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Analytical models are used to compare the rates at which an isolated fracture and vertical, 
parallel fracture sets in hydrothermal upflow zones can be closed by silica precipitation 
and thermoelastic stress. Thermoelastic sealing is an order of magnitude faster than 
sealing by silica precipitation. In vertical fracture sets, both the amount of silica precipitation 
resulting from cooling and the total thermal expansion of the country rock may be insuf- 
ficient to seal cracks at depth. These crack systems may ultimately close because the 
pressure dependence of silica solubility maintains precipitation during upflow even after the 
temperature gradient vanishes. 

Rock  permeability controls fluid circula- 
tion in hydrothermal systems (1). This 
highly variable parameter ranges from 
-10-lo m2 in fractured igneous and meta- 
morphic rocks to - m2 in unfractured 
rocks (2). Estimates of mean permeability 
in hydrothermal systems tend to range be- 
tween lo-" and 10-l6 m2 (3), which 
indicates that, in these environments, the 
permeability mainly arises from fractures. 
Moreover, the permeability may vary both 
spatially and temporally in response to tec- 
tonic and thermal stress as well as to chem- 
ical dissolution and precipitation (4-7). An 
understanding of the evolution of a hydro- 
thermal system thus requires knowledge of 
how fracture-controlled permeability evolves 
in suace and time. 

In this report, we investigate crack 
closure resulting from silica precipitation 
in hydrothermal upflow zones that occurs 
in response to the decrease in solubility of 
solid SiO, phases upon cooling and de- 
compression of the ascending fluids (8). 
We consider the idealized cases of a single 
fracture and a set of planar, parallel, and 
vertical fractures (Fig. 1). We obtain an- 
alytical formulas for the fracture width as a 
function of time and comuare the rate of 
fracture closure resulting from silica pre- 
cipitation with that resulting from ther- 
moelastic stresses (6). We also explain the 
formation of a thin surficial crust observed 
at a hydrothermal site along the northern 
Gorda Ridge. Moreover, the analytical 
solutions can be used to check numerical 
models of fracture closure. 

Recent studies of chemical reactions 
between hydrothermal solutions and the 
surrounding rock (9) follow from the sem- 
inal work of Helgeson (10). Wood and 
Hewett (1 l ) ,  Walder and Nur (1 2), and 

Wells and Ghiorso (1 3) have attempted to 
show how porosity and permeability are 
reduced as a result of silica precipitation in 
hydrothermal systems. Chemical equilib- 
rium. between silica and the fluid was 
assumed in (1 1 ) and (1 2) ; a linear precip- 
itation-rate law was used in (1 3). In each 
of these studies, a uniform Darcian flow in 
a porous medium and a constant geother- 
mal gradient were assumed. These studies 
illustrate the importance of the average 
fluid velocitv. which determines the flux , , 
of silica to the site of deposition, and the 
temperature gradient, which controls the 
rate of silica precipitation; however, a 
temperature gradient that is constant in 
space and time is not realistic for a hydro- 
thermal system. Similarly, fracture-con- 
trolled flow dominates rather than Darcian 
flow. 

For a sirgle fracture of width b and 
constant length in an impermeable medi- 
um, rhe mass balance of silica enteringat 
position x and leaving at x + dx is given by 

where p, = 2.5 x lo3 kg mP3 is the 
density of silica, t is time, q = pfvb is the 
mass flow rate of fluid, pf = lo3 kg mP3 is 
the density of water, w is the velocity of 

Fig. 1. Schematic drawing showing fluid upflow 
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fluid in the fracture, and c, is the mass 
concentration of silica in solution (kghg) . 
The left side represents the growth rate of 
quartz per unit surface area of the fracture 
wall. The equation shows, therefore, that 
the dissolved silica gradient (ac,lax) is 
determined by the mass flow of fluid and 
the precipitation kinetics of quartz. The 
gradient vanishes for high fluid velocities, 
large fracture widths, and slow kinetics. 
We have neglected the dispersion of silica 
along the fracture and diffusion of silica 
into the country rock. We have also ne- 
glected other possible mineral precipita- 
tion or dissolution reactions. These pro- 
cesses could be included in more complete 
models. 

The precipitation rate is driven by the 
degree of supersaturation of the fluid with 
respect to silica. Because silica solubility 
depends on temperature T and pressure P, it 
is useful to write 

The pressure gradient can be approximated 
by the hydrostatic gradient -pfg, where g is 
the acceleration of gravity. The minus sign 
occurs because x is defined positive up- 
wards. 

