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A major challenge of current neuroscience is to elucidate the brain mechanisms that 
underlie cognitivefunction. There is no doubt that cognitive processing in the brain engages 
large populations of cells. This article explores the logic of investigating these problems 
by combining psychological studies in human subjects and neurophysiological studies of 
neuronal populations in the motor cortex of behaving monkeys. The results obtained show 
that time-varying psychological processes can be visualized in the time-varying activity of 
neuronal populations. Moreover, the functional interactions between cells in the motor 
cortex are very similar to those observed in a massively interconnected artificial network 
performing the same computation. 

T h e  recording of the activity of single cells 
in the brain of behaving animals provides a 
tool for directly studying the functional 
properties of single cells, interactions be- 
tween cells, and the dvnamics of neuronal 
populations involved in a variety of cogni- 
tive processes, including attention, memo- 
ry, perception, and motor intention. This 
method was introduced 36 years ago by 
Ricci, Doane, and Jasper ( I )  and was per- 
fected and popularized later by Evarts (2). 
Evarts saw it as the onlv wav to studv , . 
voluntary movement, a function that by 
definition cannot be studied in anesthetized 
preparations. His and subsequent studies 
showed that changes in cell activity in the 
motor cortex precede the development of 
the motor output and relate quantitatively 
to its intensity (3) and spatial character- 
istics (4-7). 

The main challenge with data obtained 
with this technique in studies of cognitive 
function is their interpretation. For exam- 
ple, a common finding is that cell activity 
changes in a certain brain area during a 
particular cognitive process. The crucial 
question is: how can we deduce the time- 
varying cognitive process from the single- 
cell recordings? How can purely temporal 
series of action potentials (spike trains) 
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yield information about a cognitive process 
unfolding in time? 

To solve this problem, one must realize 
that a cognitive process usually operates on 
a variable; for example, mental arithmetic 
operates on numbers. The process, then, is 
the operation, and the puzzle of how the 
brain performs multiplication is trans- 
formed to the problem of how numbers are 
being multiplied. The crucial idea is that if 
we can decipher the neural coding of num- 
bers, then we have a good chance of deci- 
phering the cognitive process of mental 
multiplication by observing neural activity 
during this process, recovering the numbers 
by decoding, and inferring how they are 
being operated upon in this particular pro- 
cess. The essence of the idea is that solving 
the problem of neural coding of a particular 
variable provides the means for potentially 
solving the problem of cognitive processing 
of that variable. These logical steps are 
shown in Table 1. The crucial step is step 2, 
namely that of neural coding. This is the 
step that connects cell activity with the 
variable of interest-that is, the step that 
provides the link between the neural di- 
mension and the dimension of the variable. 
We illustrate below the successful applica- 
tion of this sequence of investigation to the 
study of cognitive processes involving mo- 
tor operations in space. For that purpose, 
we chose the direction of reaching move- 
ment as the spatial variable of interest. We 

Table 1. Steps in deciphering braln mecha- 
nisms of cognitive processes. 

1.  Select a variable of interest. 
2. Flnd the neural coding of the variable 

outslde the cognitrve process. 
3. Select a cognitive process operating on 

the variable of interest. 
4. Record brain activity during cognitive 

processing and infer how the variable 1s 
operated on. 

wanted to know how directional informa- 
tion is encoded in the motor cortex and how 
cognitive processes operating on direction 
(for example, memory or mental rotation) 
are reflected in motor cortical activity. 

The Problem of Coding: Single 
Cells and Neuronal Populations 

The problem with the coding of the direc- 
tion of movement in space is that direction 
is a closed (circular or spherical) variable 
and as such does not lend itself to simple 
monotonic coding by the intensity of cell 
activity. A possible simple solution to the 
uroblem would be to allocate cells that 
would be specifically activated only with 
movements in a particular direction-that 
is, for cells to be sharply tuned to the 
direction of movement. However, this is not 
the case. Instead, cells in the motor cortex 
(4-7) as well as in other structures (8, 9) are 
broadly tuned to the direction of movement. 
This means that the cell activity is highest 
for a movement in a particular direction (the 
cell's preferred direction) and decreases pro- 
gressively with movements farther away from 
this direction. The changes in cell activity 
relate to the direction and not the target of 
the reaching movement (1 0). Quantitative- 
ly, the crucial variable on which cell activity 
depends is the angle formed between the 
direction of the movement and the cell's 
preferred direction: the intensity of cell ac- 
tivity can be approximated as a linear func- 
tion of the cosine of this angle (4-9). The 
directional tuning equation is 

