
compelling evidence that helium is trapped 
within the cavity of fullerenes during nor- 
mal preparation. The amount released on 
heating in a mass spectrometer is in accord 
with the idea that the probability of trap- 
ping is the product of the size of the cavity 
times the density of helium in the gas at the 
time the last hole closes. The release of 
helium occurs at temperatures far lower 
than those expected for a process where 
helium goes through a ring of the intact 
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On the Application of the Minimal Principle to 
Solve Unknown Structures 

Russ Miller,* George T. DeTitta, Rob Jones, David A. Langs, 
Charles M. Weeks, Herbert A. Hauptman 

The Shake-and-Bake method of structure determination is a new direct methods phasing 
algorithm based on a minimum-variance, phase invariant residual, which is referred to as 
the minimal principle. Previously, the algorithm had been applied only to known structures. 
This algorithm has now been applied to two previously unknown structures that contain 105 
and 110 non-hydrogen atoms, respectively. This report focuses on (i) algorithmic and 
parametric optimizations of Shake-and-Bake and (ii) the determination of two previously 
unknown structures. Traditional tangent formula phasing techniques were unable to un- 
ravel these two new structures. 

T h e  Shake-and-Bake procedure (1, 2) has 
been designed and implemented on a vari- 
ety of computing platforms for the purpose 
of determining crystal structures by means 
of minimizing a recently proposed minimal 
function (2-5). The focus of this report is 
on: (i) algorithmic and parametric optimi- 
zations we have made to the basic algorithm 
(I ) ,  based on successful applications of 
Shake-and-Bake to 14 known structures 
over six space groups, ranging from 25 to 
127 non-hydrogen atoms in the asymmetric 

unit cell, and (ii) the application of this 
modified algorithm to solve two previously 
unknown structures. In ~articular, the al- 
gorithmic and parametric optimizations we 
present were guided ~redominant l~  by the 
experimentation on three known struc- 
tures, namely, the 28 non-hydrogen atom 
9a-methoxycortisol (6), the 84 non-hydro- 
gen atom isoleucinomycin (7 ) ,  and the 127 
non-hydrogen atom isoleucinomycin ana- 
loe (8). u > ,  

The two previously unknown structures . - 
solved by our algorithm are two polymor- 

R. Miller, G. T. DeTitta, D. A. Langs, C. M. Weeks, H. A. 
Hauptman, The Medical Foundation of Buffalo, 73 phic forms of a c ~ c l o h e ~ t a ~ e ~ t i d e y  terns- 
High Street, Buffalo, NY 14203. tin(I), a 110 non-hydrogen atom structure 
R. Jones, Thinking Machines Corporation, 245 First ( 9 ) ,  and ternatin(II), a 105 non-hydrogen 
Street, Cambridge, MA 02142. atom structure (1 0) - 
*To whom correspondence should be addressed. The minimal function has not been 
Currently on sabbatical. Permanent address: Depart- 
ment of Computer Science, State University of New previously to an unknown 
York at Buffalo, Buffalo, NY 14260. structure. A considerable effort to solve the 

ternatin(1) structure by traditional tangent 
formula methods proved unsuccessful. A p  
proaches taken included the testing of 
-50,000 randomly generated phase sets 
(I 1) as well as an additional 500,000 per- 
muted phase sets. Molecular replacement 
(12) was also invoked, but the models 
considered were constructed with seven 
L-amino acids. and as it turns out. the 
structure was later found to contain three L- 
and four D-configuration amino acids. [De- 
tails of the two new structures are given in 
(13).] It remains to be demonstrated 
whether these two structures could have 
been as easily determined by several other 
new promising techniques that are current- 
ly being developed, including the Sayre 
equation tangent formula (14), phase an- 
nealing (1 5), and low-density elimination 
(16). In anv event. the Shake-and-Bake > ,  

algorithm was able to determine each struc- 
ture in -70 min of CPU time on a Con- 
nection Machine CM-5. 

A general introduction to the crystallo- 
graphic phase problem is given in Box 1. 
We have recently ~roposed that a particu- 
larly simple function of the phases takes on 
its constrained minimal value for the cor- 
rect set of phases. A brief review of the 
minimal principleis given in Box 2. The 
minimal principle states that R(P) < R(S) 
for N atom structures S # P (the given 
structure). In other words, among all phases 
b that satisfv the necessarv identities. those 
dorrespondiAg to the true'structure P, min- 
imize R(+). Inspection of the minimal 
function R shows it to be a weighted sum of 
squares of residuals, that is, the differences 
between cosines and their expected values, 
the ratios of the Bessel functions Illlo. The 
known conditional orobabilitv distributions 
of the triple THK, given the three magni- 
tudes IEI of Eq. 4, and the known condi- 
tional distributions of the quartet QLMN of 
Eq. 5, lead directly to the expected values 
of the corresponding cosines, I, (AHK)/ 
Io(AHK) and I1 (BLMN)lIO(BLMN)> respec- 
tively. In addition, these same distributions 
show that the reciprocals of their variances 
are strongly correlated with AHK and 
IBLMNI, respectively. Thus, in analogy with 
the principle of least squares, the minimal 
orinciole. which attemots to minimize the 