To calculate dTldx, we consider the 
opening of a fracture of width bo at time t 
= 0 in rock initially at temperature To. 
Fluid enters the crack at x = 0 and flows 
through the crack at a mass flow rate q per 
unit length of the fracture (Fig. 1). The 
heat transported by fluid flowing in the 
fracture is equal to the rate at which heat 
is conducted into the rock. The temuera- 
tures of the fluid and rock at the fracture- 
rock interface are assumed to be eaual. At 
x = 0, the fluid is maintained at a constant 
temuerature T, .  Then. after an initial. 
short-lived transient, the temperature of 
the fluid in the fracture is (1 4): 

T(x,t) = To + (T1 - To) erfc -- 
(sq:) (3) 

where erfc is the complementary error func- 
tion, A = 2.5 W m-' "C-' is the thermal 
conductivity of rock, s = 4..x, lo3 J kg-' 
"C-' is the specific heat of the fluid, and a 
= lop6 m2 s-' is the thermal diffusivyty of 
rock. Substituting aTlax from Eq. 3 into 
Eq. 2 and inserting the result in Eq. 1, we 
get 

Integration of Eq. 4, with b = bo at t = 
0 yields 
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2A(T1 - To) ac, 
b(x,t) = bo - 

P s s G  -1 
[2. expi-) - $8 

4Pfg dcs erfc - - - - 
( s ~ & ) ]  h t (5) 

Equation 5 shows that b(x,t) decreases most 
rapidly at the inlet to the fracture, x = 0, 
where 

b(0,t) = bo - A(T1 - TO)tl/' - B 4t (6) 

where A = [ 4 h / f i p s ~ ] [ a ~ , / a T ]  and B = 

[p,g/p,l [ac,/aPI. 
To calculate the closure time of a frac- 

ture with Eq. 6, we need estimates for 
dc,/dT and dc,/aP. When the precipitation 
kinetics are fast relative to the rate of fluid 
advection, silica precipitation is able to 
maintain the fluid composition close to 
equilibrium, and dc,/dT and ac,/aP may be 
approximated by the temperature and pres- 
sure derivatives, respectively, of silica solu- 
bility. In general, the assumption of local 
chemical equilibrium provides an upper 
bound on model calculations that are based 
on experimentally determined kinetics of 
silica precipitation. 

Using silica solubility data from Fourn- 
ier (8) in a solution with 0.51 m NaCl 
between 200" and 300°C, we find ac,/aT = 
6 x lop6 K-'. The solubility of silica in 
pure water as a function of pressure (15) 
yields ac,/aP = 10-l2 Pa-' if T I 300°C; 
at T > 300°C and P > 200 bars, ac,/aP = 
lo-' ' Pa-'. This approach gives A = 2.8 
x lop9 m s-'I2 "C-' and B = 4 x 10-l2 
m2 kg-' for T 5 300°C. For a temperature 
difference of 100°C, Eq. 6 gives about 0.4 
vear as the shortest time for the closure of 
a 1-mm-wide fracture. This result is not 
very sensitive to the flow rate for q 5 0.1 
kg m-' s-', which indicates that the 
temperature-gradient term in Eq. 6 is more 
important than the pressure-gradient term 
for large temperature differences. For a 
temperature difference of 10°C, the time 
to close a 1-mm-wide fracture according to 
Eq. 6 is about 20 years for q = 0.1 kg m-' 
s-', or 40 years for q = 0.01 kg m-' s-'. 
Thus. for small temoerature differences 
between the fluid and'the rock, the effect 
of pressure on solubility can be a signifi- 
cant driving force for precipitation. 

The above result holds for constant q. 
The average mass flow per unit length of 
the fracture is related to the pressure head 
H driving the flow by q = (b3/12v)H, 
where v is the kinematic viscosity of wa- 
ter, ranging from lop6 to lop7 mZ s-'. 
Thus, if the head remains constant, q will 
decrease as b decreases. The term that 
involves the effect of pressure on solubility 

in Ea. 6 will decrease as the flow de- 
creases. The term that involves the effect 
of temperature on solubility is more com- 
plicated. The temperature distribution 
(Eq. 3) is for constant q; however, this 
equation was derived from the balance 
between heat advected by fluid flowing in 
the fracture, qaTlax, and heat conducted 
into the adjacent country rock. Because 
heat conduction is proportional to t-'I2, 
this time dependence also holds for qdT1 
ax. This result. combined with Eas. 1 and 
2, implies that the second term on the 
right side of Eq. 6 should still be .propor- 
tional to t'IZ even though q decreases with 
time. In any case, Eq. 6 holds for the early 
stages of crack closure by silica precipita- 
tion, provided the kinetics are fast. 

