- 10. T. Neubert, R. Johnson, J. B. Hurley, K. A. Walsh, ibid., p 18274.
- K. Kokame, Y. Fukada, T. Yoshizawa, T. Takao, Y. Shimonishi, Nature 359, 749 (1992).
- A. M. Dizhoor et al., Science 251, 915 (1991). 12
- 13 H G. Lambrecht and K W Koch, EMBO J 10, 793 (1991)
- 14. J. B Hurley, J. Bioenerg. Biomembr 24, 219 (1992).
- L. Stryer, J. Biol. Chem. 266, 10711 (1991)
- S. Kawamura and M. Murakami, Nature 349, 420 16 (1991)
- J. E. Buss, S M Mumby, P. J. Casey, A. G Gilman, B. M. Sefton, *Proc. Natl. Acad. Sci U.S A* 17 84, 7493 (1987)
- A. M. Dizhoor et al., unpublished data. 18
- S. Zozulya and L. Stryer, Proc. Natl. Acad. Sci. 19.
- U.S.A. 89, 11569 (1992) S. Kawamura et al., Biochem Biophys. Res. Com-20 mun. 186, 411 (1992).
- Liposomes were prepared from a mixture of phosphatidylserine and phosphatidylcholine (dipalmitoyl, Sigma) (1:1) by extrusion under argon pressure through a membrane with a 100-nm pore size. The membrane-binding assays contained 200 to 500 µg of phospholipid, 100 mM KCl, 40 3-(N-morpholino)propanesulfonic acid (MOPS; pH 7.5), 5 mM MgCl₂, 1 mM β -mercaptoethanol, 2 mM Ca²⁺-EGTA buffer (*28*), and 10 µg of retinal recoverin.
- 22 S. Ray et al., Proc. Natl. Acad. Sci. U.S.A. 89, 5705 (1992).
- 23 A. S. Polans, J. Buczylko, J. Crabb, K. Palczewski, J. Cell Biol. 112, 981 (1991); phenyl-Sepharose column from Pharmacia.
- 24. After cleavage from recoverin, the NH2-terminal myristovl peptide partitions into membranes. We treated [³H]myristoyl recoverin (54 µg per assay) with trypsin for 15 min (29) in the presence of mM CaCl₂ to cleave off the NH₂-terminal [3H]myristoyl peptide. The resulting mixture was incubated with stripped ROS membranes (100 µg of rhodopsin) and centrifuged Radioactivity in the supernatant and membranes was analyzed by scintillation counting. More than 90% of the radioactivity was found to be associated with the membranes independently of the Ca2+ concentration.
- 25
- M. Ikura et al., Science 256, 632 (1992). M. Thelen, A. Rosen, A. C. Nairn, A. Aderem, 26. Nature 351, 320 (1991).
- 27. P. A. McNaughton, L. Cervetto, B. J. Nunn, ibid. 322, 261 (1986); G. M. Ratto, R. Payne, W. G. Owen, R. Y. Tsien, J. Neurosci. 8, 3240 (1988), J. I. Korenbrot and D. L. Miller, Vision Res. 29, 939 (1989); U. B. Kaupp and K.-W. Koch, Annu. Rev. Phys. 54, 15 (1992).
- 28 R. Tsien and T. Pozzan, Methods Enzymol. 172, 230 (1989).
- Purified recoverin (4 µg) was digested with N-to-29 syl-L-phenylalanine chloromethyl ketone (TPCK)treated trypsin (0.04 μ g) (Sigma) for 60 min at 37°C. Reactions were stopped by the addition of 0.1 mM phenylmethysulfonyl fluoride (PMSF) and analyzed by SDS-PAGE.
- ROS membranes from fresh or frozen (Hormel) 30. bovine retinas were isolated on a sucrose step gradient as described (12). To extract Ca2+dependent membrane-binding proteins, we first homogenized bleached ROS membranes containing rhodopsin (2 mg/ml) three times on ice in 30 mM tris-HCI (pH 8.0), 100 mM NaCl, 5 mM MgCl₂, 1 mM β-mercaptoethanol, 0.1 mM PMSF, and 0.5 mM CaCl2. The membranes were then extracted three more times with 5 mM tris-HCI (pH 8.0), 5 mM MgCl₂, 100 μ M GTP, and 0.5 mM CaCl₂. The membranes were washed once more with the same buffer without GTP and then with the same buffer containing 1 mM EGTA instead of CaCl₂. The extracts were concentrated by pressure filtration and analyzed by SDS-PAGE.
- 31. Recoverin was isolated from bovine retinas either by affinity purification with a rabbit antibody to bovine recoverin (9, 12) or by phenyl-Sepharose chromatography (23) Recoverin was produced in E. coli, either with or without coexpression of

