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Selectivity in Signal Transduction Determined by
v Subunits of Heterotrimeric G Proteins

Christiane Kleuss, Hans Scherlbl, Jurgen Hescheler,
Gunter Schultz, Burghardt Wittig*

Various heterotrimeric guanine nucleotide—binding proteins have been identified on the
basis of the individual subtypes of their « subunits. The By complexes, composed of § and
v subunits, remain tightly associated under physiological conditions and have been as-
sumed to constitute a common pool shared among various guanosine triphosphate (GTP)—
binding (G) protein heterotrimers. Particular « and B subunit subtypes participate in the
signal transduction processes between somatostatin or muscarinic receptors and the
voltage-sensitive L-type calcium channel in rat pituitary GH, cells. Among vy subunits the
v4 subtype was found to be required for coupling of the somatostatin receptor to voltage-
sensitive calcium channels, whereas the y, subtype was found to be required for coupling

of the muscarinic receptor to those channels.

G proteins undergo a cycle in which they
switch between active and inactive states
by guanine nucleotide exchange and GTP
hydrolysis (I). The inactive G protein
agppBYy is stimulated by a ligand-activated
receptor to exchange guanosine diphos-
phate (GDP) for GTP. In the active form
agp dissociates from the By complex. The
agrp and the By complex are then able to
interact specifically with cellular effector
molecules to evoke the cellular response.
Until recently it had been thought that the
function of a particular G protein was solely
determined by the a subunit, and no spe-
cific functions had been assigned to the B
and vy subunits. The contribution of B or y
subunits to receptor-effector coupling is dif-
ficult to investigate because these subunits
are functionally inactive when separated
from each other. Nevertheless, the By
complex may directly interact with effector
molecules (2—4). Inhibition of adenyl cy-
clase by a stimulatory (G,)-type G protein
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depends on whether the G protein is recon-
stituted with By complexes from retina or
brain tissue (5).

Four different B polypeptide sequences
are known (6) and all have similar se-
quences. Three of five identified y cDNAs
have been cloned (7-9). The sequence of a
fourth y cDNA, v, (10), as well as that of
a fifth y cDNA (11) has been established,
and additional vy subtypes may exist (12).
Because of the apparent sequence heteroge-
neity in the vy subunits, functional differ-
ences of the By complexes have been at-
tributed to the -y subunits (12, 13).

We have examined the role of individ-
ual subtypes of y subunits in selective re-
ceptor-effector coupling. We studied the
effects of y subtype on the inhibition of
voltage-sensitive Ca?* channels through
activation of muscarinic (M,) or somato-
statin receptors. These modulatory effects
of receptor agonists are mediated by pertus-
sis toxin—sensitive G_ proteins (14), and
the subtypes of a, and B subunits have
specific effects in this system (15, 16). We
detected mRNAs for v,, 5, and vy, sub-
types in the rat pituitary tumor cell line
GH, (Fig. 1). The -y, subtype has only been
found in retina.

We have previously established (15)



conditions for “knocking out” expression of
individual subtypes of G protein subunits by
nuclear microinjection of short selective
antisense oligonucleotides. In the present
study we injected antisense oligonucleo-
tides that selectively hybridize with the
respective mRNA for one of the vy subtypes.
The effects were measured electrophysiolog-
ically with the patch-clamp method.
Carbachol (a muscarinic receptor ago-
nist) and somatostatin were ineffective in
cells that had been microinjected with an
antisense oligonucleotide (ycom) directed
against all known G protein <y subunit
sequences (Figs. 2 and 3). Cells injected
with a +y,-selective oligonucleotide (anti-
v1.1) responded to carbachol or somato-
statin in the same manner as cells not
injected; a similar result was seen in cells
injected with a y,-selective antisense oligo-
nucleotide (anti-y2.1). These results dem-
onstrate that microinjection did not alter
hormone responsiveness of GH; cells. Fur-
thermore, they indicate that the v, subunit
subtype does not take part in signal trans-
duction between somatostatin or M, recep-
tors and the voltage-sensitive Ca?* chan-
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nel. The ineffectiveness of the injected
v,-selective antisense oligonucleotide is in
agreement with the absence of any detect-
able target mRNA in GH; cells.