where D,(Mk) is the discharge rate of the ith 
cell with movement in direction Mk, b, and 
a, are regression coefficients, and OC,M, is the 
angle between the direction of movement 
M, and the cell's ureferred direction C:. An 
example is shown in Fig. 1. Some points 
concerning ureferred directions are note- - .  
worthy. First, cells in a cortical column 
tend to have very similar preferred direc- 
tions (I I) .  Second, particular preferred 
directions are multiply represented in the 
motor cortex (1 I ) .  And third. the ure- , , 

ferred directions of single cells are not 
clustered in particular directions but range 
throughout the directional continuum (4- 
9) (Fig. 2). This indicates a distributed 
vectorial coding rather than coding of a 
coordinate frame (12); for example, if 
such a frame were Cartesian. the ureferred , . 
directions would have clustered along the 
three cardinal directions. 

The broad directional tuning indicates 
that a given cell participates in movements of 
various directions; from this result and from 
the fact that preferred directions range widely, 
it follows that a movement in a oarticular 
direction will involve the engagement of a 
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Fig. 1. Three-dimensional 
directional tuning. The axes 
(white) meet at the origin of 
the movement. For a partic- 
ular movement, the dis- 
charge rate of the cell pre- 
dicted by Eq. 1 is propor- 
tional to the length of a line 
pointing in the direction of 
the movement and drawn 
from the origin to the sur- 
face (purple) of the tuning 
volume. The cell's preferred 
direction is indicated by the 
yellow cone. 

whole population of cells. How, then, is the 
direction of reaching encoded in an unambig- 
uous fashion in a population of neurons, each 
of which is directionally broadly tuned? To 
answer this question, we hypothesized that 
the motor cortical command for the direction 
of reaching can be regarded as an ensemble of 
vectors (13, 14) in which each vector repre- 
sents the contribution of a directionally tuned 
cell. A particular vector points in the cell's 
preferred direction and has a length propor- 
tional to the change in cell activity associated 
with a particular movement direction. For a 
given movement Mk, the vector sum of these 
weighted cell vectors (the neuronal popula- 
tion vector P) can be regarded as the outcome 
of the ensemble operation 

where Ci is the preferred direction (4) of 
the ifh cell and Vi(M,J is the activity of the 

ifh cell averaged over a period of time (for 
example, the reaction time). The popula- 
tion vector points at or near the direction of 
the movement (12-16) (Fig. 3). Three 
aspects of the population vector are note- 
worthy: its simplicity, its robustness, and its 
spatial characteristics. First, the calculation 
of the population vector is a simple proce- 
dure for it (i) assumes directional selectivity 
of single cells, which is apparent; (ii) 
weights vectorial contributions by single 
cells on the basis of the change in cell 
activity, which is reasonable; and (iii) is the 
outcome of the vectorial summation of 
these contributions, which is practically the 
simplest procedure to obtain a unique out- 
come. Second, the population vector is a 
robust measure, for it can still convey a 
good directional signal even with relatively 
few (100 to 150) cells (15). And third, the 
population vector is a spatial measure. The 
population analysis transforms aggregates of 

Fig. 2. Three-dimensional 
preferred directions (pur- 
ple) of 634 motor cortical 
cells studied in three mon- I 
keys. The axes are in white. 

Fig. 3. The population vector (green) obtained 
from the set of cells with preferred directions 
shown in Fig. 2. The direction of movement is 
shown in yellow. 

purely temporal spike trains into a spatio- 
temporal population vector. 

The neuronal population performing the 
vectorial operation consists only of direc- 
tionally tuned cells. Given that the preferred 
direction seems to be represented in cortical 
columns (I 1) and that the population oper- 
ation involves cells with different preferred 
directions, it follows that this operation has 
to be intercolurnnar. Moreover, the popula- 
tion vector is a good predictor of the direc- 
tion of movement when it is calculated 
separately from subsets of cells recorded in 
the upper or lower cortical layers (1 7). 