yeast NMT, with plasmids pET11a-mr21 and BB131 in BL21(DE3) strains, as described (22) ROS membranes were stripped of most of their 32

- endogenous recoverin by three extractions with 5 mM tris (pH 8.0) and rhodopsin (0 1 mg/ml)
- 33 Purified recoverin and membranes were mixed in a 50-µl total volume containing 30 mM tris (pH 8.0), 100 mM KCl, 5 mM MgCl₂, 2 mM Ca²⁺-EGTA buffer (28), rhodopsin (200 to 300 µg), and recoverin (20 µg) This mixture was incubated for 5 min at 37°C and centrifuged at 200,000g for 5 min (TLA-100 centrifuge, Beckman) The supernatants were gently aspirated, and the sedimented material was rinsed and resuspended in 45 µl of the same buffer containing 2 mM EGTA This sample was centrifuged, and the supernatants were saved for analysis Amounts of recoverin bound to the membranes were estimated by

densitometric analyses of Coomassie bluestained gels (Fig. 2)

- To produce [³H]myristoyl recoverin, we cultured *E coli* strain BL21(DE3) containing pBB131 and pET11a-mr21 in the presence of 200 μ Ci (50 34 Ci/mmol) of [3H]myristic acid (Amersham) The cells were harvested and lysed, and recoverin was purified as described (22).
- 35 We thank M. Chabre for his support in the initial phase of this project, L Ericsson and R. Johnson for electrospray mass spectrometry analyses, and S. Zozulya and L. Stryer for discussions and for sharing their findings and ideas with us before publication Supported by NIH grant EYO6641 and by a grant from the Human Frontiers in Science organization

8 September 1992, accepted 17 November 1992

Selectivity in Signal Transduction Determined by v Subunits of Heterotrimeric G Proteins

Christiane Kleuss, Hans Scherübl, Jürgen Hescheler, Günter Schultz, Burghardt Wittig*

Various heterotrimeric quanine nucleotide-binding proteins have been identified on the basis of the individual subtypes of their α subunits. The $\beta\gamma$ complexes, composed of β and γ subunits, remain tightly associated under physiological conditions and have been assumed to constitute a common pool shared among various guanosine triphosphate (GTP)binding (G) protein heterotrimers. Particular α and β subunit subtypes participate in the signal transduction processes between somatostatin or muscarinic receptors and the voltage-sensitive L-type calcium channel in rat pituitary GH₃ cells. Among y subunits the γ_{o} subtype was found to be required for coupling of the somatostatin receptor to voltagesensitive calcium channels, whereas the γ_4 subtype was found to be required for coupling of the muscarinic receptor to those channels.

 ${
m G}$ proteins undergo a cycle in which they switch between active and inactive states by guanine nucleotide exchange and GTP hydrolysis (1). The inactive G protein $\alpha_{GDP}\beta\gamma$ is stimulated by a ligand-activated receptor to exchange guanosine diphos-phate (GDP) for GTP. In the active form α_{GTP} dissociates from the $\beta\gamma$ complex. The α_{GTP} and the $\beta\gamma$ complex are then able to interact specifically with cellular effector molecules to evoke the cellular response. Until recently it had been thought that the function of a particular G protein was solely determined by the α subunit, and no specific functions had been assigned to the β and γ subunits. The contribution of β or γ subunits to receptor-effector coupling is difficult to investigate because these subunits are functionally inactive when separated from each other. Nevertheless, the $\beta\gamma$ complex may directly interact with effector molecules (2-4). Inhibition of adenyl cyclase by a stimulatory (G_s) -type G protein

SCIENCE • VOL. 259 • 5 FEBRUARY 1993

depends on whether the G protein is reconstituted with $\beta\gamma$ complexes from retina or brain tissue (5).

