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In the developing brain, most immature 
neurons migrate to their distant final desti­
nations by extending their leading processes 
and translocating their soma through a ter­
rain that is densely packed with previously 
generated neurons and their processes (I). 
This movement of immature neurons is es­
sential for the establishment of normal cy-
toarchitecture, synaptic connectivity, and 
function in the brain (2). In the cerebellum, 
granule cells migrate from the site of their 
origin in the germinal external granular layer 
toward the internal granular layer along the 
elongated processes of Bergmann glial cells 
(3) • Recently Komuro and Rakic have dem­
onstrated that the rate of granule cell move­
ment across the molecular layer in the cere­
bellum depends both on extracellular Ca2 + 

concentrations and on Ca2 + influx through 
N-type Ca2 + channels (4). However, the 
regulatory mechanism underlying this Ca2 +-
dependent process remains unknown. We 
have now examined the role of ionotropic 
receptors—NMDA, non-NMDA, GABAA, 
and GABAB (GABA is 7-aminobutyric ac­
id)—in granule cell migration; these recep­
tors are expressed by immature granule cells 
(5) and can directly and indirectly affect 
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Ca2 + influx and intracellular Ca2 + concen­
trations (5, 6). 

To examine whether NMDA, non-
NMDA, GABAA , and GABAB receptors 
play a significant role in the migration of 
granule cells, we used slice preparations of 
the developing mouse cerebellum stained 
with a lipophilic carbocyanine dye [1,1'-
dioctadecyl-3,3,3',3'-tetramethylindocar-
bocyanine perchlorate (Dil)] and a laser 
scanning confocal microscope (7). Postmi­
totic granule cells in slice preparations mi­
grate from the external granular layer to­
ward the internal granular layer (Fig. 1) 
(8). Antagonists to these receptors were 
added to the culture medium in separate 
experiments. Blockade of the non-NMDA 
subtype of glutamate receptors [that is, 
kainate and AMP A (L-ot-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid) recep­
tors] by 6-cyano-7-nitroquinoxaline-2,3-di-
one (CNQX) (9), GABAA receptors by 
bicuculline (6), and GABAB receptors by 
phaclofen (10) failed to alter the rate of cell 
migration (Fig. 2, A and B). However, 
blockade of the NMDA subtype of gluta­
mate receptor by D-2-amino-5-phosphono-
pentanoic acid (D-AP5) (11) or (+)-5-
methyl-10,1 l-dihydro-5H-dibenzo[a,d]cy-
clohepten-5,10-imine hydrogen maleate 
(MK-801) (12) significantly decreased the 

95 

Modulation of Neuronal Migration by 
NMDA Receptors 

Hitoshi Komuro and Pasko Rakic 

The A/-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is essential for neuronal 
differentiation and establishment or elimination of synapses in a developing brain. The activity 
of the NMDA receptor has now been shown to also regulate the migration of granule cells in 
slice preparations of the developing mouse cerebellum. First, blockade of NMDA receptors by 
specific antagonists resulted in the curtailment of cell migration. Second, enhancement of 
NMDA receptor activity by the removal of magnesium or by the application of glycine increased 
the rate of cell movement. Third, increase of endogenous extracellular glutamate by inhibition 
of its uptake accelerated the rate of cell migration. These results suggest that NMDA receptors 
may play an early role in the regulation of calcium-dependent cell migration before neurons 
reach their targets and form synaptic contacts. 



rate of cell movement (Fig. 2, A and B). 
The effects of D-AP5 and MK-801 were 

dose-dependent. For example, the addition 
o f  1 to 10 pM D-AP5 to the culture 
medium did not  significantly affect the rate 
o f  cell migration. However, higher concen- 
trations of D-AP5 resulted in a statistically 
significant decrease in cell movement (Fig. 
3A). In 50 pM D-AP5, the rate was 48% 
and in 100 pM D-AP5 it was 38% of  the 
normal rate of cell movement (Fig. 3A). 

