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Altered Prevalence of Gating Modes in 
Neurotransmitter Inhibition of 

N-Type Calcium Channels 

Anne H. Delcour* and Richard W. Tsient 
G protein-mediated inhibition of voltage-activated calcium channels by neurotransmitters 
has important consequencesfor the control of synaptic strength. Single-channel recordings 
of N-type calcium channels in frog sympathetic neurons reveal at least three distinct 
patterns of gating, designated low-Po, medium-Po, and high-Po modes according to their 
probability of being open (Po) at -10 millivolts. The high-Po mode is responsible for the 
bulk of divalent cation entry in the absence of neurotransmitter. Norepinephrine greatly 
decreased the prevalence of high-Po gating and increased the proportion of time a channel 
exhibited low-Po behavior or no activity at all, which thereby reduced the overall current. 
Directly observed patterns of transition between the various modes suggest that activated 
G protein alters the balance between modal behaviors that freely interconvert even in the 
absence of modulatory signaling. 

A wide variety of neurotransmitters inhibit 
high voltage-activated CaZ+ channels in 
vertebrate neurons (1-6). At nerve termi- 
nals, this diminishes transmitter release and 
thereby contributes to presynaptic inhibi- 
tion (I)  or autoinhibition (5). Inhibitory 
modulation is exemplified by norepineph- 
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rine (NE) acting by means of a,-adrenergic 
receptors to inhibit N-type channels (1, 4, 
5, 7). This modulation involves G proteins 
(7-10) acting by a fast, membrane-delimit- 
ed pathway (5, 6), but how this alters the 
activity of individual CaZ+ channels is un- 
clear. On the basis of whole-cell recordings, 
several hypothetical mechanisms of down- 
modulation have been proposed: (i) chan- 
nel block with no change in time- or 
voltage-dependent kinetics (1); (ii) modu- 
lation by the addition of an extra noncon- 
ducting state with kinetically slow connec- 

tions to normal gating states (9, 10); and 
(iii) modulation by shifts in the mode of 
gating, from a "willing" mode, where the 
channel can be opened by relatively weak 
depolarizations, to a "reluctant" mode, in 
which much stronger depolarizations are 
required (4, 1 1, 12). To test these hypoth- 
eses, we examined neurotransmitter modu- 
lation of unitary N-type CaZ+ channel ac- 
tivity (5, 13). 

In the absence of neurotransmitters, 
N-type CaZ+ channels in frog sympathetic 
neurons exhibit three prominent modes of 
gating (13). When evoked by pulses to a 
convenient test potential (- 10 mV), the 
gating modes differ widely in their probabil- 
ity of being open (P,) and are thus classified 
as high-, medium-, and low-Po modes (13) 
(Fig. 1, A and B). In the high?, mode 
(Fig. lA) ,  channel openings are relatively 
long lasting and closings are short-lived, 
and P, at -10 mV is typically -0.5 or 
greater. In the medium-P, mode (Fig. IB), 
the openings are somewhat briefer and the 
closings longer. In the low-P, mode, the 
openings are even briefer and the closings 
even more prolonged. 

Figure 1 compares data collected from 
ten patches with no transmitter present and 
from ten patches where the patch pipette 
contained 100 pM NE, a concentration 
that produces nearly saturating inhibition 
with little desensitization (5). In the pres- 
ence of NE, the mean patch current was 
less than half that in the control patches 
(Fig. 1, insets). Norepinephrine markedly 
affected the prevalence of high-Po gating. 
In the control patches, high?, sweeps are 
represented by a cluster of data points, 
centered around a mean open duration (t,) 
of -3 ms and a mean closed time (i,) of -2 
ms (Po > 0.45). Under the influence of NE, 
high-P, gating was largely absent (Fig. ID). 