Four different β polypeptide sequences are known (6) and all have similar sequences. Three of five identified γ cDNAs have been cloned (7-9). The sequence of a fourth γ cDNA, γ_4 (10), as well as that of a fifth γ cDNA (11) has been established, and additional γ subtypes may exist (12). Because of the apparent sequence heterogeneity in the γ subunits, functional differences of the $\beta\gamma$ complexes have been attributed to the γ subunits (12, 13).

We have examined the role of individual subtypes of γ subunits in selective receptor-effector coupling. We studied the effects of γ subtype on the inhibition of voltage-sensitive Ca2+ channels through activation of muscarinic (M₄) or somatostatin receptors. These modulatory effects of receptor agonists are mediated by pertussis toxin-sensitive Go proteins (14), and the subtypes of α_0 and β subunits have specific effects in this system (15, 16). We detected mRNAs for γ_2 , γ_3 , and γ_4 subtypes in the rat pituitary tumor cell line GH₃ (Fig. 1). The γ_1 subtype has only been found in retina.

C. Kleuss and B. Wittig, Institut fur Molekularbiologie und Biochemie, Freie Universitat Berlin, Arnimallee 22, D-1000 Berlin 33, Germany.

H. Scherubl, J. Hescheler, G. Schultz, Institut fur Pharmakologie, Freie Universitat Berlin, Thielallee 69, D-1000 Berlin 33, Germany

^{*}To whom correspondence should be addressed.

We have previously established (15)

REPORTS

conditions for "knocking out" expression of individual subtypes of G protein subunits by nuclear microinjection of short selective antisense oligonucleotides. In the present study we injected antisense oligonucleotides that selectively hybridize with the respective mRNA for one of the γ subtypes. The effects were measured electrophysiologically with the patch-clamp method.

Carbachol (a muscarinic receptor agonist) and somatostatin were ineffective in cells that had been microinjected with an antisense oligonucleotide (ycom) directed against all known G protein γ subunit sequences (Figs. 2 and 3). Cells injected with a γ_1 -selective oligonucleotide (antiy1.1) responded to carbachol or somatostatin in the same manner as cells not injected; a similar result was seen in cells injected with a γ_2 -selective antisense oligonucleotide (anti-y2.1). These results demonstrate that microinjection did not alter hormone responsiveness of GH₃ cells. Furthermore, they indicate that the γ_2 subunit subtype does not take part in signal transduction between somatostatin or M4 receptors and the voltage-sensitive Ca2+ channel. The ineffectiveness of the injected γ_1 -selective antisense oligonucleotide is in agreement with the absence of any detectable target mRNA in GH₃ cells.

In cells that had been injected with γ_3 -selective antisense oligonucleotides (anti- γ 3.1 and anti- γ 3.2; Fig. 3), Ca²⁺ influx was no longer inhibited by somatostatin, whereas carbachol was effective. In cells that had been injected with $\gamma_4\text{-selective}$ antisense oligonucleotides (anti-y4.1 and anti- γ 4.2), carbachol did not inhibit Ca²⁺ influx, whereas somatostatin was effective (Fig. 3). In conjunction with our data on the identity of the respective subtypes of α_0 and β subunits that participate in this pathway (15, 16), these results establish the third line of evidence demonstrating that different heterotrimeric G proteins transduce the signals from somatostatin and muscarinic receptors to voltage-sensitive Ca²⁺ channels. In the case of the somatostatin-induced signal, the G_o protein contains a γ_3 subunit; in the carbacholinduced reaction, a γ_4 subunit is required.

