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The Cloning of PIG-A, a Component in the 
Early Step of GPI-Anchor Biosynthesis 

Toshio Miyata, Junji Takeda, Yoshiyasu lida, Norio Yamada, 
Norimitsu Inoue, Minoru Takahashi, Kenji Maeda, Teruo Kitani, 

Taroh Kinoshita* 
The glycosylphosphatidylinositol (GPI) anchor is a membrane attachment structure of many 
proteins and occurs in a wide variety of eukaryotes from yeasts to mammals. The structure 
of the core of the GPI anchor is conserved in protozoa and mammals and so is its biosynthetic 
pathway. A complementary DNA encoding a human protein termed PIG-A (phosphatidyl- 
inositol glycan4ass A) was cloned. PIG-A was .necessary for synthesis of N-acetylglu- 
cosaminyl-phosphatidylinositol, the very early intermediate in GPI-anchor biosynthesis. 

More than a hundred eukaryotic cell sur- 
face proteins are anchored to the cell mem- 
brane by a GPI anchor ( 1 ) .  The GPI 
anchor acts not onlv as a membrane attach- 
ment structure but also as a sorting signal of 
apically expressed proteins of epithelial 
cells (2, 3 ) ,  in a signal transduction mech- 
anism of leukocytes (4) ,  as a target of 
phospholipases that release GPI-anchored 
proteins ( 2 ) ,  and in a mechanism that 
confers increased lateral mobility of mem- 
brane proteins (5, 6). Chemical and bio- 
synthetic analyses of the GPI anchor have 
demonstrated that the core structure of the 
anchor is conserved in a variant surface 
glycoprotein of Trypanosoma brucei (7) and 
rat T lymphocyte protein Thy-1 (8)  and 
that its biosynthetic pathways in protozoa 

-- 
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and mammals are similar (9-12). The mo- 
lecular cloning of genes encoding enzymes 
that take part in the biosynthesis of the GPI 
anchor is necessarv to understand the bio- 
synthetic pathway of the anchor and to 
understand the human disease uaroxvsmal 
nocturnal hemoglobinuria, which results 
from a deficiencv of the GPI anchor (13) .  ~, 

To clone a =DNA encoding a protein 
that participates in GPI-anchor biosynthe- 
sis, we expressed cDNAs from a HeLa cell 
library with an Epstein-Barr virus vector 
(14) in the human B lymphoblastoid cell 
line JY-5, in which synthesis of the GPI 
anchor is deficient ( 1  5 ) .  Cell*lines deficient 
in GPI-anchor synthesis have been grouped 
into several complementation classes ( 1  6), 
and their biochemical defects have been 
characterized ( 1  0-1 2) .  We analyzed the 
complementation class of the JY-5 cells by 
fusing them with murine Thy-l-deficient 
thymoma cell lines of known classes. JY-5 
cells belong to class A that is deficient in an 
early step of GPI-anchor synthesis ( 1  7). 
Transfected JY-5 cells that expressed GPI- 
anchored proteins were selected by fluores- 
cent flow cytometric sorting ( 1  8 ) .  

After three cycles of sorting and expan- 
sion by culture, we identified a cDNA clone 
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that complemented deficient surface expres- 
sion on JY-5 cells of the GPI-anchored 
proteins CD59 and decay-accelerating factor 
(DAF), both of which are complement reg- 
ulatory proteins (Fig. 1) (18). We termed 
this gene PIG-A (phosphatidylinositol gly- 
can-class A) and this cDNA clone pEBPIG- 
A. CD59 and DAF expressed on JY-5 cells 
transfected with pEBPIG-A were sensitive to 
phosphatidylinositol-specific phospholipase 
C (PI-PLC), which indicates that the GPI- 
anchor biosynthesis did occur (Fig. 1). This 
was confirmed by analysis of glycolipid bio- 
synthesis (Fig. 2) (19). JY-5 cells did not 
synthesize N-acetylglucosaminyl-phosphati- 
dylinositol (GlcNAc-PI), the very early in- 
termediate of GPI-anchor biosynthesis (9). 
This result is consistent with reports that the 
class A mutant is one of the three early 
mutants that do not synthesize GlcNAc-PI 