Equation 6 can be compared directly 
with the equation for closure of a single 
fracture by thermoelastic stresses. If the 
wall of a single crack of initial width bo is 
maintained at temperature T1 in an infinite 
medium at initial temperature To, where T, 
> To, the crack faces will be displaced 
inward as a result of the thermal expansion 
of the adjacent rock. The crack width is 
given by (6, 16) 

where a, = lop5 "C-' is the thermal 
expansion coefficient for rock. Comparison 
of Eqs. 6 and 7 shows that the temporal 
dependence for thermal and chemical seal- 
ing is identical. Substitution of typical val- 
ues, however, yields a numerical factor 
governing the rate of fractional closure 
(b, - b)/bo that is about an order of mag- 
nitude greater for thermal than for chemical 
sealing. Thus, for a single fracture, the 
calculations suggest that permeability 
changes induced by thermal stress and by 
silica precipitation operate on different time 
scales. 

Suppose a fracture is closing as a result 
of simultaneous thermal expansion and 
silica precipitation. Because thermal ex- 
pansion occurs about ten times faster than 
silica precipitation, only a relatively thin 
layer of silica will exist when the fracture 
is closed. Thus, a thin silica-filled vein 
mav have initiallv been a much wider 
fracture. Moreover, after the fracture is 
sealed. the rock would tend to cool be- 
cause the hot hydrothermal fluid is no 
longer able to flow through it. Ther- 
moelastic stress would then tend to reopen 
the fracture. but this mav be rendered 
more difficult because of the chemical 
sealing of the fracture. Coupled ther- 
moelastic and chemical effects may lead to 
oscillatory behavior, which may explain 
why in fractures there are numerous gen- 
erations of silica. 

Now consider a set of planar, parallel, 
and vertical fractures of initial width bo that 
are separated by a distance h (Fig. 1). In 
this case, thermal interference between the 
fractures will limit the amount of closure 
that can occur by either the thermal expan- 
sion or chemical orecioitation that results . . 
from the temperature gradient along the 
fracture. The mass balance for silica in an 
individual fracture is the same as for a single 
fracture, but the thermal problem is differ- 
ent because there is no heat flux across the 
midplane between adjacent fractures. We 
consider a uniform flow rate a oer unit z .  

length in each fracture in an infinite num- 
ber of fractures. The fluid enters at x = 0 
at temperature TI, and the rock is assumed 
to be initially at temperature To. This 
thermal problem can be solved in Laplace 
transform space (1 7). Substitution of Eq. 2 
into Eq. 1 and integration with respect to 
time yields 

Maximum closure caused by precipita- 
tion along the temperature gradient is 
found with the solution of Eq. 8 in the limit 
as t + m and x + 0, with ac,/aP = 0. 
Application of well-known theorems from 
Laplace transforms to the solution provided 
by Gringarten et al. (1 7) for aT/ax in this 
limiting case gives (1 8) 

where b*(x,p) is the Laplace transform of 
b(x, t) , p, is the density of country rock, and 
c, = lo3 J kg-' "C-' is the specific heat of 
rock. This result can be compared directly 
with the maximum thermoelastic ,closure 
for a set of parallel fractures (6) 

Substitution of parameter values for com- 
parison of Eqs. 9 and 10 indicates that the 
total closure attributable to thermal expan- 
sion is about three times that resulting from 
precipitation driven by the temperature de- 
pendence of silica solubility. - 

In the derivation of Eq. 9, the effect of 
pressure was neglected. However, the de- 
pendence of silica solubility on pressure 
may lead to continued silica precipitation 
even after the temperature gradient van- 
ishes. When dTldx + 0, the last term on 
the right side of Eq. 8 controls the fracture 
width. This term is valid only if q is 
constant, and q is expected to decrease 
with time, as discussed above. As long as q 
is finite, however, the fracture width will 
continue to decrease because of the persis- 
tence of the hydrostatic pressure gradient. 
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Finally, consider the formation of a 
thin, impermeable crust at the sea floor as a 
result of silica precipitation in a fracture set 
during hydro thermal discharge. An exam­
ple may be found at the Sea Cliff hydrother-
mal field on the northern Gorda Ridge in 
the northeast Pacific Ocean (19). This field 
contains an area at least 50 m by 100 m that 
is capped by an irregular crust several cen­
timeters thick, which is in part cemented 
by silica. 

