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Multiple Output Channels in the Basal Ganglia 

John E. Hoover and Peter L. Strick* 
The neural circuits that link the basal ganglia with the cerebral cortex are critically involved 
in the generation and control of voluntary movement. Retrograde transneuronal transport 
of herpes simplex virus type 1 was used to examine the organization of connections in the 
cebus monkey between an output nucleus of the basal ganglia, the internal segment of the 
globus pallidus (GPi), and three cortical areas: the primary motor cortex, the supplementary 
motor area, and the ventral premotor area. Spatially separate regions of the GPi were 
labeled after virus injections into each cortical area. The GPi projects to multiple cortical 
motor areas, and this pallidal output is organized into discrete channels. This information 
provides a new anatomical framework for examining the function of the basal ganglia in 
skeletomotor control. 

T h e  basal ganglia are subcortical brain 
nuclei that are critical for the central gen- 
eration and control of voluntan. move- 
ment. It has been suggested that these 
structures are involved in the internal pen- 
eration of movement, the automatic execu- 
tion of motor plans, and the acquisition and 
retention of motor skills (1 ) .  Dysfilnction of 
the basal ganglia, as occurs in Parkinson's 
disease, is associated lvith striking disorders 
of movement ( 2 ) .  

The input nuclei of the basal ganglia 
(that is, the caudate and putamen) receive 
substantial projections from diverse regions 
of the cerebral cortex, including motor, 
sensory, prefrontal, and limbic cortical ar- 
eas. The output nuclei of the basal ganglia 
(that is, the GPi and the substantia nigra 
parsreticulata) send their axons to the 
thalamus and, 6y this route, project back 
upon the cortex. Thus, a major aspect of 
basal ganglia circuitry is its participation in 
multiple open and closed loops with the 
cerebral cortex ( 3 ) .  , , 

Our understanding of the organization of 
basal ganglia loops with the cerebral cortex 
has evolved considerably over the last 20 

years. In the past, the output of the basal 
ganglia lvas thought to terminate in a single 
region of the thalamus and to influence a 
single cortical area, the primary motor cor- 
tex (4). According to this view, the basal 
ganglia t~lnneled intonnation from wide- 
spread regions of the cerebral cortex into the 
motor system. It is now clear that the output 
of the basal ganglia renllinates in thalamic 
regions that gain access to a wider region of 
the frontal lobe than previously suspected 
(5). Indeed, tive parallel basal ganglia- 
thalamocortical loops have been icientitied, 
each of which is hcuseci on a particular 
region of the frontal cortex (6). These loops 
were designated the skeletornotor, oculomo- 
tor, ciorsolateral prefrontal, lateral orbi- 
tofrontal, and anterior cing~llate circuits. 
We have now examined the organization of 
the skeletomotor circuit with a neuroana- 
tomical technique that makes use of retro- 
grade transneuronal transport of herpes sim- 
plex virus type 1 (HSV-1) (7). This tech- 
nique provides a unique method for labeling 
a chain of synaptically linked neurons. Our 
results provide evidence for at least three 
skeletomotor circuits, each of which in- 
volves a spatially separate region of GPi and 
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mentary motor area (SMA), or the ventral 
premotor area (PMv) of cebus monkeys (Ce- 
bus apella) (n = 6). The surgical procedures 
we used have been described in detail else- 
where (8). After anesthetizing the animals 
with Telazol (initial dose, 20 mg per kilogram 
of body weight; supplemental dose, 5 to 7 mg 
per kilogram of body weight per hour), we 
~erformed a craniotomv to exDose the left 
frontal lobe; then the arm representation of 
one of the cortical motor areas was injected 
(six to ten sites; 0.05 p1 per site) with McIn- 
tyre-B HSV-1 (titer, 8.2 x lo8 plaque-form- 
ing units per milliliter). The injections were 
made with a microsyringe; we determined 
their placement by using sulcal landmarks and 
intracortical stimulation (9, 10). Animals 
were killed approximately 5 days after inocu- 
lation (I I). The brain of each animal was 
sectioned and processed to demonstrate the 
location of virus-specific antigen (1 2). 

Injections of virus into the arm represen- 
tations of either the primary motor cortex, 
SMA, or PMv (Fig. 1) labeled many neu- 
rons in the GPi. An average of 1300 pallidal 
neurons were labeled bv transneuronal trans- 
port in each experiment. These labeled neu- 
rons were found in both the inner and outer 
portions of the GPi. Virus antigen densely 
filled the labeled cells, clearly marking their 
somata and primary dendrites (Fig. 2). The 
labeled primary dendrites coursed obliquely 
through the GPC however, they were con- 
centrated in the regions of the nucleus that 
contained labeled cell bodies. 

The dorsoventral location of the labeled 
pallidal neurons varied depending on the lo- 
cation of the cortical injection site. Virus 
injections into the arm representation of the 
SMA labeled neurons in a dorsal region of the 
GPi (Fig. 3, animal JolO). In contrast, injec- 
tions into the arm representation of the PMv 
labeled neurons mainly in ventrolateral por- 
tions of the GPi (Fig. 3, animal Jo15). Neu- 
rons labeled after injections into the arm area 
of the primary motor cortex were located 
between the two groups of neurons labeled by 
the SMA and PMv injections (Fig. 3, animal 
Z10). The region of the GPi with a high 
density of labeled neurons was consistently 
limited to approximately a 1- to 2-mm seg- 
ment of the nucleus in the middle of its 
anterior-posterior extent (1 3). These observa- 
tions suggest that the arm representations of 
the primary motor cortex, SMA, and PMv 
each receive pallido-thalamocortical input 
from separate regions of the GPi (Fig. 4). 

