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A Functional Role for GTP-Binding Proteins in 
Synaptic Vesicle Cycling 

S. D. Hess,* P. A. Doroshenko, G. J. Augustinet 
The squid giant synapse was used to test the hypothesis that guanosine-5'-triphosphate 
(GTP)-binding proteins regulate the local distribution of synaptic vesicles within nerve 
terminals. Presynaptic injection of the nonhydrolyzable GTP analog GTPrS irreversibly 
inhibited neurotransmitter release without changing either the size of the calcium signals 
produced by presynaptic action potentials or the number of synaptic vesicles docked at 
presynaptic active zones. Neurotransmitter release was also inhibited by injection of the 
nonhydrolyzable guanosine diphosphate (GDP) analog GDPpS but not by injection of 
AIF,-. These results suggest that a small molecular weight GTP-binding protein directs 
the docking of synaptic vesicles that occurs before calcium-dependent neurotransmitter 
release. Depletion of undocked synaptic vesicles by GTPrS indicates that additional 
GTP-binding proteins function in the terminal at other steps responsible for synaptic vesicle 
replenishment. 

R a p i d  transmission of signals between neu- 
rons is achieved by secretion of neurotrans- 
mitters at synapses. Neurotransmitters are 
stored in svna~t ic  terminals in membrane- 

1 a 

bound organelles, the synaptic vesicles, and 
are secreted bv the Drocess of exocvtosis. 
During repeated bouts of synaptic transmis- 
sion, neurotransmitters are newly synthe- 
sized while synaptic vesicles are retrieved 
and refilled through a local cycling pathway 
(1. 2 ) .  The molecular mechanisms that me- 
\ ,  , 

diate the cycling of synaptic vesicles are not 
known. Because the traffickine of other in- " 
tracellular organelles involves proteins that 
bind GTP (3) and such proteins are also 

S. D Hess, Department of B~ological Sc~ences, Uni- 
versity of Southern Cal~forn~a, and Mar~ne B~olog~cal 
Laboratory, Woods Hole, MA 02543 
P A Doroshenko, Department of Neurob~ology, Duke 
Un~vers~ty Medical Center, Durham, NC 27710, Instl- 
tute of Phys~ology, K~ev, Ukraine, and Mar~ne Biologi- 
cal Laboratow. Woods Hole. MA 02543 

associated with synaptic vesicles (44), 
GTP-binding proteins may regulate synaptic 
vesicle traffic (6). To  test this proposal, we 
used the squid giant synapse to examine how 
the activation of GTP-binding proteins af- 
fects two consequences of vesicle trafficking: 
the release of neurotransmitters and the 
distribution of synaptic vesicles within the 
terminal. 

Transmission across the giant synapse was 
assayed by measurement of postsynaptic cur- 
rents (PSCs) or potentials (PSPs) that were 
evoked by presynaptic action potentials (7). 
Both iontophoretic and pressure microinjec- 
tions of guanosine-5'-0-(3-thio-triphos- 
phate) (GTPyS), a nonhydrolyzable analog 
of GTP,  into the giant presynaptic terminal 
produced a slow and irreversible depression 
of synaptic transmission (Fig. 1 A) . Because 
the nucleotide was injected only into the 
presynaptic terminal, this inhibition reflects 
a decrease in neurotransmitter release from 
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Un~vers~ty Med~cal Center, Durham, NC 27710, Max- 
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ry, woods Hole, MA 02543 release diminished to - 15% of its preinjec- 
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GTPyS 

Time (rnin) 
Fig.  I. Effects of presynaptic lnjectlon of gua- 
nine nucleotides on transmission at the squid 
glant synapse (A) Time course of reduction in 
PSC amplitude caused by iontophoretlc lnjec- 
tion of GTPyS (36 kc) during the period indi- 
cated by the horizontal bar. The inset shows 
superimposed PSCs recorded before and 20 
min after GTPyS lnjectlon (asterisk). (B) Lack of 
inhibition of PSC amplitude after injection of 
GTP. The transient increase In PSC IS due to 
hyperpolarizatlon of the terminal by injection 
current. (C) Time course of reduction in PSP 
amplitude caused by illumination of caged 
GTPrS with UV light. Synaptic responses here 
and in subsequent figures have been norrnal- 
ized by division by the mean signal amplitude 
measured before injectlon 

served in more than 20 experiments. In a 
subset of five injections of GTPyS of identical 
amplitude a t~d duration (100-nA injection 
current for 10 min), the a~nplitude of PSCs 
elicited by presynaptic action potentials de- 
creased to 34.2 f 0.1% (mean t SEM) of 
the preinjection value when it was assessed 35 
rnin after the start of the injection. 