In this problem, we consider a quasi-
steady-state situation in which the temper­
ature profile results from uniform upflow of 
fluid through a set of parallel vertical frac­
tures of width b and separation In. At depth, 
the temperature is T = 7\ ; at the sea-floor 
boundary, T = 0°C. This problem can be 
interpreted to be the steady-state result for 
upflow through a fracture set (Fig. 1). The 
temperature of the fluid in the cracks is now 
in equilibrium with the adjacent rock, and 
all thermoelastic expansion and chemical 
precipitation at depth in the fracture system 
has taken place. 

The upflow velocity in each crack, v, can 
be written in terms of a Darcian velocity vd 

= <$>v> where <|) = b/h is the porosity. The 
temperature distribution T(x) is given by: 

T(x) = Tx[l - exp(-*,dx/a*)] (11) 

where a* = X/pfs is the effective thermal 

7 = 0 

f J8 
11 U 11 K 

T^T, 
Temperature 
profile 

Fig. 2. Uniform Darcian upflow at velocity vd 

and temperature T, at depth. On the right of the 
diagram is the temperature profile, which 
shows the conductive thermal boundary layer 
of thickness 8. 
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Fig. 3. Time to close fractures of initial width b0 

and separation h in the near-surface boundary 
layer of width 8 for the Darcian convective-
upflow problem as a function of bulk permeabil­
ity k. Curve A is for T, = 50°C, v = 10"6 m2 s~1, 
and a = 10-4 °C-1; curve B is for 7"., = 300°C, 
v = 10-7 m2 s - \ and a = 1Q-3 °C-1. 

diffusivity and x is now positive downward 
from the surface. For typical values of fd, 
the temperature distribution given by Eq. 
11 remains close to 7 \ , except in a thin 
thermal boundary layer of thickness 8 « 
a*/vd, within which conduction to the sur­
face is important (Fig. 2). Chemical precip­
itation will be concentrated in this bound­
ary layer where the temperature decreases 
sharply. In this region, crack closure by 
thermal expansion is relatively unimportant 
because the temperature is low; the pressure 
effect on solubility can also be neglected 
because the temperature gradient is large. 
The temperature gradient is greatest at x = 
0, where dT/dx = T ^ / a * . Substitution of 
this value for dT/dx into Eq. 2 and insertion 
of Eq. 2 into Eq. 1 yields 

db dcs QfTihvj 

Tt
 = -£—r (12) 

at dT psa* 
where q in Eq. 1 has been replaced by 
PfbvdM>. 

The upward Darcian velocity vd is as­
sumed to result from buoyancy forces be­
tween cold, downward-circulating fluid and 
the hot, ascending fluid. Thus 

vd~gakTxlv (13) 
where a is the thermal expansion coeffi­
cient for water, which ranges from 10~4 to 
1 0 - 3 . ° C - 1 . Because precipitation takes 
place mainly in the boundary layer, we can 
assume that the bulk permeability, Jc, re­
mains constant as the uppermost layer of 
the crust is sealed by chemical precipita­
tion. Substituting Eq. 13 into Eq. 12 and 
integrating, we get 

b(t) " piTl (kag\2dcs 

bo Psa <l>o\ v j dT 

where <|)0 is the initial porosity bQ/h. 
The fracture width b(t) depends strong­

ly on a number of parameters that them­
selves are highly variable (for example, k2 

dependence); therefore, the time to close 
a given fracture by quartz deposition can 
vary over many orders of magnitude (Fig. 
3). The results for 7 \ = 50°C are similar 
to those in (11). For 7 \ = 300°C, how­
ever, the time for crack sealing is many 
orders of magnitude faster. This is, in part, 
because of the relatively high value of a/v 
in high-temperature systems. The calcu­
lated closure times for the low-tempera­
ture situation are underestimates because, 
at temperatures below 100°C, the precip­
itation rate of silica becomes very slow, 
and it is unlikely that saturation with 
quartz is maintained (8). 