In cells that had been injected with
v;-selective antisense oligonucleotides (an-
ti-y3.1 and anti-y3.2; Fig. 3), Ca?* influx
was no longer inhibited by somatostatin,
whereas carbachol was effective. In cells
that had been injected with +y,-selective
antisense oligonucleotides (anti-y4.1 and
anti-y4.2), carbachol did not inhibit Ca?*
influx, whereas somatostatin was effective
(Fig. 3). In conjunction with our data on
the identity of the respective subtypes of a,
and B subunits that participate in this
pathway (15, 16), these results establish the
third line of evidence demonstrating that
different heterotrimeric G proteins trans-
duce the signals from somatostatin and
muscarinic receptors to voltage-sensitive
Ca’* channels. In the case of the soma-
tostatin-induced signal, the G_ protein
contains a <y; subunit; in the carbachol-
induced reaction, a v, subunit is required.

These findings establish the contribution
of each G protein subunit (o, B, and ) to

c
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Fig. 1. Existence of mRNA encoding G protein y subunits in GH, cells analyzed by polymerase
chain reaction (PCR) and subsequent hybridization. Total RNA (5 pg) was randomly primed and
reverse transcribed according to manufacturer's instructions (Moloney-Murine Leukemia Virus
reverse transcriptase, BRL). A portion (1:100 of the reaction volume) of the cDNA was used as a
template for an amplification reaction with two y subtype—-specific oligonucleotides. The PCR was
performed in a reaction volume of 50 pl with 1 unit of Taq polymerase (Promega). After 35 cycles
of 93°C for 60 s, 40°C for 10 s, and 72°C for 30 s in a DNA Thermal Cycler (Perkin-Elmer), the
reaction products were precipitated, electrophoretically separated on a polyacrylamide gel, and
transferred to a nylon membrane (Gene Screen, NEN DuPont). After cross-linking of the nucleic
acids to the membrane with ultraviolet light (120 mJ, 254 nm), they were hybridized with 5’
32P-labeled oligonucleotides (22). Autoradiograms are shown of filters that had been hybridized
with oligonucleotides anti-y1.1 (A), anti-y2.1, (B) anti-y3.1 (C), and anti-y4.1 (D). The cDNAs from
GH, cells (lanes 1 to 6), PC-12 cells (rat adrenal pheocromocytoma, lane 7), WERI-Rb-1 or Y79 cells
(human retinoblastoma cell line, lanes 8 and 9, respectively), or rat retina (Clontech Laboratories,
Inc.; lane 10) were amplified by PCR with primers as indicated (23).
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REPORTS

selective receptor-effector coupling. In both
of the signal transduction processes exam-
ined, a selective vy subunit subtype is appar-
ently complexed with a specific B subunit
subtype and a selective o, subunit, giving
rise to the specificity of the G proteins. Two
G, forms, distinct in all three subunits,
discriminate between two distinct receptors
but functionally couple to the same effector.
The muscarinic receptor is coupled to a G
protein consisting of a,,/B3/y,, and the so-
matostatin receptor is coupled to a G protein
consisting of &_,/B,/v;. Both G proteins act-
to inhibit voltage-sensitive Ca’* channels.
The ineffectiveness of somatostatin and
carbachol in cells injected with antisense
oligonucleotides to vy; and v,, respectively,
probably results in the reduced synthesis of
G protein subunits (15). Evidence for such
a reduction [as occurs with a and B subunits
(15)] has not been demonstrated for y; and
v, subtypes (specific antibodies for these
subtypes are not yet available). We propose
that after nuclear microinjection of y-selec-
tive antisense oligonucleotides the oligonu-

