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Anti-Oncogenic and Oncogenic Potentials of 
lnterferon Regulatory ~actors-1 and -2 

Hisashi Harada,* Motoo Kitagawa,* Nobuyuki Tanaka, 
Hitomi Yamamoto, Kenji Harada, M.asahiko Ishihara, 

Tadatsugu Taniguchi 
lnterferon regulatoryfactor-1 (IRF-I), atranscriptional activator, and IRF-2, its antagonistic 
repressor, have been identified as regulators of type I interferon and interferon-inducible 
genes. The IRF-I gene is itself interferon-inducible and hence may be one of the target 
genes critical for interferon action. When the IRF-2 gene was overexpressed in NIH 3T3 
cells, the cells became transformed and displayed enhanced tumorigenicity in nude mice. 
This transformed phenotype was reversed by concomitant overexpression of the IRF-1 
gene. Thus, restrained cell growth depends on a balance between these two mutually 
antagonistic transcription factors. 

Interferons (IFNs) are a family of cytokines 
that exhibit antiproliferative activity on 
many normal and transformed cells and can 
block growth factor-stimulated cell cycle 
transitions (I) .  IFNs are induced by growth 
factors, which suggests that they participate 
in a feedback mechanism that regulates cell 
growth (I) .  In previous studies, we identi- 
fied two DNA binding factors that regulate 
IFN gene expression, IRF-1 and IRF-2 (2- 
5). These factors are structurally related, 
particularly in the amino-terminal region, 
which confers DNA binding specificity, 
and they independently bind to a promoter 
element shared by the IFN-a and IFN-P 
genes as well as many IFN-inducible genes. 
This promoter element has the consensus 
sequence motif G(A)AAA(G or C) (T or 
C)GAAA(G or C) (T or C) (5, 6). IRF-1 
and IRF-2 are distantly related in structure 
to two other DNA binding factors involved 
in IFN signaling, ICSBP and ISGF3y (3). 

Gene transfection studies have demon- 

strated that IRF-1 functions as an activator 
for IFN and IFN-inducible genes, whereas 
IRF-2 represses the action of IRF-1 (5, 
7-1 0). Expression of the IRF- 1 gene itself is 
IFN-inducible. The IRF-2 gene is also in- 
duced in IFN-stimulated cells, but this in- 
duction occurs only after induction of IRF-1 
(5). In IFN-treated or virus-infected cells, 
the IRF-2 protein is more stable than the 
IRF-1 protein (half-lives of 8 hours and 30 
min, respectively) (I I). Thus, in growing 
cells IRF-2 is more abundant than IRF-1, 
but after stimulation by IFN or viruses the 
amount of IRF-1 increases relative to IRF-2 
(I I). These observations suggest that a 
transient decrease in the IRF-2:IRF-1 ratio 
may be a critical event in the regulation of 
cell growth by IFNs. Consistent with this 
notion are the findings that IRF-1 manifests 
antiproliferative properties both in vivo and 
in vitro (4, 12). 

We first quantified expression of IRF-1 
and IRF-2 mRNAs in mouse NIH 3T3 cells 
throughout the cell cycle. Cells were 

Institute for Molecular and Cellular Biology, Osaka 
University, Yamadaoka 1.3, Suita-shi, Osaka 565, Ja. growth-arrested serum starvation for 24 
pan. hours (G, arrest) and were then induced to 

*The f~rst two authors, to whom correspondence transit the cell cycle by serum restoration 
should be addressed, contributed equally to this work (1 3). A [3H]thymidine uptake assay and 
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flow cytometric analysis revealed that DNA 
synthesis began 8 to 12 hours after serum 
stimulation (14). S1 analysis (1 5) indicated 
that IRF-1 mRNA expression reached a 
peak (about tive transcripts per cell) in 
growth-arrested cells, declined sharply after 
serum stimulation, and then increased grad- 
ually prior to the onset of DNA synthesis 
(Fig. 1A). In cells sampled 2 hours after 
stimulation, IRF-1 mRNA expression was 
five times lower than in growth-arrested 
cells. In contrast, IRF-2 mRNA expression 
remained essentially constant throughout 
the cell cycle. Protein immunoblotting 
analysis with antibodies to IRF-1 indicated 
that expression of the protein also oscillated 
throughout the cell cycle (16); IRF-1 ex- 
pression peaked in the growth-arrested 
stage, declined, by a factor of 6, 3 hours 

