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Association Between Brain Temperature 
and Dentate Field Potentials in 
Exploring and Swimming Rats 

Edvard Moser, lacob Mathiesen, -Per Andersen* 
Attempts to correlate behavioral learning with cellular changes, such as increased synaptic 
efficacy, have often relied on increased extracellular potentials as an index of enhanced 
synaptic strength. A recent example is the enlarged excitatory field potentials in the dentate 
gyrus of rats that are learning spatial relations by exploration. The altered hippocampal field 
potentials do not reflect learning-specific cellular changes but result from a concomitant rise 
in brain temperature that is caused by the associated muscular effort. Enhanced dentate 
field excitatory potentials followed both passive and active heating and were linearly related 
to the brain temperature. These temperature-related effects may mask any learning- 
induced changes in field potential. 

T h e  hippocampal formation is a phyloge- 
netically old part of the cerebral cortex. 
Although there is strong evidence for its 
involvement in learning the spatial relation 
between objects (spatial learning) ( I ) ,  neu- 
rophysiological correlates to learning such as 
synaptic weight changes have been difficult 
to find in freely moving animals (2). How- 
ever, it was reported that exploration of an 
unfamiliar environment was associated with 
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an increased dentate field excitatory postsyn- 
aptic potential (f-EPSP) after perforant path 
stimulation but with decreased population 
spike amplitude and latency. The effect was 
interpreted to reflect a changed synaptic 
weight due to the learning experience (3). 
We now examine an alternative possibility: 
These changes may be due to a temperature 
effect (4). This possibility would also explain 
why the enlarged f-EPSP was associated with 
a decreased population spike (5) .  Both exer- 
cise and feeding elevate the brain tempera- 
ture in rats, whereas inactivity and sleep 
result in lower temperatures (6). The major 
factor that controls brain temperature is 

muscular heat production, which warns the 
cerebral arterial blood (7). In rats that were 
swimming in a Morris maze, we observed 
field potential changes that are exactly op- 
posite to those reported above, namely, 
f-EPSP reduction with spike increase. Simi- 
lar field potential changes are seen during 
brain cooling (4). 

For these reasons we have recorded the 
hippocampal temperature in freely moving 
rats and correlated it with dentate field 
potentials during exploration and swim- 
ming (8). In both situations there was a 
strong, linear correlation between the be- 
haviorally induced potential changes and 
the brain temperature. 

When rats explored items on a platform 
the slope of the f-EPSP was increased (Fig. 
lA),  which confirms earlier reports (3). 
However, this enhancement was paralleled 
by an increase in brain temperature. In 
addition, the f-EPSP latency, the population 
spike amplitude, and latency all decreased. 
The brain temperature rose during 10 to 20 
min of exploration from 37.0" +- O.l°C 
(mean +- SEM) with a mean rate of 0.1 lo +- 
O.Ol°C per minute (n = 20); the largest 
increase was 3.Z°C. After the exploration 
the brain temperature and the f-EPSPs de- 
clined along the same exponential time 
course, with both the f-EPSP and spike 
reaching base-line levels after 20 to 80 min. 
The temperature and f-EPSP curves were 
always parallel (43 sessions in nine of nine 
rats). The correlation factor (r) between the 
brain temperature and the f-EPSP slope dur- 
ing exploration was never <0.5 and in most 
runs was >0.75. For the exploring rat in Fig. 
1, the r values between the brain tempera- 
ture and the following signal elements were: 
f-EPSP slope, 0.76 (P < 0.001); population 
spike latency, -0.78 (P < 0.001); and 
population spike amplitude, -0.34 (P < 
0.01). In rats with two thermistors, implant- 
ed at the same depth in the same or opposite 
hemispheres, the bilateral activity-induced 
temperature changes were nearly identical 
(difference < 0.15"C). Therefore, the tem- 
perature at the contralateral homotopic 
point could be used as a reference value. 
Warming the brain by radiant heating (Fig. 
1B) gave a similar parallel in'crease in brain 
temperature and f-EPSP slope (n = 19). 
Increasing the temperature of the animal by 
letting it run on a treadmill yielded compa- 
rable effects (n = 15), with larger changes 
seen after the faster running speed (Fig. 1C). 
During treadmill runs of animals that were 
not fully habituated, there was an initial 
reduction of the f-EPSP slope, similar to the 
results of Green, McNaughton, and Barnes 
(3). Similar parallel changes of brain tem- 
perature and f-EPSP were seen in the re- 
sponses of the olfactory bulb to lateral olfac- 
tory tract stimulation in exploring rats (n = 
5; Fig. ID). 
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Parallel changes in the brain tempera- in the brain temperature, closely linked to 
ture and f-EPSPs also occurred during spon- the f-EPSP increase, were observed when- 
taneous behavior in an opaque test cage ever the rat moved from rest to activity. 
similar to the rat's home cage (six rats Conversely, both types of signal declined 
followed for 8 hours). Changes of up to 2°C during inactivity and sleep. 