Fig. 1. Migrating granule cells in the slice prepa- 
ration visualized by confocal laser microscopy. 
The soma of a migrating neuron as well as its 
leading process can be identified after exposure 
to Dil. The border between the external granular 
layer (EGL) and the molecular layer is marked by 
a dotted line. Cells first become bipolar (A), then 
extend the leading process (B), and subsequent- 
ly translocate their nuclei and surrounding cyto- 
plasm through the leading process (C). The range 
of shapes of migrating cells in the slices with 
lower or higher rates of movement was not differ- 
ent from that of the control. The asterisk shows the 
tip of the leading process. Scale bar, 10 pm. 

Fig. 2. The effect of antagonists to ionotropic 
receptors on the migration of cerebellar granule 
cells. All preparations were obtained from 1 Oday- 
old mice. Each column shows the mean length of 
the migration route for at least 100 labeled cells. 
Small bar is SEM. Each antagonist to specific 
NMDA, non-NMDA, GABA,, or GAB& receptors 
was added to the tissue culture medium in sem- 
rate experiments 2 hours after staining, and prkp- 
arations were maintained for an additional 2 hours 
(A) to 4 hours (B). The mean distance of cell 
displacement after the addition of 10 pM CNQX, 
10 FM bicuculline (BICU), or 500 FM phaclofen 
(PHACL) was not significantly different from val- 
ues obtained in control slice preparations (CM) at 
each time point. However, addition of 100 pM 
D-AP5 or 10 FM MK-801 inhibited cell movement. 
In this and following figures, we obtained each 
mean migratory distance by subtracting the mean 
dis~lacement of the cell soma at 2 hours in culture 
from the total length of the migratory pathway 
(8). Double asterisks indicate statistical significa~ 
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We also tested the effect of changes in 
NMDA concentration o n  the rate o f  gran- 
ule cell migration. The addition of 10 pM 
NMDA to the culture medium slightly en- 
hanced the rate of cell movement, whereas 
the addition o f  30 or 100 pM NMDA had 
an opposite effect (Fig. 3B). The interpre- 
tation o f  these latter results i s  difficult be- 
cause the continuous application o f  NMDA 

Fig. 3. The dosedependent effect of NMDA re- 
ceptor antagonist D-AP5 (A) and NMDA (B) in cell 
migration. Each column shows the mean length of 
the migration route for at least 100 labeled cells. 
Small bar is SEM. The slice preparations were 
maintained for 4 hours at 37% after application of 
various concentrations of D-AP5 and NMDA. 
Double asterisks indicate statistical significance 
(P < 0.01). 
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nce (P < 0.01). 

i s  highly toxic (1 3) and may induce desen- 
sitization of NMDA receptors (14). 

The possible involvement of the NMDA 
receptor in neuronal migration was further 
supported by the effect of Mg2+ and glycine 
on the rate of cell movement. Because extra- 
cellular MgZ+ blocks NMDA receptor activity 
in a voltage-dependent manner (15) and ap- 
plication of glycine potentiates the activity o f  
NMDA receptors (16), i t  i s  expected that 
they both would influence cell migration. 
Indeed, in slice preparations maintained in 
Mg+-free medium, the rate of cell migration 
was sigtuficantly increased compared to the 
rate of migration of neurons in the control 
medium containing 0.8 d Mg+ (Fig. 4A). 
In contrast, the rate of movement was re- 
duced in a high MgZ+ medium (10.8 d )  or 
in low Ca2+ concentrations (Fig. 4A). On 
the other hand, the application o f  10 pM 
glycine significantly increased the rate of cell 
migration in medium with normal Ca2+ con- 
centrations (Fig. 4B). Thus, granule cell mo- 
bility was highly sensitive to small fluctuations 
in Mg2+ and glycine. 