Hours afier stimulation 

B 
Hours after stimulation 

lmmunoblot 

Ponceau S staining 

Fig. 1. Oscillation of IRF-1 and IRF-2 expres- 
sion throughout the cell cycle. (A) Expression of 
IRF-1 (open circles) and IRF-2 (closed circles) 
mRNAs during serum-induced growth. NIH 3T3 
cells were arrested by serum starvation and 
subsequently stimulated by serum addition. At 
the indicated times, total RNA was isolated and 
subjected to S1 analysis (15). Experiments 
were repeated three times and the results were 
reproducible. (B) Expression of IRF-1 protein 
during serum-induced growth. NIH 3T3 cells 
were growth-arrested and stimulated as in (A). 
lmmunoblotting analysis was performed with 
whole cell extracts from 5 x 1 O5 cells prepared 
at the indicated times. The filter was also 
stained with Ponceau S to show total protein 
(16). Molecular size in kilodaltons is indicated 
on the left. Experiments were repeated twice 
and the results were reproducible. 

after serum restoration, and subsequently 
increased again (Fig. 1 B) . Similar observa- 
tions were made in an interleukin-3-depen- 
dent hemato~oietic cell line. BAF-B03 
(1 7), suggesting that this oscillation is not IRF-2 - 
unique to NIH 3T3 cells. 

To examine the effect of perturbing the 
IRF-2:IRF-1 ratio on cell growth, we gen- 
erated NIH 3T3 cell clones that overex- 
pressed IRF-2. The plasmid pAct-2 (9), 

G Z E  G G K  

- 28s 

which contains mous; IRF-2 CDNA cloned 28s- 
downstream of the chicken p-actin gene 
promoter, was cotransfected with a neomy- 
cin (neo)-resistance gene into NIH 3T3 
cells (1 8). Control transfections were done 
with pAct-C, a plasmid devoid of the 
cDNA insert. After selection for neo resis- 
tance, we obtained several clones that ex- 
pressed high levels of IRF-2 mRNA and 
chose three (R21, R25, and R27) for fur- 
ther analysis. The expression of IRF-2 
mRNA in these cells was more than ten 
times higher than the basal expression ob- 
served in the pAct-C-transfected cells (CZ 
and C3) (Fig. 2) (18). The IRF-2 binding 
activities, monitored by gel-shift analysis 
(9), was four to ten times higher than in the 
control cells (Table 1) (1 9). 

Although cells overexpressing IRF-2 
did not exhibit obvious morphological 
changes, they displayed marked differ- 
ences in growth properties. The IRF-2- 
overexpressing cells grew at a rate similar 
to that of control cells but reached a cell 
density that was about three times higher 
(Table 1). Furthermore, all of the IRF-2- 
overexpressing cells displayed anchorage- 
independent growth; they formed colonies 
in methylcellulose gel with an efficiency 
ranging from 6 to 19%, whereas no colony 
formation was seen with the control cells 
(Table 1). These properties often correlate 

Fig. 2. Overexpression of IRF-2 mRNA in NIH 
3T3 cells. Five micrograms of RNA were sub- 
jected to RNA blot analysis. The filter was 
stained by methylene blue to show total RNA 
and then probed with a mouse IRF-2cDNA (9). 
The positions of 28s and 185 ribosomal RNAs 
are indicated. 