Fig. 1. Changes in f-EPSPs and 
brain temperature by exploration 
and treadmill running. (A) Brain 
temperature (continuous line, 
contralateral hippocampus) and 
dentate f-EPSP slope (dots) dur- 
ing and after 15 min of exploration 
(shaded column) of a platform 
(1 20 cm by 60 cm) with six to ten 
objects. Records that are marked 
1 through 4 are input-output tests. 
Before and after exploration, the 
rat was left undisturbed for 10 and 
60 min, respectively, in an 
opaque test cage (38 cm by 25 
cm), to which the rat had habitu- 
ated before the test. (B) Brain 
temperature and dentate f-EPSP 
slope in response to radiant heat- 
ing (shaded column). The rat rest- 
ed in the opaque test cage 
throughout the session. (C) Simi- 
lar to (A) but dentate f-EPSP slope 

1 w 0k '= 80 120 0 10 20 30 40 50 
Time (min) 

in response to 10 min of running 
on a treadmill (shaded columns) at speeds of 4.7 and 11.2 cm/s, respectively. (D) Brain temperature 
and f-EPSP in the olfactory bulb after stimulation of the olfactory tract during exploration (shaded 
column). 

I 
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Fig. 2 (left). Changes in f-EPSP and brain 
temperature in a rat as it swam in a water maze 
198 cm in diameter without a submerged plat- 
form at four different water temperatures. (A) 
Superimposed f-EPSPs of the dentate gyrus 
(left) and the olfactory bulb (right) in response 
to stimulation of the perforant path and the 
lateral olfactory tract, respectively, taken at the 
indicated brain temperatures before and after 
swimming in water of 18°C. (B) Brain tempera- 
ture of the right hippocampal formation in a rat 
as it swam for five 5-min periods (shaded 
columns) with water at the indicated tempera- 
tures. (C to E) The EPSP slope and the popu- 
lation-spike amplitude and latency, respective- 
ly, of simultaneously recorded perforant path- 
dentate field potentials. 

Fig. 3 (right). Dissociation of dentate f-EPSP 
changes from the exploratory behavior. (A) 
Records of brain temperature (continuous line, 
contralateral hippocampus), dentate f-EPSP 
slope (dots), and motor activity (open circles) 
during two 15-min control explorations that 
started at normal brain temperature (shaded 
columns, left and right panels) and during a 
similar period in which the rat had been pre- 
heated (horizontal thick bar) with an infrared 
lamp (middle panel). The exploratory activity 
was recorded by an observer and plotted as 
the number of border crossings of squares (8 
cm by 8 cm) in the exploration area per 50 s. 
(B) Similar to (A) but the explorations (shaded 
columns) were started at various brain temper- 
atures produced by preheating. The heating 
lamp was turned off at the start of exploration. 

Because exploration was accompanied 
by relatively large changes in brain temper- 
ature, we tested whether swimming in a 
water maze produces brain cooling and, if 
so, whether any changes in f-EPSPs could 
be observed. Therefore, we measured the 
brain temperature and dentate f-EPSPs in 
rats that were swimming at different tem- 
peratures in a Morris water maze without a 
platform (9). In water of 18"C, the rat brain 
temperature rapidly decreased about 5°C 
(Fig. 2B). In parallel, the f-EPSP slope 
diminished and its onset was delayed (Fig. 
2, A and C), whereas the population spike 
paradoxically increased both in size and 
latency (Fig. 2, D and E); these effects are 
the exact opposite of those observed during 
exploration. Similar but smaller changes 
were seen in water of 26°C. Hardly any 
change occurred at 33"C, and all changes 
reversed direction in water of 40°C. The 
observations were robust, appearing in all 
55 trials in 15 animals. There was a strong 
correlation between brain temperature on 
the one hand and the f-EPSP slope (for the 
rat in Fig. 2, r = 0.97 and P < 0.001), 
population spike latency (r = -0.99 and P 
< 0.001), and population spike amplitude 
(r = -0.58 and P < 0.001) on the other. 
Equivalent results were observed for re- 
sponses in the molecular layer of the den- 
tate gyrus, the intrahippocampal synapses 
between the Schaffer collaterals and CAI 
pyramidal cells (three rats), and the olfac- 
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tory bulb (five rats) (Fig. 2A). 
Finally, attempting to dissociate the 