The neuronal population vector has 
proved to be a robust and accurate measure 
of the directional tendency of a neuronal 
ensemble under a variety of conditions, in- 
cluding movements from different origins (9, 
18), continuous drawing movements (1 9), 
and isometric force pulses (6). Moreover, 
the analysis holds in other structures con- 
cerned with sensorimotor control (8, 9) or 
visual processing (20). Single cell activity is 
broadly tuned in other areas (21) and for 
other movements (22), although a popula- 
tion vector analysis has not been performed. 
Finally, a cosine directional tuning was ob- 
served in the elements of the hidden layer of 
a three-layer artificial network trained to per- 
form the population vector operation (23). 

Especially interesting is a recent general- 
ization of the application of the population 
vector analysis to the coding of faces in the 
discharge of cells in the inferotemporal cor- 
tex of monkeys (24). In the studies of the 
motor cortex, the population vector and the 
vectorial conmbutions of single cells were in 
directions in physical space. The face coding 
study generalized the vector approach to an 
arbitrary space of multidimensional scaling 
of the similarity of face features. Thus, space 
need not be physical but can be any n-di- 
mensional feature space. Even for motor 
function, this can be a powerful approach. 
For example, an interesting question is how 
the motor cortex controls finger movements 
during hand manipulation of objects that 
involve a large number of combinations of 
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Human behavior 

Problem + 
/ Psychological process 

Fig. 4. Cognitive neuroscience loop. 

finger movements. The hypothesis would be 
that (i) single cells code for combinations of 
manipulatory movements, (ii) a particular 
cell discharges most for a preferred combina- 
tion, (iii) the intensity of cell activation 
follows a broad, possibly cosine, tuning with 
the various movement combinations when 
they are expressed in a continuum of simi- 
larity in a reduced "movement combination 
space," and (iv) when cell contributions are 
expressed as weighted vectors in the latter 
space, their vector sum (population vector) 
would provide an unequivocal signal for the 
coding of a particular manipulatory move- 
ment combination. Given a task that can 
provide the requisite variety of movement 
combinations, the hypothesis above can be 
tested rigorously. 

The Population Vector as a 
Temporal Probe of Direction 

The population vector can be used as a 
probe by which to monitor in time the 
changing directional tendency of the neu- 
ronal ensemble. One can obtain the time 
evolution of the population vector (Eq. 2) 
by calculating it at short successive inter- 
vals t (for example, every 10 or 20 ms) or 
continuously, during periods of interest: 

Thus, cortical mechanisms that underlie 
specific processes (for example, memoriza- 
tion) could be followed bv observation of 
the time-varying population vector. 

The feasibility of this approach was first 
documented when it was shown that the 
neuronal population vector predicts the 
direction of movement during the reaction 
time (1 1, 14). The visual reaction time is a 
period of approximately 300 ms that inter- 
venes between the appearance of a visual 
target and the initiation of movement; dur- 
ing this period, the upcoming movement is 
being planned and its execution initiated. 
This is the simplest case of predicting the 
direction of the upcoming movement. In 
addition, the population vector predicts 
well the direction of movement during an 
instructed delay period (25). In these ex- 
periments, monkeys were trained to with- 
hold the movement for a period of time 

Fig. 5. Rotation of the neuronal population 
vector during the reaction time from the direc- 
tion of the stimulus (blue) to the direction of the 
movement (red). Data from all eight stimulus 
directions used (31) are shown. 

after the onset of a visual cue signal and to 
move later in response to a "go" signal. 
During this instructed delay period, the 
population vector gave a reliable signal 
concerning the direction of the movement 
that was triggered later for execution. Fi- 
nally, in an even more complex task, the 
population vector predicted well the direc- 
tion of movement during a memorized delay 
period (26). In these experiments, the tar- 
get of the movement was shown for only 
300 ms. The monkeys were trained to 
withhold the movement for a subsequent 
period of time, during which the target was 
off, and then moved in the direction of the 
memorized target in response to a "go" 
signal. During this memorized delay period, 
the population vector pointed in the direc- 
tion of the memorized movement. 