with malignant transformation (20). 
When cells (2 x lo6) from the R21, 

R25, and R27 clones were injected subcu- 
taneously into nude mice, tumors devel- 
oped within 2 to 3 weeks (Table 1) and 
continued to grow unrestrictedly, although 
they showed no signs of metastasis (14). No 
tumors developed in nude mice injected 
with cells from the control C2 and C3 
clones during the same time period. Cells 
from an additional nine clones overexpress- 
ing IRF-2 mRNA were also found to be 
tumorigenic in this assay (14). The cells 
recovered from the tumors exhibited essen- 
tially the same levels of IRF-2 mRNA 
expression and growth properties as the 
original clones (1 4). These results indicate 
that the acquisition of altered growth prop- 
erties and tumorigenicity was due to the 
elevated expression of IRF-2. 

As another test of the oncogenic poten- 

Table 1. Growth properties of control NIH 3T3 cells and NIH 3T3 cells overexpressing mouse IRF-2. 

Growth in monolayerst Growth TumorigenicityS 
IRF-2:IRF-1 efficiency 

Cells activity Doubling Saturation methyl- Tumors Latency (%) in 

ratio* time density cellulose 
(hours) (1 O6 cells) gel$ injection per (weeks) 

'The ratio of DNA binding activity was estimated by densitometric scans of autoradiograms from gel-shift 
analyses. tCells were seeded at 2 x lo4  cells per 35-mm plate and grown in DMEM supplemented with 10% 
FCS and G418 (700 rglml). Medium was changed every 3 days and cells were counted with a Coulter counter 
every 2 days. Doubling time was determined by calculating the growth rate of exponentially growing cells. 
Saturation density is the number of cells after the culture had reached confluency. The size of the cells in the 
selected clones was essentially the same as that of the parental cells. Numbers are the means of duplicate assays 
-t SD. *Cells (lo5) were mixed with 1.3% methylcellulose gel dissolved in culture medlum and layered onto 
an agarose bed composed of 0.53% agarose and culture medium (31). Colonies were scored 3 weeks after 
platlng. Each experiment was done in duplicate. A total of about 100 cells were counted for each assay (P c 0.001 
by x2 test). §Four- to six-week-old nude mice (BALBIc nulnu; Clea Japan. Inc.) were injected subcutaneously 
on both flanks with 2 x lo6 cells resuspended in serum-free DMEM (200 r l )  (32). Cells were scored as 
turnorigenlc if a vlsible nodule appeared at the site of injection and subsequently increased in size. Mice that did 
not develop tumors were observed for 6 weeks. 
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Table 2. Efficiency of colony formation (percent) by NIH 3T3 and R27 cells after retroviral 
introduction of IRF-2 or IRF-1. 

Experiment number 
Cells Virus 

1 (MOI = 10) 2 (MOI = 10) 3 (MOI = 0.3) 4 (MOI = 1) 5 (MOI = 10) 

NIH 3T3* pGD <I ,  < l  < I ,  <l  
NIH 3T3* pGDIRF2 17, 15 12, 16 
R27t pGD 8.3, 7.8 8.4, 8.2 8.3, 8.6 
R27t pGDlRFl 6.1, 5.7 3.7, 4.5 3.9, 2.5 

*NIH 3T3 cells were infected with recombinant retrovirus pGDIRF2 or control virus pGD (MOI = 10). After 48 hours, 
cells were harvested for the colony-forming assay in methylcellulose gel. Each experiment was done in duplicate. 
Stable integration of the proviral genome was virtually loo%, as determined by testing the neoresistance of an 
aliquot of the cells. A total of 1000 cells were counted for each assay (P < 0.001 by x2 test). tR27 cells were 
infected at three different MOI with recombinant retrovirus pGDlRFl or control virus pGD. Each experiment was 
done in duplicate. The colony-forming efficiency of the parental R27 cells was similar to that of the pGD-infected 
cells. A total of 5000 cells were counted for each assay (P < 0.001 by x2 test). 

tial of IRF-2, we constructed a recombinant 
retrovirus vector, pGDIRF2, that directed 
expression of the mouse IRF-2 cDNA (2 I) .  
NIH 3T3 cells were infected with the 
pGDIRF2 retrovirus at a high multiplicity 
of infection (MOI) and the cells were di- 
rectly tested in a colony-formation assay on 
methylcellulose gel. The cells infected by 
the IRF-2-expressing virus, but not by the 
control pGD virus, formed colonies at high 
efficiency (Table 2). Assuming that all the 
cells were infected by the virus, the colony- 
forming efficiency was similar to that of the 
R21, R25, and R27 clones (see Table 1). 
These results thus confirmed the oncogenic 
potential of IRF-2. 