L ,  

weighted sum of squares of resfduals, Eq. 1, 
becomes plausible. Furthermore, it can be 
shown rigorously that the values of R(+), 
when the phases are set equal to their true 
values for anv choice of oriein and enanti- u 

omorph, are indeed smaller than the values 
of R(+) when the phases + are chosen "at 
random." 

Although a number of standard minimi- 
zation techniques exist, including simulated 
annealing (1 7) and genetic algorithms 
( la) ,  such techniques are targeted at min- 
imization with respect to the range of a 
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function. Therefore, it does not appear that 
such techniques can be applied to our func- 
tion to produce a solution. However, we 
have recently developed a computationally 
intensive solution strategy, which we call 
Shake-and-Bake, targeted at minimization 
with respect to the range of our function 
while maintaining the integrity of the pa- 
rameters with respect to the domain of the 
function. 

Notice that for a structure consisting of 
M independent atoms in the asymmetric 
unit, we must determine the 3M variables 

Generate invariants x 
I Generate trial 1- ,, \ NP 

structure 

I Structurefactor I v,, L' .\ 
calculation or 1 inverse Fourier 

I summation I V 

summation 

Real-space 
filtering 

Fig. 1. The Shake-and-Bake algorithm. 

comment: Let (4) be the entire set of phases 

comment: Let 4j be the j'h phase in (4) 

Shift = Initial--PhaseShift 

For i = 1 to Number-of-Passes 

For j = 1 to Number-of2hases 

Phase = 4, 
RI = R((4)) 
4, = Phase + Shift 

Rz = R((4)) 
4, = Phase - Shift 

R3 = R((4)) 
if min(R1, Rz, Rg) = R1 then 4 j  = Phase 
if min(R1, Rz, Rg) = RZ then 4 j  = Phase + Shift 
if min(R1, Rz, RQ) = Rg then 4 j  = Phase - Shift 

end{j-loop} 

Shift = Shift12 

Fig. 2. Pseudo-code of the global b~nary search 
routine used for performing the local minimiza- 
tion. 

that define the fractional atomic positions 
in the asymmetric unit of the crystallo- 
graphic unit cell. To do so, we might need 
to secure values for - 10M phases, which in 
turn might occur in some O(M2) triples and 
O(M3) quartets. Recasting the minimal 
principle from a function of invariants 
R(@) to one of structures R(S) greatly 
simplifies our search. That is, we are in the 
"enviable" position of having to search for 
the minimum of a function of only some 
hundreds or thousands of variables. In order 
to proceed in this direction, we need a way 
to impose the constraints implicit in the 
reduction of the problem from R(@) to 
R(S)- 

We can now consider a likely form of 
the constraints on the phases. We know 
that permissible (feasible) solutions to the 

phase problem (that is, sensible phase sets) 
should yield physically reasonable electron 
density maps. In particular, those maps 
should be evervwhere nonnegative and 
should contain local areas of high electron 
density associated with atomic positions. 
We realized that we could impose these 
twin constraints on the phases by the pro- 
cess of Fourier inversion. That is, the min- 
imization of R(@) would be allowed to 
uroceed to some limited degree with the - 
refined, but unconstrained, phases used (to- 
gether with observed amplitudes IEl) to 
calculate a Fourier map. The resulting 
"structure" (in reality, the positions of the 
M largest nonnegative density features in 
the map) would in turn be used to calculate 
structure factor amplitudes and constrained 
phases. The phases are constrained in the 

Box 1. The crystallographic phase problem. The single-crystal x-ray diffraction technique of 
structure determination is aimed at providing a three-dimensional map of the positions of 
atoms in a crystal, thereby securing unambiguous information about the architecture of a 
given molecule. The three stages of an x-ray diffraction experiment are: 

1) The growth of suitable single crystals of the substance to be studied; 
2) The measurement of x-ray diffraction data; and 
3) Unraveling the molecular structure so that it agrees with the diffraction data. 