In control experiments, injection of 
GTP caused only slight changes in trans- 
mission over the same period (Fig. 1B). 
Analysis of ten experiments in which the 
same injection protocols were used to inject 
either GTP or GTPyS indicated that trans- 
mission in synapses that were injected with 
GTPyS was significantly lower than in 
those receiving GTP 20 min atter the start 

Time (min) 

Fig. 2.  Absence of changes In Ca2+ signaling 
during GTPyS-lnduced inhlbitlon of synaptlc 
transmitter release (A) Time course of inhlbl- 
tlon of transmltter release caused by ~ntratermi- 
nal lnjectlon of GTPyS. The ordlnate shows the 
normallzed maxlmal rate of PSP rise that was 
evoked by slngle presynaptlc action potentials 
that were triggered every minute. (B) Simulta- 
neous measurement of presynaptlc [Ca2+] at 
rest and during trains of presynaptlc action 
potentials (asterisks). The translent rise in 
[Ca2+] at 13 min was produced by a longer 
st~mulus train. 

of injections (t = 2.23 min, P < 0.05, and 
8 do ,  and the difference later increased. To 
exclude possible inhibitory effects due to 
thiophosphorylation (9), we injected aden- 
osine-5'-0-(3-thiotriphosphate) (ATPyS) 
presynaptically using similar protocols. This 
nucleotide analog did not inhibit transmis- 
sion (n = 2).  Furthermore, injection of a 
different type of nonhydrolyzahle GTP an- 
alog, guanylyl-imidodiphosphate (GMP- 
PNP), mimicked the inhibitory effect of 
GTPyS (11 = 3). These results indicate that 
the observed inhibition results from the 
action of GTPyS on GTP-binding proteins. 

To test whether the slow time course of 
inhibition by GTPyS was due to slow diffu- 
sion of the nucleotide through the terminal 
(1 0) , we used the light-induced release of 
GTPyS frotn caged GTPyS. After injecting 
t h ~ s  co~npound into the presynaptic terminal 
and allowing it to diffuse, we illuminated the 
tenninal with ultraviolet (UV) light to con- 
vert caged GTPyS to free GTPyS (11). 
Illumination of the caged GTPyS caused an 
irreversible inhibition of synaptic transmis- 
sion that continued after illumination ended 
(Fig. 1C). Similar effects were observed in 
three experiments and were not seen in 
control experiments in which terminals that 
were not injected with caged GTPyS were 
illuminated with more intense UV light. 
Thus, the rate of inhil3ition is not limited by 
diffusion of GTPyS but by the response of 

Time (min) 

Fig. 3. G proteins are not involved In lnhlbltion 
of transmltter release (A) Tlme course of lnhl- 
bltlon of synaptlc transmlsslon that was pro- 
duced by iontophoretic injection of GDPPS (90 
p,C) (B) Pressure injection of AIF, does not 
inhiblt synaptic transmission. In this experiment 
15 pulses of 2 5 bar and 170 ms in duratlon 
were applied to the injectlon pipette. 

the nerve terminal to this nucleotide analog. 
Transmitter release is highly sensitive to 