The near-abolition of high-P, gating 
conforms to the proposed NE-induced shift 
from willing to reluctant gating (4, 11). 
However, even with high-P, behavior set 
aside, the gating behavior that remained 
with NE was far from homogeneous, con- 
trary to predictions of the willing-reluctant 
hypothesis for maximal neurotransmitter 
inhibition. The t,-< plot with NE (Fig. ID) 
shows a significant negative correlation be- 
tween t, and t, (P < 0.001), which is 
indicative of more than just one pattern of 
gating (14). 

The dominant patterns of gating in the 
presence of NE are illustrated by the set of 
consecutive current records in Fig. 2A. 
Spontaneous switching between two kinds 
of gating is evident. One pattern, exempli- 
fied by sweeps 1 and 2 and 4 to 7, is 
qualitatively similar to the medium-Po 
mode in control recordings (Fig. IB). An- 
other pattern, typified by sweeps 3 and 8 to 
11, resembles low-Po gating in the control. 
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Fig. 1. Multiple gating A - l o m ~  B -1ornv 
patterns of N-type Ca2+ -80 -80 
channels in the ab- 
sence or presence of 
neurotransmitter. IA -- " IWmir3t\JI-------"l 
and B) ~e~resentative 1 b w c 
records from a single h c r c l / f i , w i ~ w  b 
control experiment that I ., ,*-- 
illustrate the three major 7N7nlrvnm111- 
gating modes. High-Po - J ~ ~ ~ ~ W W \ W W Y L ' J ~ ~ ~  " @7f'M~=-"--- 
(h) and low-Po (I) gating Y~C~~WNIWUYW~ " T ? ? c h T ~ v f i ' r  
modes are interspersed -d#MY~\'iM1'MiTur" 
in (A), and medium-Po 
gating (m) and blank 2 PAL 
records (b) are illustrat- 50 rns 

ed in (B), with seven 
consecutive leak-sub- 100 pM NE 
tracted sweeps in each 
case. The voltage pro- 
tocol (top) was a depo- .;- 
larizing pulse from -80 5 0.1 PAL 

50 mS 
to-lOmV.(CandD) E 
Gating behavior from '" 

ten control experiments 2 
(C) and ten patches in O 

the presence of 100 pM = 
NE (D). Each symbol 
represents the kinetic 
behavior of an individu- 
al sweep with only a sin- Mean dosed time (ms) 

gle open level; values of 
mean open time and mean closed time are arithmetic averages calculated for each sweep. Dashed 
lines correspond to Po values of 0.45 and 0.1 5, used to categorize different gating behaviors for later 
analysis (13). (Insets) Means of ensemble averages constructed from idealized records for each 
patch. 

The distribution of open durations is shown 
fitted to a single exponential (Fig. 2B); this 
fit was significantly inferior to the sum of 
two exponential components (P < 
0.00001) (15). This points to the existence 
of at least two distinct open states. Sorting 
the current records in the presence of NE 
into low-Po (Fig. 2C) or medium-Po (Fig. 
2D) groups simplified the kinetic analysis. 
Once the records were sorted, the individ- 

ual open duration distributions were both 
monoexponential, consistent with a classi- 
cal kinetic scheme for Ca2+ channels with 
only one open state (1 6). The disparity in 
time constants (T = 1.13 ms in medium-Po 
mode and T = 0.29 ms in low-Po mode) 
reflects a more than threefold difference in 
exit rates from the open state in the respec- 
tive modes. 

With NE, just as with the control (1 3), 

distinctions between modes were facilitated 
by the slowness of internode switching 
relative to gating kinetics within a mode. 
Histograms of the length of apparent so- 
journs within each mode with NE (Fig. 2, E 
through G) yielded mean run lengths of 
2.97, 2.38, and 1.90 records for blanks and 
low-Po and medium-Po gating, respectively 
(control values were 2.35. 1.48. and 2.25 

7 - ,  

records). Because records were taken every 
4 s, these run lengths correspond to appar- 
ent modal sojourns of several seconds, lo2- 
to lo3-fold longer than a typical cycle of 
channel opening and closing. 