These findings establish the contribution of each G protein subunit (α , β , and γ) to

в Α Anti-γ1.1 С D Anti-y2.1 Anti-y3.1 Anti-y4.1 249-Y 200-Y3 151-140-Y2 Y4 118-100 -6 7 8 9 10 1 2 678910 1 2 3 4 5 6 7 8 9 10 Anti-y1.2 Sense-y1.3 -Anti-y2.2 Sense-v2.3 Anti-y3.2 Sense-y3.3 Anti-y4.2 Sense-y4.3 ++++

Fig. 1. Existence of mRNA encoding G protein γ subunits in GH₃ cells analyzed by polymerase chain reaction (PCR) and subsequent hybridization. Total RNA (5 µg) was randomly primed and reverse transcribed according to manufacturer's instructions (Moloney-Murine Leukemia Virus reverse transcriptase, BRL). A portion (1:100 of the reaction volume) of the cDNA was used as a template for an amplification reaction with two γ subtype–specific oligonucleotides. The PCR was performed in a reaction volume of 50 µl with 1 unit of Taq polymerase (Promega). After 35 cycles of 93°C for 60 s, 40°C for 10 s, and 72°C for 30 s in a DNA Thermal Cycler (Perkin-Elmer), the reaction products were precipitated, electrophoretically separated on a polyacrylamide gel, and transferred to a nylon membrane (Gene Screen, NEN DuPont). After cross-linking of the nucleic acids to the membrane with ultraviolet light (120 mJ, 254 nm), they were hybridized with 5' ³²P-labeled oligonucleotides (*22*). Autoradiograms are shown of filters that had been hybridized with oligonucleotides anti- γ 1.1 (**A**), anti- γ 2.1, (**B**) anti- γ 3.1 (**C**), and anti- γ 4.1 (**D**). The cDNAs from GH₃ cells (lanes 1 to 6), PC-12 cells (rat adrenal pheocromocytoma, lane 7), WERI-Rb-1 or Y79 cells (human retinoblastoma cell line, lanes 8 and 9, respectively), or rat retina (Clontech Laboratories, Inc.; Iane 10) were amplified by PCR with primers as indicated (*23*).

selective receptor-effector coupling. In both of the signal transduction processes examined, a selective γ subunit subtype is apparently complexed with a specific β subunit subtype and a selective α_o subunit, giving rise to the specificity of the G proteins. Two G_o forms, distinct in all three subunits, discriminate between two distinct receptors but functionally couple to the same effector. The muscarinic receptor is coupled to a G protein consisting of $\alpha_{o1}/\beta_3/\gamma_4$, and the somatostatin receptor is coupled to a G protein consisting of $\alpha_{o2}/\beta_1/\gamma_3$. Both G proteins actto inhibit voltage-sensitive Ca²⁺ channels.

The ineffectiveness of somatostatin and carbachol in cells injected with antisense oligonucleotides to γ_3 and γ_4 , respectively, probably results in the reduced synthesis of G protein subunits (15). Evidence for such a reduction [as occurs with α and β subunits (15)] has not been demonstrated for γ_3 and γ_4 subtypes (specific antibodies for these subtypes are not yet available). We propose that after nuclear microinjection of γ -selective antisense oligonucleotides the oligonu-

Fig. 2. Time-current recordings of the voltagesensitive Ca^{2+} channels in GH_3 cells in the presence of carbachol (left) or somatostatin (right). Current traces for single cells are shown. Each cell was superfused with either of the hormones at about 37 hours after injection with antisense oligonucleotides anti-v1.1, antiγ2.1, anti-γ3.1, or anti-γ4.1 (23). Under voltage-clamp conditions, whole-cell Ca2+ currents were recorded after depolarizing pulses from -80 to 0 mV. Conditions for microiniection and patch clamping are described elsewhere (15). Abbreviations: con, control currents obtained before application of receptor agonist; SST, currents recorded during superfusion of cells with 1 µM somatostatin; CA, currents recorded during superfusion of cells with 10 µM carbachol; and wo, currents recorded after removal of receptor agonists.