Fluorescence intensity 
Fig. 1. Expression cloning of PIG-A cDNA. (A) 
Enrichment of CD59-positive cells by repeated 
sorting and growth of JY-5 cells after transfec- 
tion of the cDNA library. Line 1, JY-5 cells 
before transfection; line 2, JY-5 cells after the 
third sorting (30% positive); line 3, wild-type 
JY-25 cells. Only 0.1 %of the cells were positive 
after the second sorting. (6 and C) Surface 
expression of GPI-anchored CD59 (B) and DAF 
(C) on JY-5 cells transfected with cloned PIG-A 
cDNA. The pEBPIG-A plasmid was transfected 
into JY-5 cells. After hygromycin selection, the 
cells were stained for CD59 (B) and DAF (C) 
before (line 2) and after (line 4) treatment with 
PI-PLC (Funakoshi, Tokyo). Line 1 ,  untrans- 
fected JY-5 cells; line 3, wild-type JY-25 cells. 

(10, 20). In cells transfected with pEBPIG- 
A, GlcNAc-PI was synthesized and subse- 
quently deacetylated to form glucosaminyl- 
phosphatidylinositol (GlcN-PI), the second 
intermediate in GPI-anchor biosynthesis. 
Identification of these glycolipids was con- 
firmed by their sensitivities to PI-PLC and 
nitrous acid (Fig. 2). Therefore, PIG-A 
participates in the very early step of GPI- 
anchor biosynthesis. 

PIG-A cDNA consists of 3589 base pairs 
and codes for a predicted protein of 484 amino 
acids starting at the 86th base (Fig. 3). No 
similarity with PIG-A was found in DNA and 
protein databases. There is no apparent NH2- 
terminal signal peptide sequence. Near the 
COOH-terminus is a hydrophobic sequence 
of 27 residues that may act as a transmem- 
brane domain; this is followed by a 42- 

residue hydrophilic sequence (Fig. 3). Bio- 
synthesis of the GPI anchor occurs in the 
endoplasmic reticulum (ER) . Thus, PIG-A 
may be a membrane protein that resides in 
the ER with the NH2-terminal portion in 
the cytoplasm. If the arginine immediately 
COOH-terminal to the putative transmem- 
brane domain does not act to terminate 
translocation of the peptide across the ER 
membrane, the COOH-terminal domain 
might be in the lumen of the ER. 

Expression of PIG-A cDNA in BW5147 
class A cells that lack Thy-1 (Thy-1-) (2 1) 
also complemented deficient surface expres- 
sion of Thy-l (Fig. 4) and deficient biosyn- 
thesis of GlcNAc-PI (1 7), which indicates 
that human PIG-A protein is compatible with 
the murine biosynthetic system of the GPI 
anchor and which further confirms that 

1 2 3 4 5 6 7  Fig. 2. Restoration of GlcNAc-PI , synthesis in JY-5 cells with PIG-A 
Front- cDNA. GlcNAc-PI and GlcN-PI 

3 were synthesized by a lysate of 

i 
wild-type JY-25 cells (lane 1) (19). 
The glycolipids synthesized by the 
lysate of JY-25 cells were treated 
with PI-PLC (lane 4), enzyme buffer 

GlcNAc-PI- Q 
alone (lane 5), nitrous acid in ace- - 
tate buffer (lane 6), or acetate buff- 

GlcN-PI- - er alone (lane 7) (27). JY-5 cells 
did not synthesize GlcNAc-PI and 
GlcN-PI (lane 2), but PIG-A-trans- 
fected JY-5 cells synthesized both 
glycolipids (lane 3). 
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quence of PIG-A cDNA (28). A 3.6 kb- 