The last step is frequently computationally intensive and is the focus of th~s research. 
In the experiment (step 2, above), the crystal is oriented with respect to the x-ray beam, so 

that an individual diffracting plane is brought into the Bragg condition and the intensity of the 
diffracted photons is recorded. This process IS repeated anywhere from a few hundred to a 
few million times, depending on the size of the structure to be determined, as individual 
diffracting planes are brought into the Bragg condition. Each scattered beam, called a 
reflection, is characterized by a location on a three-dimensional grid, or reciprocal lattice, 
corresponding to the orientation of the crystal and the angle which the diffracting plane 
makes with the incoming x-ray beam. Because the grid constitutes a true lattice, each 
reflection can be labeled by three integers, the Miller indices, which denote the location of 
the reflection on the reciprocal latt~ce relat~ve to a common origin. The intensity of each 
reflection is related to the efficiency w~th which a Bragg plane diffracts x-rays. The intensity 
of an individual reflection is related to the density of electrons in the near vicinity of the Bragg 
plane. The underlying atomic arrangement in a crystal is related to the intensities and 
locations of the Bragg reflections by a three-dimensional Fourier transformation. We use the 
term real space to refer to the atomic arrangement of the crystal and the term reciprocal 
space to refer to the intensities and locations of the reflections. 

It would seem that all of the information necessary to unravel the structure of molecules in 
crystals is assembled once the diffraction experiment is concluded. Unfortunately, the data 
produced from this experiment do not provide all of the information necessary to complete 
the structure. The three-dimensional atomic coordinates of the crystal are calculated by a 
three-dimensional Fourier transform in which the amplitudes, positions, and phases of the 
reflections are used. The experiment yields the amplitudes and positions of the Fourier 
components, but not their phases. It is the determination of these missing phases that 
constitutes the phase problem of x-ray crystallography. 

Early analyses of the phase problem led many to believe that the problem was in pr~nciple 
unsolvable. An infinity of Fourier transformation maps could be had that fit the experimental 
results; they would differ only in the set of phases used to reconstruct the atomic 
arrangement. On the other hand, because a small number of structural arrangements had 
been ascertained by a trial and error method, it seemed that there must be a solution to the 
phase problem. 

Two physical constraints make the problem not only solvable, but in principle greatly 
overdetermined. One is the hard constraint that for a Fourier transformation to be physically 
meaningful it must lead to a map in which the calculated electron density is everywhere 
nonnegative. The other is a softer constraint that the electron density about atoms in 
molecules (whether In crystals or in the gas phase) is strongly concentrated about the atomic 
centers (the nuclei). "Nonnegativity" and "atomicity" were two important principles in the 
earliest formulations of direct methods. In a direct-methods attack on the phase problem, 
probabil~stic theories are used to relate the phases, or more precisely certain linear relations 
among the phases, which are called structure invariants, to the measured Intensity data. 
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sense that they map to a trial structure in 
the known space group, with atomicity and 
nonnegativity explicitly imposed, and that 
the peaks of the map correspond to the 
known number of atoms M to be located. 
Thus, the needed constraints would not 
actually hold in the minimization procedure 
itself, but would be used to adjust the 
refined phases to values that do obey the 
constraints. 

Our Shake-and-Bake solution strategy 
allows a simple, local minimization tech- 
nique to be applied in reciprocal space, 
while indirectly applying the aforemen- 
tioned constraints in real space (Fig. 1). In 
this manner, we hope to produce solutions 
by creating an arbitrary, yet chemically 
sound, structure and allow it to gradually 
migrate toward the correct structure by 
local perturbations that result in increasing- 
ly smaller values of the minimal function. 

Although we continue to explore a va- 
riety of minimization techniques, including 
gradient descent and parameter shift, the 

local minimization technique used in the 
application of Shake-and-Bake to the ter- 
natin structures is a global binary search 
routine (19). This decision was based in 
part on experimental evidence with respect 
to the 84-atom isoleucinomycin structure, 
which shows that the function R is mono- 
tonic, or at worst bitonic, with respect to 
an individual phase. This binary search 
routine visits each of the phases in sequence 
a fixed number of times. During each visit, 
the current value of a phase, as well as that 
value adjusted by a predetermined amount 
in both the positive and negative direc- 
tions, are considered with respect to the 
minimal function. The best of these three 
values (that is, the value that produces the 
smallest value of the minimal function) is 
chosen as the (potentially) new value of the 
phase. An overview of this routine is given 
in Fig. 2, where for our application, the 
initial phase shift was set to 90°, and the 
number of passes made through the entire 
set of phases was five. 

