trap.(.$). Because 
of video limitations, the region of- maxi- 
mum force has not been precisely deter- 
mined, but it appears to be located at a 
radius of 150 2 26 nm (SD) (Fig. 1C). 

Optical forces were applied to streptavi- 
din-coated latex microspheres that were 
attached as handles to biotinylated micro- 
tubules. The biotinvlation ~rocedure. both 
with and without the attachment of micro- 
spheres, did not alter kinesin-driven gliding 
velocities of the microtubules. After evalu- 
ating different procedures for constructing 
biotin-specific beads (9), we covalently at- 
tached bovine serum albumin to carbodiim- 
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Fig. 1. Spatial force profile of the optical twee- 
zers. (A) The position (r) of a 0.55-pm micro- 
sphere trapped 2 pm above the cover slip was 
tracked by video as the laser power was simul- 
taneously monitored (15). After the bead was 
trapped, a triangle-wave voltage displaced the 
piezoelectric stage at 140 pm s-' in alternating 
directions (t = 5.4 s, arrow). At t = 10 s, the 
laser irradiation and corresponding escape 
force (F,,) were reduced by a large step, and 
smaller reductions were performed at subse- 
quent 1.9-s intervals. (B) Balanced against 
viscous forces, the optical force was normal- 
ized to the laser irradiation at the specimen 
(F,,, mean 2 SD) and was plotted against the 
displacement of the trapped bead (mean 2 
SD). The root-mean-square deviation of the 
particle position increased as the laser irradia- 
tion was reduced, corresponding to larger ther- 
mally induced (Brownian) position fluctuations 
and a decreased spring constant. The appar- 
ent spring constant (stiffness) of the optical 
tweezers was 1.8 pN pm-' mW. (C) As the 
laser irradiation is decreased before particle 
escape, the maximum excursion (r,A of a 
trapped particle should correspond to the re- 
gion of maximal force for the optical trap. Over 
different measurements (mean 2 SD) at differ- 
ent stage velocities, this maximum force region 
was located at -150 2 26 nm for 0.55-pm 
microspheres. 

ide-activated carboxylate microspheres, fol- 
lowed by limited biotinylation and subse- 
quent binding in saturating amounts of 
streptavidin. More than 90% of these beads 
could bind to biotinylated microtubules and 
remained attached despite forces as great as 
10 pN. To increase the association time 
between kinesin and microtubules. we used 
subsaturating concentrations of guanosine 
triphosphate (GTP) as the energy source for 
kinesin. In our experimental conditions, as 
many as half of the squid kinesin molecules 
were active for translocation. 

In kinesin force measurements, immo- 
bilized kinesin vulls on a biotinvlated mi- 
crotubule that i's balanced by opAcal forces 
applied to a streptavidin-coated micro- 
sphere some distance from the kinesin 
molecule (Fig. 2A). The position of the 
trapped microsphere (Fig. 2C) that is de- 
termined from video images (Fig. 2B) was 
monitored while laser power was reduced 
(Fig. 2C). At t = 11.7 s (Fig. 2C, l), the 
microsphere started to move from the 
center of the optical nap, and its position 
indicates the balance between mechani- 
cal, biological, and optical forces. Because 
we continuously varied optical forces, a 

residual translocation (2.2 nm s-') was 
apparent and reduced the quality of stall- 
ing kinesin (5% of unloaded velocity). 
After t = 59.4 s (Fig. 2C, 3), the biolog- 
ical forces exceeded the maximum optical 
force of the optical tweezers (displacement 
of 130 nm). However, the bead had not 
comvletelv escaved the influence of the 
trap because it still moved more slowly 
than its unloaded velocity. As the bead 
progressed out of the remainder of the 
trap, optical forces pushed it slightly out of 
focus ("popping") (Fig. 2, B and C, 4) and 
the stretched bead-microtubule continued 
to relax; both phenomena appear to short- 
en the microtubule. Also described for 
other optical tweezers (1 0) and their mod- 
els (8), the popping behavior was seen in 
all experiments and is beyond the region 
of maximum force (-250 nm versus -150 
nm) (Fig. 1). With the optical tweezers 
off, the microtubule traveled at unloaded 
velocity (44 nm s-') and freely pivoted 
around its attachment point, which is 
consistent with movement by a single 
kinesin molecule. 

Because of the limited spatial accuracy 
of our tracking technique (-10 nm) and 

Flg. 2. kkawmmt of the isometric force of a 
sinale m r n  molecule. (Al For bead position. 

,I: - : - : : . 1: . I ris'isdistiincehrmheEsnte,oftheirapand 
R is its distance from the kinesin attachment 

0 20 40 a 86 100 site. (B) Selected video images of kinesin force 
Ilmr (a) measurement (16). The amm indicates the 

position of the optical trap, and the particle at 
me base of the arrow is a 140-nm bead adsorbed to the gbss surface as a reference marker. 
Images 1 to 7 correspond to t = 11.7,35.1, 59.4,67.1,69.1, 80.4, and 93.4 s. Scale bar is 3 pm. 
(C) Movement of a rnicrotubulegttached bead due to a single kinesin mdecule with 1 mM GTP was 
mitored as the laser power of the optical trap was reduced (16). The beass position, Rand r 
(inset), was calculated from video tracking of the bed's image, as descdbed in Fig. 1. F m  
calibrations of partide escape induced in a flow cell, the bottom trace is the equivalent F, of the 
trap. Numbers 1 to 7 marked along the traces cocrespond to the elapsed tknes in (B). 
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1 Fig. 3. Histogram of kinesin force measurements. Measure- 
ments as described in Fig. 2 were repeated with many 
kinesin molecules. Experiments were performed at nucleo- 
tide concentrations of 0.3 to 1 mM GTP (solid bars) or 10 FM 
ATP (open bars). Individual videos were examined for iso- 
metric stalling of kinesin (no obvious movement for at least 30 
s) and stability of the microscope stage (< 1 nm s-I of drift 
when 140-nm reference beads were tracked). The two dis- 

; crete peaks in the histogram are 1.9 + 0.4 pN (SD, n = 18) 
and 5.4 pN (n = 2). 

the compliance of the microtubule-bead 
tether, the force fluctuations of kinesin are 
poorly resolved while generating isometric 
tension. Furthermore, the inherent nano- 
meter-position instabilities of the laser, 
microscope stage, and video images se- 
verely limited our accuracy in measuring 
the isometric forces using the force-dis- 
placement curve (Fig. 1B). Instead, we 
used the escape force located at -150-nm 
radius (Fig. 1C). For the experiment in 
Fig. 2, kinesin-driven movement escapes 
at 2.0 pN and corresponds in concept to 
the isometric tension measured in muscle 
studies. 

sperm flagella, glass microneedle measure- 
ments were -1 pN per dynein arm (12). 
For a muscle fiber, 1 to 2 pN per cross 
bridge is expected (13), and with stiffness 
as an estimate of cross bridge number, 
measurements indicate as much as 2 pN 
per cross bridge (1 4). From noise analysis 
of actomyosin in vitro, randomly oriented 
myosin heads produced 0.4 pN per cross 
bridge (1). If we assume a similar model 
for motility, the equivalent number for the 
two-headed kinesin molecule would be 
0.95 pN per cross bridge. 
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