Modulation of divalent cation entry 
could take d lace bv the alteration of the 
prevalence of the various modes or by 
changes in the rapid kinetics within the 
modes. The collected data show that NE 
affects the proportion of time that a chan- 
nel spends in individual modes (Fig. 3A). 
The proportion of sweeps that displayed 
high-Po gating was greatly decreased (3% in 
the presence of NE versus 32% with the 
control) (P < 0.005), whereas the propor- 
tion of records that showed low-Po gating or 
no detectable openings (blanks) was in- 
creased with NE (P < 0.05). On the other 
hand,the incidence of medium-Po sweeps 
was not markedlv chaneed (P > 0.05). In 
contrast to the clear effict of NE on modal 
weights, the mean values of 5, within indi- 
vidual modes were not significantly differ- 
ent in NE or control conditions (Fig. 3B) 
(P > 0.05) (1 7). , . - ,  

The impact of the changes in modal 
weights on the overall macroscopic current 
is illustrated in Fig. 3C (18). Changes in 
the relative weights of the modes underlie 
the dramatic down-modulation. The high- 
Po component accounted for about 60% of 
the total current in the absence of neuro- 
transmitter but made a negligible contribu- 

Fig. 2. Two gating modes remain prom- A 
inent even in the presence of maximally i w  VM NE 
effective concentrations of neurotrans- 1- Po t, t, ,= 
mitter. (A) Gating behavior observed c 800 

1- 0276 1.3 3.4 
with 100 pM NE in the patch pipette. lvmT oln 3.4 !,, illustrated by a series of consecutive E 400 

unitary current records (left) and associ- 3v 0D04 0-3 78.5 $ - 200 
ated values (right) of open probability 4-mF 0.246 1.4 4.3 0 
(Po), mean open time (d ) ,  and mean 0 2 4 6 8 1 0 0  2 0 2 4 6 8 1 0  

5 - 7 \ ~  0.228 1.3 4.4 
closed time (t,) in milliseconds. The Open time (rns) 

same voltage protocol as in Fig. 1, A and 6 T ~ m ~ m w  0.292 lA 3.4 
50 

0.016 0.5 30.9 
B, was used. (B through D) Distributions 7 ~ I l r l f i ~ 8 ~ ~  0.260 l v 3  3-7 - 
of open times collected from the same 8- t b 

experiment as in (A). The histogram 9 0.034 0.6 17.1 5 20 

made from all openings (B) is poorly low ----.-- 0.012 0.4 31.8 10 
fitted by a single exponential. However, 
histoarams constructed from swee~s l1 0.017 0.4 23.0 '0 5 10 15 20 o 5 10 15 o 5 10 . . 

classified as low-Po (C) or medium% Run length (number of  sweep^) 

(D) are adequately fitted by single expo- PA L 
nentials (rI0, = 0.29 ms and T,, = 1.13 50ms 

ms). The vertical scale in (C) and (D) is half that in (B). (E through G) Run-length histograms for runs of consecutive sweeps that showed no detectable 
channel activity (E) or low-Po (F) or medium-Po (G) modal behavior. The histograms were constructed from pooled data from ten experiments, with 
sweeps every 4 s. 
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tion in the presence of NE. The low-Po 
component in the presence of NE was more 
than doubled relative to the control. but 
because its absolute contribution was small 
relative to other components, this was of 
little consequence. The overall result was a 
sharp decrease in the total ionic current 
(19)- 

The participation of low-Po gating 
showed UD more clearlv in the ~redicted 
voltage dependence of ca2+ chaAnel acti- 
vation (Fig. 3D). As the amount of low-Po 
behavior increased and that of high-Po de- 
creased, a greater fraction of the maximal 
activation required very strong depolariza- 
tions. The predicted activation curve with 
NE shows two distinguishable limbs, con- 
sistent with whole-cell tail current measure- 
ments (4, 11). The shallowness of the 
upper limb reflects observed properties of 
the low-Po mode (1 3). The voltage depen- 
dence of activation of the high-Po and 
medium-Po modes is similar enough to 
blend together in what would be taken as 
the willing component. 