Fig. 3. Ca2+ current inhibition by receptor agonists in GH₂ cells iniected with antisense oligonucleotides to mRNAs encoding y subunit polypeptides. Whole-cell Ca²⁺ currents were measured at about 40 hours after injection of the oligonucleotide. Because of the high degeneracy of its base sequence, oligonucleotide ycom was microinjected at a concentration ten times greater than that for y subtype-selective oligonucleotides (50 µM instead of 5 µM). Inhibition of Ca2+ currents by somatostatin (1 µM; open bars) or carbachol (10 μ M; solid bars) is shown as a percentage of the current observed in the absence of the respective agonist (mean ± SEM). Numbers of cells tested are indicated as follows: A, cells successively treated with either of the receptor agonists (random order) with intermediate washing; B,

cells treated with carbachol only; C, cells treated with somatostatin only; D, cells inhibited by carbachol by more than 10% of control currents; and E, cells inhibited by somatostatin by more than 10% of control currents. In about 10% of patched cells no Ca²⁺ currents could be activated by the applied voltage-clamp conditions.

cleotides hybridize with their target mRNAs and that the respective mRNA encoding the γ subunit is destroyed by cellular ribonuclease H or is not transferred to the cytoplasm (17). As a consequence, no active G protein heterotrimer can be assembled because the required γ subunit subtype is missing. This in turn abolishes the necessary receptor-G protein interaction and interrupts the cascade.

In transfection studies with the Sf9 cellbaculovirus system, β_1 and γ_3 subunits have been shown to form a functional complex that interacts with immobilized $G_{\alpha 0}$ subunits (18). Corresponding data on the γ_4 containing complexes could not be obtained because the full-length cDNA required for such functional studies is not yet available. Functionally active complexes cannot be formed from all naturally occurring β and γ subunits. However, those containing the β_3/γ_4 and β_1/γ_3 combination found here have been neither excluded nor investigated (18-20). We cannot exclude more indirect mechanisms that might explain the effects of the γ -selective antisense oligonucleotides. The $\beta\gamma$ complex may be the signaling G protein component

interacting with the voltage-sensitive Ca²⁺ channel, and interruption of the signal transduction may occur at this site. Furthermore, suppression of γ_3 and γ_4 polypeptides could impair the expression of β_1 and β_3 polypeptides or α_{o2} and α_{o1} polypeptides, respectively. Moreover, expression of β and γ subunits may be linked (21).

REFERENCES AND NOTES

- 1 L. Birnbaumer, J. Abramowitz, A. Brown, Biochim.
- Biophys. Acta 1031, 163 (1990). C. Jelsema and J. Axelrod, Proc. Natl Acad. Sci. 2 U.S.A. 84, 3623 (1987).
- 3 D. Kim et al., Nature 337, 557 (1989)
- Y. Kurachi et al , ibid , p. 555 4
- R. A. Cerione *et al.*, *Biochemistry* **26**, 1485 (1987) M. I. Simon, M. P. Strathmann, N. Gautam, *Sci*-5 6 ence 252, 802 (1991).
- J. B Hurley, H K. W. Fong, D. B. Teplow, W. J. Dreyer, M I. Simon, *Proc Natl Acad Sci. USA* 81, 6948 (1984).
- N. Gautam, M. Baetscher, R. Aebersold, M. I. Simon, *Science* 244, 971 (1989) N. Gautam, J. Northup, H. Tamir, M. I. Simon, 8
- Proc. Natl. Acad. Sci. U.S.A. 87, 7973 (1990).
- 10. M. I. Simon, personal communication. K. J. Fisher and N. N. Aronson, Jr , Mol. Cell. Biol
- H. Tamir, A. B. Fawzi, A. Tamir, T. Evans, J. K. Northup, *Biochemistry* **30**, 3929 (1991).
 J. D. Hildebrandt *et al.*, *J. Biol. Chem* **260**, 14867
- (1985)