We next addressed whether the trans- 
formed phenotype displayed by NIH 3T3 
cells overexpressing IRF-2 could be reverted 
to the original phenotype by increasing the 
expression of IRF-I. To test this possibility, 
we introduced into the IRF-2-transfected 
cells a 19-kb DNA segment containing all 
ten exons, as well as the promoter region 
[455 bp upstream of the major cap site, 
(22)], of the human IRF-1 gene. The R21, 
R25, and R27 cells were cotransfected with 
a plasmid (pUCHIRF1B) carrying the 
IRF-I gene and a hygromycin (hgr) resis- 

tance gene (23). Clones showing hgr resis- 
tance were selected and subsequently 
screened for stable integration of IRF-I. 

The transfectants R21-1, R21-2, R25-2, 
R27-3, and R27-4 were derived from paren- 
tal clones R21, R25, and R27. S1 analysis 
revealed steady-state expression of human 
IRF-I mRNA in most of these transfec- 
tants, albeit at different levels in each 
(Table 3). The transfected IRF- 1 gene was 
also virus-inducible in all clones (Table 3), 
and, in a separate set of experiments, it was 
shown that the promoter sequence within 
the cloned gene was also IFN-inducible 
(22). Expression of IRF-2 mRNA and pro- 
tein, assessed by Northern (RNA) blotting 
and immunoprecipitation analyses, respec- 
tively, was similar to that in the parental 
cells (14). Interestingly, however, the tum- 
origenicity of the transfected cells was sup- 
pressed (Table 3). Moreover, the extent of 
suppression correlated with the extent of 
ectopic IRF-I mRNA expression. Clones 
R25-2 and R27-3, both of which expressed 
high amounts of human IRF-1 mRNA, 
showed strong suppression; clones R27-4 
and R2 1-1, which expressed lower amounts 
of IRF-I mRNA, showed somewhat weaker 
suppression; and clone R21-2, in which 

Table 3. Growth properties of NIH 3T3 cells overexpressing mouse IRF-2 and human IRF-1. 

Human IRF-1 

m R N A  expression Growth in monolayers (transcripts Growth Tumorigenicity efficiency 

Cells per cell)* (%) in 
methyl- 

Steady NDV D o u b l i n g  Saturation cellulose Tumors Latency 
time state induced (hours) density gel 

(1 O6 cells) per (weeks) injection 

*Each clone was mock-induced or induced by Newcastle disease virus (NDV) as described previously (2). After 
9 hours, total RNA was isolated and subjected to S1 analysis (9). The IRF-I probe DNA encompasses nucleotides 
-46 to +97 (relative to the major cap site at + I )  of the human IRF-I gene. All other assays were performed as 
described in Table 1. For comparison, the growth properties of the parental clones R21, R25, and R27 are 
presented in Table 1. ND, not detectable. 

steady-state expression of human IRF-I 
mRNA was not detectable, showed no sup- 
pression (Table 3). 

Concomitant with the loss or reduction 
of the transformed phenotype, the R21-1, 
R25-2, R27-3, and R27-4 cell clones exhib- 
ited a loss or reduction of other transforma- 
tion-associated traits, such as increased cell 
saturation density and anchorage-indepen- 
dent growth (Table 3). Thus, the IRF-2- 
induced transformation of NIH 3T3 cells 
appears to be reversible by the introduction 
and increased expression of IRF- 1 (24). 
Consistent with this notion, there was a 
marked reduction in the colony-forming 
potential of R27 cells infected with a retro- 
virus (pGDIRF1) that directs the expres- 
sion of mouse IRF- I (Table 2) (2 1 ) . 