Neural Mechanisms of a Cognitive 
Process: Mental Rotation 

The cognitive process we chose for study 
involved a transformation of an intended 
movement direction. Our general approach 
in studying the brain mechanisms of a 
cognitive function involves (i) defining the 
cognitive task, (ii) performing psychologi- 
cal experiments in human subjects, the 
results of which lead to hypotheses con- 
cerning the nature of the cognitive process, 
(iii) training monkeys to perform the same 
task and recording the activity of single 
cells in the brains of these animals during 
performance of the task, and (iv) connect- 
ing the neural results with those of the 
human studies and interpreting the psycho- 
logical results on the basis of the neurophys- 
iological ones. This cycle is illustrated in 
Fig. 4: the objective is to get as close as 
possible to relating neurophysiology and 
cognitive psychology. Below, we describe 
these steps as they were applied to a partic- 
ular problem of a mental transformation of 

movement direction. Subjects were re- 
quired to move a handle at an angle from a 
reference direction defined by a visual stim- 
ulus on a plane. Because the reference 
direction changed from trial to trial, the 
task required that in a given trial the 
direction of movement be specified accord- 
ing to this reference direction. 

In human studies, subjects performed 
blocks of 20 trials in which the angle and its 
departure (counterclockwise or clockwise) 
were fixed, although the reference direction 
varied (27). Seven angles (5" to 140") were 
used. The basic finding was that the reaction 
time increased in a linear fashion with the 
angle. The most parsimonious hypothesis to 
explain this result is that subjects amve at 
the correct direction of movement by shift- 
ing their motor intention from the reference 
direction to the movement direction, trav- 
eling through the intermediate angular 
space. This idea is very similar to the mental 
rotation hypothesis advanced by Shepard 
and co-workers (28) to explain the mono- 
tonic increase of the reaction time with 
orientation angle about when a judgment 
has to be made about whether a visual image 
is normal or mirror-image. Interestingly, the 
mean rates of rotation (approximately 400" 
per second) and their range among subjects 
are very similar in both kinds of study. 
When the same human subjects performed 
both perceptual and motor rotation tasks, 
their processing rates were positively corre- 
lated (29), a result that indicates similar 
processing constraints for both tasks. 

The results of neurophysiological studies 
(30, 3 1) provided direct evidence for the 
mental rotation hypothesis. Rhesus mon- 
keys were trained to move the handle 90" 
and counterclockwise from a reference di- 
rection. The population vector rotated dur- 
ing the reaction time from the stimulus 
(reference) direction to the direction of the 
movement through the counterclockwise 
angle. This is illustrated in Fig. 5. The 
occurrence of a true rotation was further 
documented by showing that there was a 
transient increase during the middle of the 
reaction time in the recruitment of cells 
with preferred directions between the stim- 
ulus and movement directions (31). This 
neural rotation process, sweeping through 
the directionally tuned ensemble, provided 
for the first time a direct visualization of a 
dynamic cognitive process (32). The mean 
rotation rate and the range of rates observed 
for different reference directions (3 1 ) were 
very similar to those obtained in the human 
studies (27, 29). 

The Motor Cortex as a Network: 
Real and Artificial 

The population vector and its transforma- 
tions are the results of operations within an 
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ensemble of cells. The cell activitv is. in Fig. 6. Dependence of cell inter- Excitation , , 

turn, the result of converging influences on 
the motor cortex of both external signals 
from other brain areas and of intrinsic 

actions on their preferred direc- 
tions. Two cases illustrate the 
methods described in (34). Up- 
per row, a case of cells with sim- 
ilar preferred directions (arrows). 
The "difference distribution" and 
the CUSUM are positive, which 
indicates an excitatorv effect. The 

interactions among the motor cortical cells. 
We investigated these local interactions by 
recording the impulse activity of several 
cells simultaneously by using seven inde- 
pendently movable microelectrodes (33). 
The data used here come from recordines of 

statistical significance of the 
CUSUM (P < 0.04) is established Inhibition " 

impulse activity during the reaction and 
movement time in the motor cortex of five 

when it crosses the upper chance 
line. Lower row, a case of cells 
with very different preferred direc- 
tions. The "difference distribution" 
and the CUSUM are negative, 
which indicates an inhibitory ef- 
fect. 