the waveform of the presynaptic action po- 
tential, which regulates both the amount of 
CaL+ influx into the terminal (12, 13) and 
the magnitude of the resultant rise in the 
intrater~ninal Ca2+ concentration, [Ca2+],. 
The change in [CaL+], detennines the rate of 
transmitter release that is evoked by presyn- 
aptic action potentials (14). Several results 
suggest that none of these signaling steps is 
affected by GTPyS. Neither presynaptic 
resting potentials nor action potentials were 
affected by GTPyS injections. The resting 
potential remained stable, within 1 to 2 mV, 
after the injection, and action potentials did 
not change their shape. Preliminary voltage- 
clamp experiments suggest that GTPyS does 
not affect the presynaptic Ca2+ current, a 
measure of Ca2+ influx into the tenninal. 
This possihilitv was tested further with snec- 
trofluorometric ~neasure~nents of [CaL+], in 
tenninals that were preinjected with the 
CaL+ indicator Fura 2 (15). The increase in 
[CaL+], that was induced by a train of action 
potentials was not changed significantly by 
injection of GTPyS (Fig. ZB), whereas 
transmitter release from the same terminals 
was inhibited dramatically (Fig. 2A). In six 
experi~nents, the peak amplitude of the 
CaL+ signals that were measured 13 to 18 
min after the GTPyS injections was 93 
5% (mean + SEM; range, 73 to 106%) of 
the preinjection value. The known relations 
among action potential-induced Ca2+ influx, 
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Fig. 4. Changes in syn- 
aptic vesicle distribution 
induced by GTPyS. Elec- 
tron micrographs of ac- 
tive zones from (A) a 
control terminal and (B) a 
terminal injected with 
GTPyS. Asterisks mark 
postsynaptic spines that 
are opposite the presyn- 
aptic active zones. (C) 
Spatial distribution of 
synaptic vesicles around 
(open bars) 170 active 
zones in three control ter- 
minals and (solid bars) 
155 active zones in two 
terminals that were in- 
jected with GTPyS. The 
abscissa indicates dis- 
tance between adjacent 
vesicles and the elec- 
tron-dense region of the 
presynaptic membrane. 
(D) Spatial gradient of 
the GTPyS effect. For 
each spatial compart- 
ment, the number of syn- 
aptic vesicles found in 
GTPyS-injected termi- 
nals [solid bars in (C)] is 
divided by the number of 
synaptic vesicles that 
were found in control ter- 
minals [open bars in (C)] . 

Presynaptic membrane 
, '... .. 

GTPyS 5b/p+ap+hp\ ' 

GDP 

0 Synaptic vesicle 0 GTP bound protein 

7 Docking site 0 GDP bound protein 

Fig. 5. The hypothetical presynaptic sites of 
action of nonhydrolyzable guanine nucleotides. 
We propose that the GTP-bound form of a 
GTP-binding protein is responsible for docking 
synaptic vesicles (step 2) and that GTPyS 
inhibits transmitter release (step 3) by prevent- 
ing the hydrolysis of GTP that normally allows 
docked vesicles to undergo exocytosis (step 
4). GDPpS inhibits release by preventing GDP- 
GTP exchange by the smg protein (step 1) and 
thus inhibits docking (step 2). Depletion of 
synaptic vesicles results from the effect of 
GTPyS on other GTP-binding proteins that are 
involved at other steps in the vesicle life cycle, 
such as endocytosis (step 5b). P,, inorganic 
phosphorus. 

[CaZ+], increases, and transmitter release (1 3, 
16) require that the measured CaZ+ signal 
decrease by more than 70% to produce the 
degree of inhibition that we observed. In 
addition, there was no consistent change in 
the resting [CaZ+], of the terminal. These 
results indicate that GTPyS acts by altering 
the amount of transmitter release that is 
evoked by the rise in [CaZ+], rather than by 
regulating action potential-induced CaZ+ en- 
try into, or movement within, the terminal. 

Synaptic transmission could be regulated 
by two classes of GTP-binding proteins. 
Heterotrimeric G proteins (1 7) can regulate 
release at presynaptic terminals by altering 
CaZ+ signaling (18) or by acting on other 
steps (19). Alternatively, secretion could be 
regulated by monomeric GTP-binding pro- 
teins with a smaller molecular weight (smg's) 
(3). Current views (17, 20) hold that G 
proteins act catalytically. Nonhydrolyzable 
GTP or GDP analogs affect them in opposite 
ways; that is, if GTPyS activates a process 
that is mediated by a G protein (which 
inhibits release), then GDPPS will block 
this process and yield no inhibition of trans- 
mission. In contrast, the smg proteins are 
thought to act cyclically; both nucleotide 
analogs inhibit the action of these proteins 
(20). Thus the relative effects of GTPyS and 
GDPPS provide a means to distinguish be- 

Distance from active zone (nm) 
4B). The average numbers of svna~tic vesi- 

tween responses mediated by G proteins and 
those mediated by smg proteins. We tested 
this criterion by injecting GDPPS into the 
presynaptic terminal, which inhibited trans- 
mitter release (n = 8) (Fig. 3A). As was the 
case for GTPyS, GDPPS inhibition was 
irreversible and was not due to changes in 
presynaptic membrane potential or [CaZ+], 
signals. This effect suggests that smg's medi- 
ate inhibition at the giant synapse of squid. 