The work presented here shows that tran- 
scription factors participating in the regula- 
tion of IFN-mediated effects also participate 
in cell growth regulation. We infer that the 
ability of IFNs to inhibit cell proliferation 
may be due, at least in part, to a transient 
induction of IRF- 1 (5) ; however, this possi- 
bility has not yet been directly tested. Pre- 
sumably, overexpression of IRF-2 induces 
cell transformation by suppressing the cell 
growth-restraining function of IRF-1. Al- 
though the mechanism by which IRF-l and 
IRF-2 affect cell growth is unknown, we 
think it is likely that IRF-1 functions in a 
manner analogous to the tumor suppressor 
p53 (25), that is, it activates a set of genes 
whose products are required for the negative 
regulation of cell growth. IRF-2, on the 
other hand, may repress those same genes. 
This ying-yang interaction may be similar to 
that of another tumor suppressor, WT1, and 
its antagonist EGR-1, which function as a 
repressor and an activator, respectively (26). 
Many, if not all, of the IFN-inducible genes 
contain promoter elements that bind IRFs 
(I, 9, 1 O), and some of their gene products, 
such as the 2'-5' oligoadenylate synthetase 
and double-stranded RNA-dependent pro- 
tein kinase (dsRNA-PK), appear to be in- 
volved in the inhibition of cell proliferation 
(I, 27). Interestingly, the activity of the 
2'-5' oligoadenylate synthetase seems to os- 
cillate throughout the cell cycle (28), and its 
expression is regulated by IRF-1 (8). The 
dsRNA-PK itself has recently been shown to 
have anti-oncogenic potential (29). 

Finally, the anti-oncogenic function of 
the IRF-I gene is supported by its chromo- 
somal location. The human IRF-I gene 
maps to chromosome 5q3 1.1, a region fre- 
quently deleted in patients with leukemia 
or myelodysplastic syndromes (30). 
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"Infectious" Transplantation Tolerance 

Shixin Qin, Stephen P. Cobbold, Heather Pope, James Elliott, 
Dimitris Kioussis, Joanna Davies, Herman Waldmann* 

The maintenance of transplantation tolerance induced in adult mice after short-term treat­
ment with nonlytic monoclonal antibodies to CD4 and CD8 was investigated. CD4+ T cells 
from tolerant mice disabled naive lymphocytes so that they too could not reject the graft. 
The naive lymphocytes that had been so disabled also became tolerant and, in turn, 
developed the capacity to specifically disable other naive lymphocytes. This process of 
"infectious" tolerance explains why no further immunosuppression was needed to maintain 
long-term transplantation tolerance. 

A major goal of transplantation is that 
the recipient should accept and become 
tolerant to a foreign organ graft as though it 
were a "self tissue. The classic experiments 
of Medawar and colleagues (I) established 
this principle in the neonatal mouse. In the 
adult mouse lifelong tolerance can also be 
achieved with short courses of monoclonal 
antibodies (MAbs) to CD4 plus CD8 (2-4) 
or CDl la plus intercellular adhesion mole-
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cule-1 (ICAM-1) (5), even though new T 
cells continue to be made by the thymus. 
We wished to determine the mechanisms 
that might operate to keep the proliferation 
of such new T cells in check. A clue was 
provided by the finding that we could not 
break tolerance by transfusions of normal 
naive lymphocytes (3). Consequently, we 
reasoned that if we could establish the 
mechanism by which these naive lympho­
cytes become disabled, we might under­
stand the processes controlling any new T 
cells produced by the body. 

In order to follow events in a stable 
peripheral T cell pool, we used mice that 
had been thymectomized (ATx) at 4 to 6 
weeks of age. Such ATx CBA/Ca mice 