monkeys during the performance of a reach- 
ing task (4). The seven electrodes were 
arranged in a linear array every 0.6 mm; 
cells were recorded at all interelectrode 
distances. A total of 1728 pairs were used in 
this analysis; in 1126 pairs, both cells in a 
pair were directionally tuned, whereas in ulation operation (23, 38). For that purpose 4 can be regarded as synaptic connection 

strengths. If activities V, at a stable state are 
known for a eiven number of neurons and 

the remaining 602 pairs none of the two 
cells in a aair were tuned. We wanted to 

we used a single layer, extensively intercon- 
nected nonsvmmetric network that consist- 

know whether the prevalence of significant 
interactions differed significantly between 
the tuned and nontuned pairs and whether 
the strength of interaction was correlated 

ed of directionally tuned cells and performed 
the calculation of the neuronal aoaulation 

" 
for an appropriate number of directions M, 
Eq. 4 can be used for determining the 

vector. We wanted to know whether the 
streneth of interactions between its elements 

parameters wij. 
Equation 4 shows that the stability of 

the population vector could be ensured by 
an appropriate set of synaptic connection 
strengths wij. To determine the general fea- 
tures of the sets of these strengths that would 
ensure stability, we searched for parameters w 
within different ranges of possible values lwl 
< d (where d is a restriction parameter) and 
for different numbers of neurons N in a net- 
work. In routine calculations. the activation 

- 
with the similarity of preferred directions of 
cells in a pair. For that purpose, we estimat- 
ed the strength of presumed interaction 
(synaptic weight) from the ith to the jth 
neuron in a pair using an analysis based on 

depended on the similarity of their preferred 
directions, as observed in the motor cortex. 
The fact that the neuronal population vector 
remains stable after an initial growth (I I, 
15) implies that during this steady-state pe- 
riod the activities V, (Eq. 3) cease to change, 
so that dV.ldt = 0 for all i. Activities V: can 

waiting time probability density function 
(34). An example is illustrated in Fig. 6. 

There were two major findings of our 
analvsis. First. sienificant interactions were 

be represented as Vi = g(ui), where u, is the 
internal state of the ith neuron (u. for exam- , " 

2.25' times more frequent in the directionally 
tuned (203 of 1126 cells or 18%) than in the 
nontuned (48 of 602 or 8%) group (P < lop5; 
chi-square test); significant interactions in the 
tuned cell group were observed for cells re- 
corded at all interelectrode distances. Second, 
the mean synaptic strength (34) was negative- 
ly correlated with the angle (0" to 180") 
between the areferred directions of the two 

~, 

ple, might represent the membrane potential 
of the neuron averaeed over a reasonable 

function g in Eq. 4 was specified as g(u) = 
tanh u. A cosine tuning function was chosen 
for activities Vi(Mk) in accordance with ex- 
perimental findings (4): Vi(Mk) = aicos Oik 
(Eq. I), where ai is a positive number and Oik 
is the angle between the preferred direction of 
the ith cell (Ci) and the direction of upcoming 
movement (Mk). Directions Ci and Mk were 
randomlv and uniformlv distributed in space. 

- 
time interval) and g is an activation function 
having a saturation nonlinearity. Assuming 
that the internal state u is a linear function 
of inputs received by the neuron from the 
other neurons in the network, then at a 
stable state (dVi/dt = 0) the equality 

neurons [correlation coefficient ( r )  = -0.8 15; 
P < 0.0041 (Fig. 7A) throughout the range of 

. . 
and the values of a were randomly and uni- 
formlv distributed on the interval 10.11. For . , .  
each set of N randomly selected, cell-pre- 
ferred directions and of K randomly selected 
movement directions, we obtained values of 

connections from positive (excitation) to neg- 
ative (inhibition). This is illustrated in the is valid for all neurons (39) and, generally, 

for all directions M. The weights w,, in Eq. cover photograph. 
The presence of interactions among cells 

in the motor cortex has been suggested on 
morphological grounds (35) and demon- 
strated by electrophysiological techniques 
(36). Our results demonstrate that the di- 
rectional tuning of motor cortical cells is a 