- 14. W Rosenthal et al , EMBO J 7, 1627 (1988)
- 15. C Kleuss et al , Nature 353, 43 (1991)
- 16. C. Kleuss, H. Scherubl, J. Hescheler, G. Schultz, B. Wittig, *ibid.* 358, 424 (1992)
- 17 C Hélène and J.-J Toulmé, Biochim. Biophys. Acta 1049, 99 (1990).
- J. A Iñiguez-Lluhi, M I. Simon, J. D. Robishaw, A. G. Gilman, *J. Biol Chem* **267**, 23409 (1992). 18
- C. J Schmidt, T C Thomas, M A Levine, E. J 19 Neer, *ibid* , p. 13807
- 20 A N. Pronin and N Gautam, Proc Natl, Acad Sci U.S.A 89, 6220 (1992).
- 21 W. F. Simonds, J E Butrynski, N Gautam, C G Unson, A. M. Spiegel, J. Biol. Chem. 266, 5363 (1991)
- G Church and W. Gilbert, Proc Natl Acad Sci. 22 *U.S.A* **81**, 1991 (1984) Sequences of the antisense oligonucleotides 23
 - were as follows Anti-y1.1 and anti-y1.2, TC-CAGCGTCACTTCTTCTTGAGC and AATCACA-CAGCCTCCTTTGAG, respectively, corresponding to nucleotides 64 to 87 and 200 to 220, respectively, of the identical strand of the γ_1 gene sequence (7), anti- γ 2 1 and anti- γ 2.2, AGTT-TCCTGGCTTGTGCTATGC and TTCCTTGGCAT-GCGCTTCAC, respectively, corresponding to nucleotides 23 to 44 and 122 to 141, respectively, of the identical strand of the γ_2 gene sequence (8); anti- $\gamma_3.1$ and anti- $\gamma_3.2$, TGCGGGCTTGCCCAA-TACTCAT and GTTCTCCGAAGTGGGCACAGG-GGT, respectively, corresponding to nucleotides 31 to 52 and 166 to 189, respectively, of the identical strand of the γ_3 gene sequence (9), and anti- γ 4 1 and anti- γ 4 2, CTGAGGCAGCCTGG-GAGACCTTC and TTTTCGGAGGCGGGCAC-TGGGATG, respectively, corresponding to nucleotides 37 to 59 and 108 to 129, respectively, of the identical strand of the published part of the γ_4 gene sequence (9) Each of the above oligonucleotides can selectively hybridize with the described γ mRNA. Sequences of the sense oligonucleotides were as follows sense-y1 3, AGAT-GCCAGTGATCAATA, corresponding to nucleotides -2 to 16 of the identical strand of the γ_1 gene sequence (7); sense-γ23, ATGGCCAGČAA-CAAC, corresponding to nucleotides 1 to 15 of the identical strand of the γ_2 gene sequence (8); sense- γ_3 .3, ATGAAAGGGGAGACC, corresponding to nucleotides 1 to 15 of the identical strand of the γ_3 gene sequence (9), and sense- γ 43, GGAGCAGCTGAAGAT, corresponding to nucleotides 1 to 15 of the identical strand of the published part of the γ_4 gene sequence (9). Each of the above oligonucleotides can selectively hybridize with the complementary strand of the described y gene sequence. The sequence of ycom was TC TKCWSMWSMYTTGGACACC, corresponding to nucleotides 97 to 117 of the identical strand of the γ_1 gene sequence (7). The γcom can selectively hybridize with the described γ_1 mRNA. Selective primers were determined with the use of MacMolly Tetra software (Soft Gene GmbH) Abbreviations for wobbled positions are as follows W (T or A), M (A or C), Y (T or C), and S (G or C)
- 24 Supported by grants from Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, and Trude-Goerke-Stiftung The cDNA sequence of the γ_4 subunit was provided by M. I. Simon and N Gautam (Caltech, Pasadena, California) Technical assistance for many of the experiments was provided by S. Brendel

14 August 1992, accepted 13 November 1992