When the Alvin temperature probe was 
inserted into the impermeable crust at the 
Sea Cliff hydrothermal field on the north­
ern Gorda Ridge, the temperature imme­
diately registered 94°C at a depth of 5 cm 

(19). If this crust is underlain by water 
upflowing at 350°C, the observed temper­
ature at 5 cm, together with Eq. 11, yields 
an upward velocity vd = 2 X 10~6 m s _ 1 . 
Substitution into Eq. 13 gives a permeabil­
ity k « 6 X 10"1 4 m2. According to the 
results in Fig. 3, the crust could be effec­
tively sealed within less than a decade. 

The calculations in this report suggest 
that permeability in hydrothermal upflow 
zones may be significantly modified by the 
precipitation of silica on relatively short 
time scales. In the deeper parts of hydro-
thermal systems, however, fracture closure 
as a result of silica precipitation does not 
appear to occur as rapidly as thermoelastic 
closure. 

REFERENCES AND NOTES 

1. R. P. Lowell, Rev. Geophys. 29, 457 (1991). 
2. W. F. Brace, Int. J. Rock Mech. Min. Sci. 17, 241 

(1980); J. Geophys. Res. 89, 4327 (1984). 
3. For example, J. R. Cann and M. R. Strens, J. 

Geophys. Res. 94, 12227 (1989); R. P. Lowell and 
D. K. Bunnell, Earth Planet. Sci. Lett. 104, 59 
(1991); D. Norton and H. P. Taylor, J. Petrol. 20, 
421 (1979). 

4. D. E. White, M. W. Brannock, K. J. Murata, 
Geochim. Cosmochim. Acta 10, 27 (1956); R. O. 
Fournier, in Reviews in Economic Geology, B. R. 
Berger and P. M. Bethke, Eds. (Society of Eco­
nomic Geologists, El Paso, TX, 1985), vol. 2, pp. 
45-62. 

5. For example, R. O. Fournier, U.S. Geol. Surv. Prof. 
Pap. 350(1987), p. 1487. 

6. R. P: Lowell, Geophys. Res. Lett. 17, 709 (1990). 
7. L N. Germanovich and R. P. Lowell, Science 255, 

1564(1992). 
8. R. O. Fournier, Geochim. Cosmochim. Acta 47, 

579 (1983). 
9. For example, A. C. Lasaga, J. Geophys. Res. 89, 

4009 (1984), P. C. Lichtner, Geochim. Cosmo­
chim. Acta49, 779 (1985); ibid. 52, 143 (1988); C. 
I. Steefel, thesis, Yale University (1992). 

10. H. C. Helgeson, Geochim. Cosmochim. Acta 32, 
853 (1968); in Geochemistry of Hydrothermal Ore 
Deposits, H. L. Barnes, Ed. (Wiley, New York, 
1979), pp. 568-610. 

11. J. R. Wood and T. A. Hewett, Geochim. Cosmo­
chim. Acta 46, 1707 (1982). 

12. J. Walder and A. Nur, J. Geophys. Res. 89,11539 
(1984). 

13. J. T. Wells and M. S. Ghiorso, Geochim. Cosmo­
chim. Acta 55, 2467 (1991). 

14. G. Bodvarsson, J. Geophys. Res. 74, 1987 
(1969); R. P. Lowell, ibid. 81, 359 (1976). 

15. G. C. Kennedy, Econ. Geol. 45, 629 (1950); R. O. 
Fournier and R. W. Potter II, Geochim. Cosmo­
chim. Acta 46, 1969 (1982). 

16. G. Bodvarsson, in Proceedings of the 2nd..United 
Nations Symposium on the Development ahdJJse 
of Geothermal Resources (Government Printing 
Office, Washington, DC, 1975), pp. 903-907. 

17. A. C. Gringarten, P. A. Witherspoon, Y. Onishi, J. 
Geophys. Res. 80, 1120 (1975); E. S. Romm, 
Problemy Razrabotki Mestorozhdenii Poleznykh 
Iskopaemykh Severa (Leningrad Mining Institute, 
Leningrad, 1972). 

18. We have corrected a small error in the solution 
provided by Gringarten etal. (17). 

19. P. A. Rona etal., Geology 18, 493 (1990). 
20. We thank C. Steefel and an anonymous reviewer 

for helpful comments on a earlier version of this 
manuscript. This work was supported by the NSF 
under grants OCE 9012665 and OCE 9216976 to 
R.P.L and OCE 9221349 to L.N.G. 

23 November 1992; accepted 18 February 1993 

194 SCIENCE • VOL. 260 • 9 APRIL 1993 