Fig. 7. The dependence of the mean A 
value (+ SEM) of synaptic strength on 
the angle between preferred directions 
of neurons involved in the connection. S 
We calculated the mean value of synap- 5 0'5 

tic strength by averaging over synaptic 
strengths between neurons, the pre- g o,o 
ferred directions of which did not differ 
from each other by more than 18". (A) 1 
Results from 203 pairs of directionally % -0.5 

tuned neurons with significant interac- 
tions recorded simultaneously in the 
monkey motor cortex. The total number -1 .o 

0 60 120 1 8 0 0  60 120 180 
of values averaged for each of ten points Angle between preferred directions (degrees) 

plotted (from left to right) are 25, 33, 22, 
24, 16, 21, 15, 15, 18, and 14. (B) Results of simulations for N = 32, K =  32, and d = 0.2. The total 
number of values averaged for each of ten points plotted (from left to right) are 134, 104, 104, 94, 
94, 90, 96, 108, 100, and 100. 

" 

significant factor governing the strength of 
interactions between cells. This finding is - 
qualitatively similar to that observed in the 
visual cortex regarding the association of 
cells with similar orientation tuning (37). 

The importance of directional tuning for 
the aresence of cell interactions and the 
dependence of the strength of these interac- 
tions on the similarity of preferred directions 
provide a fertile ground on which to test 
hypotheses concerning the organization of 
artificial neural networks performing a pop- 
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the w parameters that ensured the conditions 
described in Eq. 4 above by minimizing a cost 
function without assuming a symmetry of the 
matrix wV (40). 

Figure 7B shows the result of the calcu- 
lations for d = 0.2 and N = 32. The 
normalized mean value of synaptic connec- 
tion strength w is plotted against the angle 
between the preferred directions of inter- 
connected neurons: these parameters are 
negatively correlated (r = -0.984). Our 
calculations for different values of d and N 
confirmed that this correlation is alwavs 
strong enough if possible values of synaptic 
connection strengths are restricted to d - 
1/N but practically disappears when the 
restriction becomes weak (d - 1) (41). 

These simulation studies showed that 
weakly interconnected but correlated neu- 
rons can ensure the stability of the popula- 
tion vector. It is likely that converging 
external inputs initiate the changes in ac- 
tivity in the motor cortex and contribute to 
the ongoing activity of the population. 
However, such external contributions can 
be understood and evaluated properly only 
within the context of the dynamics of the 
cortical network itself. Our results show 
that the network can by itself support a 
stable process, which leads to the idea that 
external inputs may act as initiators or 
modifiers but need not be the exclusive 
determinants of this intrinsic process. 

There are three points worth mention- 
ing in comparing our data from the neural 
and artificial networks. First, the interac- 
tions between directionally tuned cells 
predicted by the network model were con- 
firmed by the results of the neurophysio- 
logical studies. Second, the emphasis in 
our modeling on intrinsic cell interactions 
as means for sustaining cell activities with- 
in the network is warranted by the recent 
emphasis on intrinsic cortical interactions 
as means for amplifying and sustaining 
cortical excitation (42). And third, the 
prediction by our model that extensive but 
weak interactions are sufficient for the 
stability of a network operation provides a 
reasonable explanation of, and a possible 
function for, the extensive (35) but weak 
interactions observed between cortical 
cells (43). 

Conclusion 

Major progress has been made during the 
past decade toward determining the func- 
tional properties of single motor cortical 
cells with respect to behavior and the un- 
derstanding of operations by neuronal pop- 
ulations. This knowledge, combined with 
an elucidation of the interactions among 
cells and rigorous network modeling, 
should lead to an understanding of how the 
cortex works and how cognitive operations 

are processed in specific brain areas. A 
limitation of the single cell recording tech- 
nique is that it can be usually applied only 
to one restricted brain area at a time. Other 
techniques, including positron emission to- 
mography, can provide a greater picture of 
areas of activation in the brain during 
performance of a task. A new major tool is 
the oxygen-based functional imaging of the 
brain with the use of nuclear magnetic 
resonance (44). This technique is noninva- 
sive, sensitive, does not require averaging 
of data from more than one subject, pos- 
sesses adequate resolution, and has already 
been successfully applied to imaging of the 
human motor cortex (45). This method 
provides information complementary to 
that obtained by single cell recordings and, 
together with the latter, can lead to major 
insights in brain function. 
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