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,TECHNICAL COMMENTS and the relative statistical weight of these 
configurations, rather than the structural 

The Role of Water in Hemoglobin 
Function and Stability 

The report by M. F. Colombo et al. (1) and 
the Perspective by R. P. Rand (2) state 
that a large number of water molecules 
(about 60) take part in the allosteric regu- 
lation of human hemoglobin A (HbA). In 
our microscopic approach, published 1 year 
earlier (3), we derived not only the number 
of water molecules involved in the allo- 
steric mechanism (about 75, the "correct" 
number being largely a matter of definition) 
but also their entropic contribution to the 
allosteric constant. To this purpose, we 
combined data about the viscosity and den- 
sity of solutions of monohydric alcohols 
with earlier data from a study by L. Cor- 
done et al. (4) concerning the effects of the 
same alcohols on the oxygen equilibrium of 
HbA. We used an extrapolation to zero 
alcohol concentration; Cordone et al. sub- 
tracted contributions resulting from chang- 
es in the dielectric constant in alcohol 
solutions. This procedure is at variance 
with Colombo et al.'s method of using 
considerable polysaccharide concentra- 
tions, which surelv affect the dielectric 
constant. Also, we commented (3) on the 
significance of a (HbA + number of water 
molecules) unit. The latter (compared with 
the bare HbA) presents a greatly expanded 
set of microscopic states that concur in one 
and the same functional state (or set of 
functional states) (3,5). This confers to the 
(protein + number of water molecules) unit 
the long-searched-for (5) thermodynamic 
stability of a semimacroscopic machine. 

The enthalpic contribution of the ap- 
proximately 75 water molecules to the allo- 
steric mechanism has also been derived (6). 
In addition, recent simulations (7) and 
experiments on myoglobin (8) suggest that 

many more water molecules similarly con- 
tribute to forces responsible for the struc- 
ture and dynamics of the whole protein. 
Such molecules would further extend the 
thermodynamic probability of the function- 
al state of the (protein and water) system. 

Solvent-induced forces (SIFs) are at 
least as important as other forces (for exam- 
ple, electrostatic) acting through the sol- 
vent (9). Perhaps, as a consequence of their 
subtle nature, SIFs are overlooked or relat- 
ed to some (ill-defined) "hydration water" 
that is erroneously supposed to have neces- 
sarily extra long residence or rotational 
times around solutes. 

Average values of SIFs can be under- 
stood in terms of the solute-solvent poten- 
tial energy, Us,, and of its thermodynamic 
average, <Us,>, over all solvent config- 
urations (1 0). In the averaging process the 
entropic contribution is brought in, so that 
<Us,> measures the free energy of solute- 
solvent interactions. When the mutual pre- 
sentation and distance (R) of two solutes is 
slowlv varied from R, to R there is a chanee 

rearrangement time scale (5, 1 1). In itself, 
a change of the latter reflects changes of 
inherent structures (12) caused by the pres- 
ence of solute or solutes (1 1). 

SIFs also affect the oveiall thermody- 
namic stability of biomolecular solutions 
(1 1, 13). The instability regions (as encom- 
passed by their respective spinodal lines) of 
solutions of HbA and hemoglobin S (HbS) 
in standard conditions, together with the 
similar region for HbA in high phosphate 
(13), are shown in Fig. 1. The location of 
these regions in the temperature+oncen- 
nation plane indicates the tendency of 
solutions toward demixing, as distinct from 
gelation (13, 14). Instability regions are 
obtained by extrapolation from experiments 
in the accessible temperature interval (1 3). 
A mean-field approximation holds for the 
derivation of these spinodal lines (13), 
which allows quantitative values for Flory- 
Huggins enthalpies and entropies to be 
determined (1 3). Modulation of the solvent 
(by phosphate concentration) or the solute 
(by the Glu-Val substitution corresponding 
to the HbA-HbS mutation) affects both the 
instability region (a mean-field effect) and 
the molecular local recognitive interactions 
needed for the orderly self-assembly of the 

V - 
of free energy, A< Us,>, resulting from 
work performed by SIFs in the ch2nge of 
mutual position. It follows that F,, the 5 HM 

average SIF component acting betwe& the 
given solutes along the qi coordinate, is 

W r 0 . 1 5  M 
given by the derivative of <Us,> along q,. 
SIFs on a protein would change on the 
space scale of individual atoms or residues 
and on the time scale of the solvent rear- 0.00 0.05 0.10 0.15 0.20 0.25 0.30 

rangement times among configurations Volume fractlon 

available to the solve~t. What counts in 
mgs Spinodal lines of solutions of human 

determining a given F% are the hemoglobins showing the lower temperature 
and dynamic configurations available to the boundaries of the respective instability regions. 
solvent (compatible with constraints im- Data from (13, 16). Gelation regions shown as 
posed by the given and nearby solutes) gray and hatched areas, as given in (15). 
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gel, which is a microscopic effect (Fig. 1). 
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Response: We thank Bulone et al. for point- 
ing out the remarkable agreement between 
two different ways of estimating changes in 
hemoglobin hydration upon switching 
functional state. Our number for the hemo- 
globin hydration change, 60 2 2 water 
molecules per tetramer, is built on an em- 
pirical model-independent linkage between 
water and oxygen activities (1); it repre- 
sents a chanee in the number of waters that " 
exclude osmotically stressing solute (extrap- 
olated to zero concentration) as hemoglo- 
bin goes from its fully deoxygenated "T" 
form to its fully oxygenated " R  form. The 
solution dielectric consrant does not seem 
to be a key variable. Identical results were 
obtained with the osmotic Dressure of four 
different osmotic stress agents-triethylene 
glycol, octaethylene glycol, disaccharide 
sucrose, and tetrasaccharide stachyose 
(1)-that create different solution dielec- 
tric constants at the same osmotic stress. 

The number of water molecules found by 
Bulone et al. (75) is based on the entropy 
modulation by alcohols that can create 
long-lived, high-connectivity hydrogen 
bonds combined with the concomitant en- 
t ro~ ic  effect of these alcohols on the func- 
tional states of hemoglobin. There could be 
a mutual disturbance of the hydrogen-bond 
cages created by alcohol and hemoglobin. 

There is no reason a priori why these two 
measures of solvation should give such sim- 

ilar results. If the similarity in the number 
of water molecules is not fortuitous, then 
the good agreement might indicate proper- 
ties of boundary water that are not yet fully 
appreciated. 

Last, the idea of a "solvent-induced 
force" is familiar to us. We and our co- 
workers have been measuring hydration 
forces between lipids (2), nucleic acids (3), 
polysaccharides (4), and proteins (5) for 
more than 15 years. We are delighted to see 
these kinds of forces explicitly recognized in 
macromolecular function and stability. 
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