f-EPSP changes from the exploratory be- 
havior, we used radiant heat to bring the 
brain temperature to the maximum value 
that was obtained during exploration on the 
previous day. By intermittent infrared heat- 
ing, the brain temperature was kept just 
above this temperature (Fig. 3A, middle). 
In five of five rats, exploratory activity had 
normal intensity under these conditions, 
but no further change in the f-EPSP was 
observed (Fig. 3A). Input-output tests (as 
in Fig. 1B) showed that the lack of addi- 
tional changes in the f-EPSP was not due to 
a ceiling effect. In another series of exper- 
iments, the brain was warmed before the 
exploration. The magnitude of the explora- 
tion-induced potential changes depended 
on the increment in brain temperature and 
disappeared altogether at a sufficiently high 
starting temperature (Fig. 3B). Again, the 
exploratory intensity was unchanged from 
that of the control sessions. The dissocia- 
tion of the exvloratorv behavior from the 
f-EPSP changes argues against a causal re- 
lation between the two vrocesses. 

Our results show a consistent relation 
between the field potential parameters and 
brain temperature, whether the latter is 
changed by heat produced by muscle activ- 
ity or by artificial warming. In essence, the 
observed f-EPSP changes during explora- 
tion appear to be caused primarily by an 
increased brain temperature due to muscu- 
lar heat production rather than by a learn- 
ing-induced change in synaptic strength. 
The results revresent a caveat for the inter- 
pretation that in freely moving rats changed 
f-EPSPs are signs of altered synaptic effi- 
ciency. They do not rule out the possibility 
that f-EPSP changes are produced by learn- 
ing but they do indicate that such changes 
must be evoked independently of changes 
in brain temperature that are induced by 
activity, environment, or drugs. 
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Higher Level Organization of Individual Gene 
Transcription and RNA Splicing 

Yigong Xing, Carol V. Johnson, Paul R. Dobner, 
Jeanne Bentley Lawrence* 

Visualization of fibronectin and neurotensin messenger RNAs within mammalian inter- 
phase nuclei was achieved by fluorescence hybridization with genomic, complementary 
DNA, and intron-specific probes. Unspliced transcripts accumulated in one or two sites per 
nucleus. Fibronectin RNAfrequently accumulated in elongated tracks that overlapped and 
extended well beyond the site of transcription. Splicing appears to occur directly within this 
RNA track, as evidenced by an unambiguous spatial separation of intron-containing and 
spliced transcripts. Excised introns for neurotensin RNA appear free to diffuse. The tran- 
scription and processing site of the fibronectin gene localized to the nuclear interior and 
was associated with larger transcript domains in over 88 percent of the cells. These results 
support a view of nuclear function closely integrated with structure. 

T h e  long-standing interest in the spatial 
organization of transcription and splicing 
within the interphase nucleus has been 
heightened by several observations ( I ) .  Vi- 
sualization by fluorescence microscopy of 
highly localized nuclear "tracks" of specific 
viral RNAs ( 2 ) ,  preserved in chromatin- 
depleted nuclear matrix extracts (3), indi- 
cated that these RNAs are not free to 
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diffuse but rather are ass~cjated with an 
underlying nuclear substructure ( 4 ) .  The 
results of an autoradiographic study have 
indicated that intron sequences in acetyl- 
choline receptor mRNA preferentially lo- 
calize around the nuclear periphery (5). 
Total nuclear polyadenylate [poly (A)] 
RNA has been shown to accumulate within 
20 to 40 discrete "transcript domains" that 
coincide with the location of small nuclear 
ribonucleoproteins (snRNPs) (6, 7). These 
snRNPs were previously reported to exhibit 
a clustered nuclear distribution (8) coinci- 
dent with the spliceosome assembly factor 
SC-35 (9). The concentration of microin- 
jected globin RNA within these 20 to 40 
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