Our working hypothesis i s  that Ca2+ 
influx through NMDA receptors and eleva- 
t ion of intracellular Ca2+ concentration in 
the migrating neurons are essential for their 
motility. Indeed, our previous (4) and pres- 

Fig. 4. The effect of low and high concentrations 
of Mg2+ (A) and glycine (B) on the rate of the 
granule cell migration. Each bar is an average of 
at least 100 cells. Small bar is SEM. The slice 
preparations were maintained for 4 hours after the 
control culture medium (0.8 mM Mg2+, 0 FM 
glycine) was exchanged with the medium con- 
taining low or high Mg2+ or glycine. Single (P < 
0.05) and double (P < 0.01) asterisks indicate 
statistical significance. 
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ent results on the effect of Ca2+, Mg2+, and 
glycine (Fig. 4, A and B) demonstrate that 
a decrease in the extracellular Ca2+ con- 
centration significantly slows cell move- 
ment. To examine further the relation be- 
tween the intracellular Ca2+ concentration 
and cell movement, we added to the culture 
medium various concentrations of the cell- 
permeant CaZ+ chelator bis-(a-aminophe- 
noxy)-ethane-N,N,N1,N'-tetraacetic acid, 
tetra(acetoxymethy1) -ester (BAPTA-AM) 
(1 7), which clamps intracellular Ca2+ at low 
levels. At BAPTA-AM concentrations be- 
tween 5 and 25 pM, there was a graded, 
statistically significant decrease in the rate of 
migration (Fig. 5A). 

Because at the ages analyzed synapses on 
the migrating granule cells have not formed 
(1 8), we hypothesized that endogenous extra- 
cellular elutamate could activate NMDA re- " 
ceptors by nonsynaptic mechanisms. To test 
this oossibilitv. we increased the extracellular , , 
glutamate concentration by adding p-chlo- 
romercuriphenylsulfonic acid (p-CMPS) , 
which inhibits glutamate uptake by astrocytes 
(1 9). The addition of 10 to 30 pM p-CMPS 
to the culture medium failed to alter the rate 
of cell migration (Fig. 5B). However, the 
addition of 100 pM p-CMPS significantly 
increased the rate of cell movement. These 
results suggest that endogenous glutamate may 
be an important signal for the activation of 

BAPTA-AM (pM) 

Fig. 5. The dose-dependent effect of the intracel- 
lular Cap+ chelator BAPTA-AM (A) and the gluta- 
mate uptake inhibitor p-CMPS (B) on the rate of 
the granule cell migration. The slice preparations 
were maintained for 4 hours after application of 
various concentrations of BAPTA-AM or p-CMPS. 
Double asterisks indicate statistical significance 
(P < 0.01). 

NMDA receptors and that the increase of 
extracellular glutamate enhances the rate of 
cell migration until the concentration reaches 
the toxic level. 

The role of the NMDA receptor in the 
regulation of neuronal migration is unex- 
pected (this receptor has usually been asso- 
ciated with excitatory neurotransmission) . 
Our results orovide several lines of evidence 
that the rate of granule cell migration de- 
pends on the activity of NMDA receptors. 
Although, as far as we know, there is no 
information available about the emergence 
of this receptor on the surface of the mi- 
grating granule cells, cerebellar cells ob- 
tained largely from the external granular 
layer in 6-day-old rats show elevated intra- 
cellular Ca2+ concentrations after the ad- 
dition of NMDA (5). Moreover, activation 
of the NMDA receotor in cultured eranule - 
cells affects their neurite outgrowth, mor- 
phology, and the cytoskeleton by elevating 
their intracellular Ca2+ concentration 
(20). These findings suggest that the CaZ+ - 
dependent migration of cerebellar granule 
cells may rely on a similar mechanism. 

Parallel fibers belonging to granule cells 
that have already attained their final posi- 
tions are a likelv source of extracellular 
glutamate in the molecular layer of the 
developing cerebellum (2 1 ) . Although 
granule cells eventually form synapses with 
Purkinje cells, migrating cells do not (1 8). 
Therefore, glutamate released by parallel 
fibers must activate the NMDA receptor of 
the migrating granule cells in a paracrine 
manner. Spontaneous, nonsynaptic activa- 
tion of the NMDA receptor by extracellular 
glutamate has been observed in immature 
cortical neurons before they form synapses 
(22). The activation of this receptor, cou- 
pled to the opening of voltage-sensitive 
N-type Ca2+ channels, may initiate cell 
migration by influx of CaZ+ (4). Drugs that 
attenuate NMDA receptor activity, such as 
alcohol, may affect developing brain by caus- 
ing defects in neuronal migration (23, 24). 
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