The binding of G protein subunits to 
Ca2+ channels has been ~ r o ~ o s e d  as a . . 
mechanism for the down-modulation of 
N-type currents (4, 5, 9-12). Our observa- 
tions are consistent with the hypothesis 
that activated G protein drives the channel 
from the high-Po mode to a less active 
pattern, abbreviating episodes of high-Po 
behavior. With large amounts of neuro- 

L, 

transmitter (and presumably activated G 
protein), current records comprised of ho- 
mogeneous high-Po activity (Fig. 4A) were 
extremely rare (< 1% of all records). More 
commonly, high-Po gating appeared as a 
transitory epoch along with other gating 
patterns within an individual sweep (Fig. 
4B). The brevity of such epochs seems 
compatible with the fast kinetics of action 
of transmitters working via the membrane- 
delimited pathway (4-6, 20-22). 

G  rotei in-mediated inhibition can be 
temporarily relieved by a strongly depolar- 
izing prepulse (4, 9-12, 23). Reestablish- 
ment of inhibition is G protein-dependent 
(10) and appears as a decay of inward 
current during a test depolarization after the 
prepulse (Fig. 4C; 24). Our cell-attached 
patch recordings suggest that the decay of 
whole-cell current (7 - 30 ms) arises from 
transitory sojourns in the high-Po mode that 
give way to less active gating. Depolarizing 
prepulses (9 out of 192 trials) sometimes 
promoted long-lasting openings near the 
beginning of the test pulse (Fig. 4D); such 
openings were never seen when test pulses 
were not preceded by the strong depolariza- 
tions (0 out of 180 trials). The early long 
openings are consistent with temporary oc- 
cupation of the high-Po mode followed by G 
protein reinhibition and transition to less 
active modes (25, 26). 

These results provide information about but was reduced in a graded fashion through 
the mechanism of neurotransmitter-in- changes in modal prevalence. NE reduced 
duced down-modulation. Channel activity the likelihood of high-Po gating (but not 
was not blocked in an all-or-nothing way medium-Po activity), which thus accounts 

A c Control . 100uMNE . 
Blank 

1 
La* Medivm High - 

I 

Fig. 3. (A and B) Neurotransmitter-induced alteration of the balance between modes with no 
significant change in open time distributions within individual modes. In (A) is the proportion of 
sweeps in various modes in control patches (C) and in the presence of 100 KM NE. Collected data 
are represented as mean 5 SEM. In (B), to was averaged across the same set of patches. (C and 
D) Altered modal weights can account for N-type channel down-modulation and its voltage 
dependence. In (C), the contribution of modal components to the overall current is shown in the 
absence (left) and presence (right) of 100 pM NE. We reconstructed the total current by averaging 
sweeps within individual modes and then adding up the modal components one at a time ( I  for 
low-Po, m for medium-Po, and h for high-Po modes) (18). In (D), a reconst~ction of voltage (V) 
dependence of activation for comparison with tail current measurements is shown. Dotted curves 
show the Po(V) curves for the individual modes in the form of Bolbmann functions 

where the voltage at which Po is half (V,,) = -13.2, -3.2, and 31 mV and the Boltzmann constant 
(4 = 5, 7.8, and 11 mV for the low-, medium-, and high-Po modes, respectively (13). Solid curves 
illustrate the normalized tail activation curves expected in the absence [control (Con.)] and the 
presence (NE) of 100 pM NE, calculated as the weighted sum of P,(V) curves [weights are 
calculated from the mean proportions of (A), normalized to exclude blanks]. 