Box 2. The minimal principle. We assume a crystal structure P to be fixed, but unknown a 
 prior^. The normalized structure factor magnitudes IEl are also assumed to be known. The 
function to be minimized, the so-called minimal function, is defined initially as a function, 
R(@), of the structure invariants T,, and QL,,, 

We define 

T H K = ( ~ H + $ K + ( ~ - H -  K 

to be a triple, 

Q L M N = $ L + $ M + $ N + ( ~ - L - M - N  

to be a quartet, and the functions A,, and B,,, to be: 

2 
AHK = p IEHEKEH + K( 

where N is the number of atoms, assumed identical in the whole unit cell, and I ,  and I ,  are 
modified Bessel functions. It should be noted that EL,, can take on negat~ve values when 
the cross terms (lELtMl, lE,+,I, IEN+LJ) are very small, so it sums into the denominator of Eq. 
1 as its absolute value. Further, t,he ratio of Bessel functions l,/lo is known to be the expected 
value of the corresponding cosine. In view of Eqs. 2 and 3, Eq. 1 also defines Ras a function, 
R(+), of the phases. Because the magnitudes lEl are presumed to be known, the functions 
R(@) and R(+) are well defined solely as functions of @ and +, respectively. 

The phases are functions, for a fixed choice of origin and enantiomorph, of the atomic 
position vectors. Specifically, 

where r, IS the position vector of the atom labeled j. Because the structure invariants T,, and 
QLMN are uniquely determined for any given structure S, independent of the choice of origin, 
it follows that Eq.  1 also defines a function, R(S), of structures S. 

The Shake-and-Bake aleorithm is tar- " 
geted at minimizing the function in terms of 
the phases, while imposing the constraint 
of structural atomicity. As with any mini- 
mization strategy that is prone to locking in 
on local minima, our implementation will 
explore many initial structures (trials). 
Each initial structure is generated as a set of u 

fractional atomic coordinates through ran- 
dom number generation. The generation of 
the random atomic coordinates is such that 
the resulting structures satisfy certain chem- 
ical constraints. Space group operators are 
then applied to the set of atoms in order to 
generate symmetry-related atomic posi- 
tions. The resulting constellation of atoms 
is used in the structure factor calculation to 
arrive at a starting set of phases. The phase 
values are then adiusted bv a local minimi- 
zation procedure 'to reduce the value of 
R(@) . After a minimization cycle, the 
adjusted phases are recombined with the 
measured structure factor amplitudes to cal- 
culate a Fourier map, through an inverse 
three-dimensional Fourier transform. This 
maD is then scanned to locate the (at most) 
M 'highest peaks. These peaks constitute a 
new structure which has several favorable 
characteristics. It has (no more than) the 
requisite number of atoms, and it has been 
generated with thg experimentally deter- 
mined magnitudes. Currently, the resulting 
structure is recycled a fixed number of times 
through the process of Fourier transforma- 

0.40Cb I I I-- I i 

0 30 60 90 120 150 
Iteration 

Fig. 3. The course of R(@) for a solution (bold) 
versus a nonsolution of ternatin(1) with respect 
to R(@). 

Table 1. Data corresponding to solut~ons for 
both structures. 

Parameter Ternatin(1) Ternatin(l1) 

Atoms in structure 
Atoms per trial 

structure 
Phases 
Triples 
Quartets 
Reflections available 
Reflections utilized 
Cycles 
Trials 
Solutions 
Percentage 
Time per cycle(s) 
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tion, local minimization, Fourier synthesis, 
and peak picking. By observing the result- 
ing values of R(S) over the set of trials that 
have been processed, we are able to deter- 
mine whether or not a solution has been 
obtained. 

Based on experimentation with respect 
to the 28-atom, 84-atom, and 127-atom 
structures. we coniecture that the number 
of cycles of Shake-and-Bake necessary to 
determine the structures under consider- 
ation is of the order of 1.5 times the number 
of atoms in the structure. Therefore, we 
chose to perform the algorithm for 150 
cycles on both of the previously unknown 
- 100-atom structures. 

Experimentation on the 84-atom and 
127-atom structures indicates that a cost- 
effective ratio for phases to atoms is approx- 
imately 10 to 1, while a cost-effective ratio 
for triples to phases is approximately 20 to 
1, and the incorporation of negative quar- 
tets (that is, B < 0) may be unnecessary. 