~ T A L  IA-I r-DSI IDVAIMTGP w;unmsX -I insert of pEBPIG-A was subcloned into a 
481 
asln 

pBluescript vector (Stratagene) in both 
directions, and nested deletion mutants 

were prepared. The nucleotide sequences of both strands were determined by the dideoxy 
termination method with a taq dye primer cycle sequencing kit and Model 370A DNA Sequencing 
System (Applied Biosystems). A stop codon is present 21 bp upstream of the predicted initiation 
codon. A putative hydrophobic transmembrane region is underlined. The accession number for the 
nucleotide sequence of PIG-A is Dl 1466 (DNA Data Bank of Japan, European Molecular Biology 
Laboratory, and GenBank). (6) Hydrophobicity plot of PIG-A. 
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Fluorescence intensity 
Fig. 4. Restoration of surface expression with 
PIG-A cDNA of Thy-1 murine class A mutants but 
not of C and H mutants. We introduced the 
neomycin resistance gene derived from pcD2 
into the Sfi I site of pEBPIG-A by replacing a 
portion that contains oriP and the hygromycin 
resistance gene. The resulting PIG-A cDNA plas- 
mid was transfected intoThy-1- murine thymoma 
cells (29, 30). Transfected cells were selected 
with G418, stained for Thy-1, and analyzed iii?a 
FACScan (Becton Dickinson). (A) BW5147 Thy- 
1- class A cells (line 1); PIG-A-transfected 
BW5147 Thy-l- class A cells (line 2); and wild- 
type BW5147 cells (line 3) stained for Thy-1 .l . (B) 
TIMI Thy-l- class C cells (line 1); PIG-A-trans- 
fected TIMI Thy-l- class C cells (line 2); and 
wild-type EL4 cells (line 3) stained for Thy-1.2. (C) 
S49 Thy-l- class H cells (line 1); PIG-A-trans- 
fected S49 Thy-l- class H cells (line 2); and 
wild-type EL4 cells (line 3) stained for Thy-1.2. 

PIG-A takes part in the early step of GPI- 
anchor biosynthesis. These results were con- 
firmed with another class A cell line derived 
from S49 murine thymoma cells (22). 

There are two other complementation 
classes, C and H, that are also early mutants, 
which indicates that three genes are required 
for biosynthesis of GlcNAc-PI (10, 12, 20). 
Because these three mutant cell lines show 
normal biosyntheses of phosphatidylinositol 
and uridine diphosphate (UDP)-GlcNAc, 
the three components seem to be necessary for 
the actual process of GlcNAc-PI synthesis. 
We expressed PIG-A in cells of classes C and 
H. PIG-A cDNA did not complement defects 
of these classes (Fig. 4). 

Thus, PIG-A appears to function inde- 

Fig. 5. Northern blot anal- 1 2 3 17 
ysis of PIG-A transcripts 
in wild-type JY-25 and 18. 
JY-5 cells. Samples of to- 
tal RNA (10 pg each) -285 
(31) prepared from JY- 
25 cells (lane 3), JY-5 
cells transfected with -18s 

PIG-A (lane 2), and JY-5 
cells (lane 1) were sub- 
iected to Northern blot 
analysis with a 32P-la- 
beled 2.7-kb Nco I frag- EF-la 
ment of PIG-A cDNA that 
contains the entire cod- 
ing region and a part of the 3' untranslated region 
as a probe. The blot was rehybridized with an 
elongation factor-la (EF-la) probe (32) to deter- 
mine the amounts of RNA applied. 

pendently of the other components. The 
biosynthesis of GlcNAc-PI is thought to 
occur on the luminal side of the ER (23). If 
this is so, a transporter that transports UDP- 
GlcNAc from the cytoplasm to the lumen of 
the ER is required in addition to the enzyme 
GlcNAc transferase, which transfers 
GlcNAc from UDP-GlcNAc to PI. PIG-A 19- 

has no sequence similarity with known 
GlcNAc transferases. Because sequence sim- 
ilarity is not always found among glycosyl- 
transferases, a definitive conclusion on the 
function of the PIG-A protein is not possi- 
ble. With Northern (RNA) blot analysis 
with a PIG-A cDNA probe, a single tran- 
script of 4.2 kb was detected in wild-type JY 
cells. A faint signal was obtained around the 20. 

4.2 kb position with JY-5 cells (Fig. 5). 
Our results show that PIG-A cDNA en- 

21 

codes a protein that functions in GPI-anchor 22. 
biosynthesis. Our method of expression clon- 
ing may also be useful in cloning genes for 23. 

other steps of GPI-anchor biosynthesis when 24. 
appropriate mutant cells become available. 

25. 
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