Flg. 4. Properties of re- A c .- 

sidual high-P, behavior - observed in patches W J  

exposed to NE. (A) 
Sweeps of high-Po ac- 
tivity for the full duration 
of the dewlarization 
(312 ms). (B) A short 
e ~ o c h  of hiah-P., aatina 6 
amld low-6 acutlilty I; 

consecutive records 
from another expen- 
ment. For (A) and (8). -f..Mmf..-nC1C 2 4 1- 
the voltage protocol IS I I II 
as in ~ i g .  1A. (C) Temporary relief of NE inhibition by a 
depolarizlng prepulse [prepluse potential (VJ = + 180 mV for 
40 msl in a whole-cell recordina with 100 UM NE and 110 mM 
exterhl Ba2+ (24). Durlng a &bsequent'test pulse to 0 mV. 
the extra Inward current after a ~ r e ~ u l s e  (+P) decaved back to 

1 1 1  
an amount evoked by the tesi albne'(-P)..(D) Traces 
obtained from a multichannel, cell-attached patch wrth a similar prepulse protocol. High-Po gating 
appears in traces 1 to 3 as prolonged openings of one or more channels near the onset of the test 
pulse to -10 mV that follows a prepulse to +I20 mV. Trace 4 is an example of a record that lacks 
such behavior. 
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for a substantial (but incomplete) reduction 
of macroscopic current at moderate test 
potentials (1-3). The retention of low-Po 
gating allows nearly full activation of 
N-type Ca2+ conductance by very strong 
test depolarizations (4, 1 1). These results 
provide direct evidence for interconversion 
between modes of gating (4, 1 1, 12), al- 
though the observed modal behavior is 
more complex than merely willing and re- 
luctant, as previously hypothesized. 

G proteins might alter the balance be- 
tween modes in several ways (Fig. 5). The 
simplest hypothesis is a strictly coupled, 
sequential model (model A, Fig. 5A). The 
binding of increasing numbers of G protein 
subunits (27) is tightly linked to displace- 
ment of gating toward less active modes 
(2 1). In a loosely coupled, sequential model 
(model B, Fig. 5B), the channel may spon- 
taneously interconvert between modes of 
gating even in the absence of G proteins, 
but the hierarchy of modes is the same. A 
third model (model C,  Fig. 5C) is akin to a 
Monod-Wyman-Changeux (MWC) model 
(28). Here, all active modes are intercon- 

Fig. 5. Alternative kinetic schemes for the ef- 
fects of G proteins on gating modes. For sim- 
plicity, only active modes are depicted. (A) 
Modes arranged in a strict sequence: direct 
transitions between high-Po (h) and low-Po (I) 
modes are not allowed. Medium-Po mode, m. 
The modal transitions are entirely dependent on 
the binding of one or more G proteins. (8) 
Another model with modes arranged in strict 
order. Modal transitions can occur even in the 
absence of G proteins, but direct transitions 
between high- and low-Po modes are forbid- 
den. (C) MWC model allowing direct modal 
transitions between all pairs of modes, even in 
the absence of G protein action. The binding of 
one (or more) G proteins alters equilibria be- 
tween modes. 

nected, and the binding of one or more G 
proteins merely biases the equilibria be- 
tween modes in favor of low-P,, behavior or 
no activity. 

Unitary Ca2+ channel recordings per- 
mitted tests of these models. Model A 
predicts that sojourns in the low-P, mode 
should be abbreviated as the amount of 
activated G protein increases (29). This is 
not the case; if anything, the apparent 
lifetime of the low-P, mode appeared longer 
with NE (2.38 records) than with the con- 
trol (1.48 records). Models A and B both 
predict that direct modal transitions occur 
only between adjacent modes: for example, 
high * medium and medium * low. On 
the contrary, we found high + low and low 
-+ high transitions in control patches (Fig. 
1A) (30) without any sign of intervening 
sojourns in the medium-P<, mode (3 1). Such 
transitions also occurred in the presence of 
NE (Fig. 4B). These results weigh strongly 
against schemes where the modes are linked 
in a strictly hierarchical string (model A or 
B) but would be consistent with model C. 
Similar hypotheses can be used to explain 
modal behavior of L-type Ca2+ channels and 
up-modulation by l,4-dihydropyridines (32) 
or orotein kinases (33). 