The experimentation described in this 
report has been performed predominantly 
on a Connection Machine CM-5 at Think- 
ing Machines Corporation. Pertinent de- 
tails of the experiments are given in Table 
1. For both previously unknown structures, 
it was assumed that there were 104 atoms, 
although we subsequently found this not to 
be the case. Nevertheless, we used 104 
atoms in the procedure. Further, based on 
the 10: 1 phase to atom ratio and 20: 1 
triplet to phase ratio (no quartets), we 
chose to use 1,000 phases, 20,000 triples, 
and 0 quartets. Notice that in the case of 
ternatin(I), a number of reflections were 
removed from the full data set that corre- 
sponded to h indexes of 9 through 11 on the 
basis that their F/u(F) ratios were abnor- 
mally small. We chose to run the algorithm 
for 150 cycles using the 1.5: 1 cycle to atom 
ratio. Based on available computer time, 
and desiring a sufficient sample size, we 
processed 2048 initial, randomly generated 
starting structures. " 

The six solutions produced for terna- 
tin(1) had final R(@) values in the [0.45, 
0.461 range, whereas the nonsolutions had 
final R(@) values greater than 0.49. The 19 
solutions produced for ternatin(I1) had final 
R(@) values in the [0.41, 0.421 range, 
whereas the nonsolutions had final R(@) 

\ ,  

values greater than 0.46. In other words, as 
mentioned previously, R(@) is diagnostic in 
terms of detecting solutions. A visual rep- 
resentation of the convergence of a solution 
versus a nonsolution for ternatin(1) with 
respect to R(@) is shown in Fig. 3. In fact, 
based solely on the final R(@) values, we 
were able to determine that after 64 trials of 
ternatin(1) a single solution was at hand, 
and that after 64 trials of ternatin(I1) there 
were two solutions. Each initial 64-trial 
experiment was performed in -70 CPU 

min on a 64-node Connection Machine diffractometer to a resolution of 0.94 A in which a 
96-step 0 - 20 scanning procedure was used. 

CM-5. It was later that we decided Crystal data: 2(C,,H,,N,0,)~C,H,02, orthorhom- 
run both structures for 2048 trials for statis- bic P2,2,2,, a = 11.563(1), b = 21.863(2), c = 

tical purposes. The percentage of success 36.330(4) (numbers in parentheses are errors in 
the last digit), and Z = 4. was higher for ternatin('') 10. Crystals were grown by slow evaporation from 

than for ternatin(1). This difference may be 95% ethanol. Data were recorded in 1990 at 153 
due to the fact that there was a threefold K with CuKn radiation on a Nonius CAD4 dif- 

higher percentage of aberrant triples with fractometer to a resolution of 0.97 A in which a 
similar 0 - 20 step scan procedure was used. 

high A values for ternatin(1) as compared to Crystal data. 2(C,,H,,N70,).H20, orthorhombic 
ternatin(I1). which more nearlv matched ~2,2,2,, a = 14.067(2), b = 16.695(1), c = 

T , , 36.'824(4) A, and Z = 4. 

the expected rate of predicted by the 11, J.-X. Yao, Acta Crystallogr. A 37, 642 (1981). 
A-values. 12. M. G. Rossmann. Ed., The Molecular Reolace- 

ment Method (Gordon and Breach. ~ e w '  York. 
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A 2000-Year Tree Ring Record of Annual 
Temperatures in the Sierra Nevada Mountains 

Louis A. Scuderi 

Tree ring data have been used to reconstructthe mean late-season (June through January) 
temperature at a timberline site in the Sierra Nevada, California, for each of the past 2000 
years. Long-term trends in the temperature reconstruction are indicative of a 125-year 
periodicity that may be linked to solar activity as reflected in radiocarbon and auroral 
records. The results indicate that both the warm intervals during the Medieval Warm Epoch 
(-A.D. 800 to 1200) and the cold intervals during the Little Ice Age (-A.D. 1200 to 1900) 
are closely associated with the 125-year period. Significant changes in the phase of the 
125-year temperature variation occur at the onset and termination of the most recent 
radiocarbon triplet and may indicate chaotic solar behavior. 

Knowledge of temperature variability on 
century to millennium time scales is impor- 
tant to understanding the magnitude of 
natural climate forcings and is critical to 
differentiating between these effects and 
those of recent anthropogenic forcings. 
There are few well-calibrated long temper- 
ature series in existence that can be used to 
reconstruct this variability. Analysis of liv- 
ing and remnant wood of foxtail pine (Pinus 

Department of Geography, Boston University, Boston, 
MA 0221 5. 

balfouriana) from the southern.Sierra Neva- 
da has yielded an absolutely dated series of 
ring widths that extends back to 1050 B.C. 
( I )  and an absolute and radiocarbon-dated 
chronology of timberline position to -4400 
B.C. (2). At the upper timberline, the 
growth of this tree is closely related to 
seasonal temperature (3-5). I used this tree 
ring record to reconstruct temperature 
anomalies for a growth season, which is 
defined as June through January. In this 
report, I analyze the century-scale variabil- 
ity in this record. 
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