CA SST

con,wo

n,wo o
50 ms

Fig. 2. Time-current recordings of the voltage-
sensitive Ca2* channels in GH, cells in the
presence of carbachol (left) or somatostatin
(right). Current traces for single cells are
shown. Each cell was superfused with either of
the hormones at about 37 hours after injection
with antisense oligonucleotides anti-y1.1, anti-
vy2.1, anti-y3.1, or anti-y4.1 (23). Under volt-
age-clamp conditions, whole-cell Ca2* cur-
rents were recorded after depolarizing pulses
from —80 to 0 mV. Conditions for microinjection
and patch clamping are described elsewhere
(15). Abbreviations: con, control currents ob-
tained before application of receptor agonist;
SST, currents recorded during superfusion of
cells with 1 uwM somatostatin; CA, currents
recorded during superfusion of cells with 10
M carbachol; and wo, currents recorded after
removal of receptor agonists.

833



Fig. 3. Ca2* current inhibition by
receptor agonists in GHj cells in-
jected with antisense oligonucle-
otides to mMRNAs encoding y sub-
unit  polypeptides.  Whole-cell
Ca?* currents were measured at
about 40 hours after injection of
the oligonucleotide. Because of
the high degeneracy of its base
sequence, oligonucleotide ycom
was microinjected at a concentra-
tion ten times greater than that for
v subtype-selective oligonucleo-
tides (50 wM instead of 5 uM).
Inhibition of Ca2* currents by so-
matostatin (1 wM; open bars) or
carbachol (10 wM; solid bars) is
shown as a percentage of the

25 —

20

_. _.
o w
| EENSEREEE

Relative inhibition (%)
!

(3]

o

Control

Anti-y3.1

current observed in the absence

-
N

2 | Anti2.1

-
ey

of the respective agonist (mean +

-

o |2 |Antia2
w | |Anti-y4.2

-

SEM). Numbers of cells tested are

=~ |o |® [10 xycom

w

indicated as follows: A, cells suc-
cessively treated with either of the

1

-~ |o |~ |® |Anti-ya.1 F-‘

12 12 13 0

m o |0 |w (>

receptor agonists (random order)

12

2 |o | |- |o |Anti-y1.1

=N

12 2 26 0 20

with intermediate washing; B,

cells treated with carbachol only; C, cells treated with somatostatin only;

D, cells inhibited by

carbachol by more than 10% of control currents; and E, cells inhibited by somatostatin by more than
10% of control currents. In about 10% of patched cells no Ca?* currents could be activated by the

applied voltage-clamp conditions.

cleotides hybridize with their target
mRNAs and that the respective mRNA
encoding the vy subunit is destroyed by
cellular ribonuclease H or is not transferred
to the cytoplasm (17). As a consequence,
no active G protein heterotrimer can be
assembled because the required vy subunit
subtype is missing. This in turn abolishes
the necessary receptor-G protein interac-
tion and interrupts the cascade.

In transfection studies with the Sf9 cell-
baculovirus system, B, and vy subunits have
been shown to form a functional complex
that interacts with immobilized G, sub-
units (18). Corresponding data on the vy,-
containing complexes could not be ob-
tained because the full-length ¢cDNA re-
quired for such functional studies is not yet
available. Functionally active complexes
cannot be formed from all naturally occur-
ring B and <y subunits. However, those
containing the Bs/y, and B,/y; combina-
tion found here have been neither excluded
nor investigated (18-20). We cannot ex-
clude more indirect mechanisms that might
explain the effects of the y-selective an-
tisense oligonucleotides. The By complex
may be the signaling G protein component

interacting with the voltage-sensitive Ca?*
channel, and interruption of the signal
transduction may occur at this site. Further-
more, suppression of y; and v, polypeptides
could impair the expression of B, and B,
polypeptides or o, and «,, polypeptides,
respectively. Moreover, expression of 8 and
v subunits may be linked (21).
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