\ ,  

The mechanism and kinetics of neuro- 
transmitter-induced inhibition mav have 
important functional consequences for pre- 
synaptic inhibition or autoinhibition at 
nerve terminals. In the sympathetic ner- 
vous system, noradrenergic autoinhibition 
via a, receptors may help ensure a more 
uniform delivery of transmitters to postsyn- 
aptic target tissues (34). A rapidly develop- 
ing but slowly decaying inhibition would 
allow a locallv high concentration of NE. , ., 
released from an individual varicosity, to 
produce an immediate but lingering inhib- 
itory effect on further release from that 
varicosity but not at distant sites. It is likely 
that similar mechanisms contribute in other 
systems where neurotransmitters control 
Ca2+ entry and presynaptic function. 
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Shutdown of Class Switch Recombination by 
Deletion of a Switch Region Control Element 

Steffen Jung,* Klaus Rajewsky, Andreas Radbruch 
Upon activation, B lymphocytes can change the class of the antibody they express by 
immunoglobulin class switch recombination. Cytokines can direct this recombination to 
distinct classes by the specific activation of repetitive recombinogenic DNA sequences, the 
switch regions. Recombination to a particular switch region ( ~ ~ 1 )  was abolished in mice 
that were altered to lack sequences that are 5' to the sy l  region. This result directly 
implicates the functional importance of 5' switch region flanking sequences in the control 
of class switch recombination. Mutant mice exhibit a selective agammaglobulinemia and 
may be useful in the assessment of the biological importance of immunoglobulin GI. 

Immunoglobulin class switch recombina- 
tion permits a B cell to sequentially express 
antibodies that have identical specificities 
but that differ in class and thus effector 
function. This recombination. which 
moves the variable region exon of the 
immunoglobulin heavy (IgH) chain to as- 
sociate with a different set of constant 
region exons, is mediated by switch (s) 
regions-that is, arrays of short tandem 
repeats located upstream of each constant 
region (C,) gene segment, except Cg. 
Once activated, class switch recombination 
is a regulated process, directed to the same 
switch region on the active and the alleli- 
cally excluded, inactive allele of a given B 
cell (I). Class switching is directed by 
cytokines. For example, the addition of 
interleukin-4 (IL-4) to cultures of polyclo- 
nally activated B cells induces switching to 
IgGl and IgE (2). The direction of class 
switching may be determined by the mod- 
ulation of accessibilitv of the individual 
switch regions to a common switch recom- 
binase (3). Before recombination, 5' switch 
region flanking sequences are subjected to 
cytokine-induced demethylation (4) and 
chromatin changes (5). Furthermore, the 
activation of promoter and enhancer ele- 
ments in these regions leads to transcription 
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of the respective unrearranged (germline) 
switch regions and their associated C, 
genes (6). Despite the large body of correl- 
ative evidence for germline transcription 
and class switch recombination (3, 6), a 
functional relation between switch region 
flankine seauences and class switch recom- u .  

bination has not been directly shown. 
To test the functional imoortance of 

switch region flanking sequences for switch 
recombination, we generated mutant mice 
that lack 5' flanking sequences of the s,l 
switch region (7) (Fig. 1). The homologous 
recombination event vields an IeH locus with " 
the 5' s,l region being replaced by an inverse- 
lv oriented neomvcin resistance heor) eene 

~ , -  

needed for selection of recombinants in the 
conventional targeting scheme (8). In the 
targeting construct (9), the neoT-cassette re- 
places 1.7 kb of the 5' s, 1 region spanning all 
sites of molecular changes known to be in- 
duced by the cytokine IL-+that is, a protein 
binding site (1 O), deoxyribonuclease (DNase) 
I hypersensitive sites (5), sites of specific 
demethylation (4), and the promoter ele- 
ments and splice donor site of the 1,l-germ- 
line transcript ( I  I) (Fig. ID). 

Using a murine embryonic stem (ES) 
cell line derived from 129101a mice (IgHa) , 
we eenerated ES cell clones that were het- - 
erozygous for the targeted replacement of 
the 5' s,l region (designated neoA5's,l) by 
homologous recombination (1 2). To exclude 
the influence of the neo' gene or its control 
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