Another way to discriminate between the 
two classes of GTP-binding proteins is by the 
use of AIF4-, which potently activates het- 
erotrimeric G proteins but does not activate 
smg's (2 1). In contrast to the effects of the 
nonhydrolyzable guanine nucleotides, injec- 
tion of AIF4- [either ionophoretically (n = 
2) or by pressure (n = 3)] did not affect 
synaptic transmission (Fig. 3B) (22). Thus 
the similar inhibitory effects of GTPyS and 
GDPPS as well as the inability of AIF4- to 
inhibit transmission implicate smg proteins 
in the inhibition of release. 

To learn more about the cellular mecha- 
nisms responsible for this inhibition of re- 
lease, we used electron microscopy (23, 24) 
to examine the spatial distribution of synap- 
tic vesicles near active zones of three control 
presynaptic terminals (two injected with 
GTP and one uninjected) (Fig. 4A) and of 
two terminals injected with GTPyS (Fig. 

- , . 
cles in concentric shells 50 nm wide that 
surrounded each active zone were used to 
construct vesicle distribution histograms 
(Fig. 4C). The GTPyS-injected terminals 
had a reduced number of synaptic vesicles, 
less than half of those in the control termi- 
nals at distances between 500 and 1000 nm 
from the active zones (Fig. 4D). However, 
the terminals injected with GTPyS had 
almost normal numbers of docked vesicles, 
which are defined as vesicles within 50 nm of 
the active zone (Fig. 4D). Docked vesicles 
are thought to be the only ones that undergo 
CaZ+-de~endent release (2. 6). Release from . .  , 
these same terminals was reduced approxi- 
mately 90% by GTPyS, which means that 
the inhibition of release occurred without a 
concomitant reduction in the number of 
vesicles that were available for release. Thus 
GTPyS must interfere with GTP hydrolysis 
at a step that follows vesicle docking but 
precedes release. 

To explain our results, we propose a 
model (Fig. 5) that combines previous 
schemes for synaptic vesicle trafficking (1, 6) 
and smg protein cycling (20). According to 
this model, GTPyS substitutes for GTP in 
binding to an smg protein (step 1) that is 
responsible for docking synaptic vesicles 
(step 2) at the active zone. This docking 
protein may be Rab3A, which is associated 
with synaptic vesicles (4, 5) but dissociates 
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during or after exocytosis (25, 26). Binding 
of GTPyS prevents GTP hydrolysis (step 3) 
and so blocks subsequent steps such as exo- 
cytosis triggered by Ca2+ (step 4) and disso- 
ciation of the smg protein from the synaptic 
vesicles (ster, 5a) (27). In our model, we . . . .  
have placed smg protein dissociation after 
exocytosis to account for the slow dissocia- 
tion of Rab3A after CaL+ influx (25). The 
model predicts that GTPyS will gradually 
lock the svnaotic vesicles and their associat- , L 

ed smg proteins into a docked position from 
which they cannot undergo exocytosis even 
in the presence of Ca2+. This prediction is 
consistent with our observation that inhibi- 
tion of release occurs despite the presence of 
docked synaptic vesicles. Further, because 
rates of exocvtosis are low under our exDer- 
imental conditions, this locking model could 
also account for the slow time course of 
inhibition of release. 

Our model cannot account for the deple- 
tion of undocked synaptic vesicles by 
GTPyS because locking should disrupt the 
cycling of synaptic vesicles (1, 2)  at a point 
that would result in an accumulation of 
~~ndocked svna~tic vesicles in the active , A 

zone. However, because we observed deple- 
tion of these vesicles, GTPyS must affect 
one or more additional GTP-binding pro- 
teins that are involved in other steps of the 
cycle. One such step may be endocytosis 
(step 5b), which may be regulated by dy- 
namin, another GTP-binding protein (28). 
If GTPyS also inhibits endocytosis, the ob- 
served loss of synaptic vesicles would then be 
due to an accumulation of their membranes 
in the presynaptic plasma membrane (1). 
GTP-binding proteins--either smg's (3) or 
heterotrimeric G proteins (29)-regulate ev- 
ery step in the trafficking of other intracel- 
lular organelles. If we extend the parallels 
between the trafficking of synaptic vesicles 
and that of these other organelles, it seems 
possible that GTP-binding proteins regulate 
every step in the transit of a synaptic vesicle 
through its cycle. 
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