These results h e l ~  to clarifv currentlv 
debated issues about the anatomical organi- 
zation of connections of the basal ganglia 
with motor areas of the cerebral cortex. It is 
generally agreed that a major site of termi- 
nation for pallidal efferents involved in skel- 
etomotor control is the thalamic subnucleus 
ventralis lateralis pars oralis (VLo) (14). 
The VLo projects to sites in several motor 

Midline 

Fig. 1. Location of virus injection sites in the 
primary motor cortex (animal ZlOj. SMA (ani- 
mal JolO), and PMv (animal Jo15). The dotted 
lines on the inset at the lower right indicate the 
region of the frontal lobe that is enlarged in the 
diagram at the top. The medial wall of the 
hemisphere is illustrated as if it has been re- 
flected upward, with the cingulate sulcus un- 
folded to display the cortex in its banks. The 
anterior bank of the central sulcus has also 
been opened. Small x's indicate the sites where 
the microsyringe needle entered the cortex for 
virus injection. The shaded areas indicate the 
spread of virus. ArSi, inferior limb of the arcuate 
sulcus; ArSs, superior limb of the arcuate sul- 
cus; CgSd, dorsal bank of the cingulate sulcus; 
CgSv, ventral bank of the cingulate sulcus; CS. 
central sulcus; PS, principal sulcus; and SGm. 
medial portion of the superior frontal gyrus. 

areas, including the SMA ( 1 3 ,  PMv (16). 
and primary motor cortex (8, 17). These 
findings raised the possibility that a number 
of motor areas, rather than one in particular, 
are influenced by pallidal output. Our exper- 
iments provide direct support for this con- 
cept by demonstrating that at least three 
motor areas are targets of pallido-thalamo- 
cortical pathways (18). In addition, we 
found that the SMA, PMv, and primary 
motor cortex are each influenced by a differ- 
ent portion of the GPi. These results suggest 
that localized regions of the globus pallidus 
are organized into discrete output channels 
that are focused on selected cortical areas. 

The concept that pallidal output is orga- 
nized into discrete channels may provide some 
insight into the pathophysiology of disorders 
of the basal ganglia such as Parkinson's dis- 
ease. This movement disorder is associated 
with three cardinal symptoms: tremor, ri- 
gidity, and akinesia (2). However, patients 
with Parkinson's disease present with vary- 

Fig. 2. Neurons in the GPi labeled by retro- 
grade transneuronal transport of HSV-1. (A) A 
low-power, dark-field photomicrograph of the 
globus pallidus of animal Z10. The boxed area 
indicates the region of the pallidum shown at 
higher magnification in (B). (B) Neurons la- 
beled with virus in the GPi. Scale bar: (A) 1 mm; 
(B) 300 prn. GPe, external segment of GP; i, 
inner portion of GPi; and o, outer portion of GPi. 
Top, dorsal; right, medial. 

ing amounts of each symptom. For example, 
some display a syndrome that is almost purely 
akinetic, whereas others display a syndrome in 
which tremor is the dominant feature (2). 
Perhaps each of the cardinal symptoms results 
from dysfunction in separate output channels. 
The variability in symptoms may reflect vari- 
ation in the degree to which individual output 
channels are affected by the disease. 

The results of stereotactic lesions of the 
globus pallidus, made to ameliorate the 
symptoms of patients with Parkinson's dis- 
ease, support this view. Such lesions are 
thought to prevent abnormal pallidal signals 
from reaching cortical motor areas where 
they would generate inappropriate descend- 
ing commands for movement. When pal- 
lidal lesions were made at an anterodorsal 
target in the nucleus, they produced a long- 
term improvement in rigidity but did little to 
change tremor and akinesia (19). In con- 
trast, lesions made at a more posteroventral 
target alleviated all three of these motor 
symptoms (20). One interpretation of these 
findings is that anterodorsal pallidotomy pro- 
duces only limited improvement because the 
lesion affects only a restricted number of 
output channels, leaving some abnormal 
pallidal signals uninterrupted, whereas great- 
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Fig. 3. The positions of neu- SMAam MCam ''"am 

rons ~n the GPi labeled by (Jol 0) (z10) (Jo15) 
retrograde transneuronai 
transport of HSV-1 from the 

trates representatwe coro- 
nal sectlons through the glo- 
bus pallldus of animals that 
recelved lnjectlons of HSV-I . .  , 
into the arm representat~ons 
of the SMA (anlmal JolO). 
primary motor cortex (MC) 
(animal ZlO), or PMv (anl- 2 mm 

ma1 Jol5) The dots lndlcate A 13.7 A 14.0 A 14.2 

the posltlons of labeled cells (355, 358, 360) (423, 425) (430, 433) 

observed In two or three adjacent sectlons (section numbers at bottom in parentheses) For 
comparison the dotted line lndlcates the reglon of the GPI containing neurons labeled from the 
prlmary motor cortex In anlmal Z10 The thlck solid llne lndlcates the outllne of the globus pallldus. 
The thln solid llne lndlcates the border between GPe and GPI The dashed line indicates the border 
between the Inner and outer portlons of the GPI E, external segment of the G P  I ,  Inner portlon of 
the GPI, o, outer portlon of GPi. D dorsal, and M, medial 

er success is achieved wlth posteroventral 
pallidotomy because the les~on interrupts the 
output of multiple channels. 

Our results also provide some insight into 
the involvement oi pallido-thalamocortical 
path~vays in skeletomotor control. The find- 
ing that pallidal o u t p ~ ~ t  innervates multiple 
cortical motor areas indicates that the basal 
ganglia have a broad influence over the 
generation and control of movement. In- 
deed, all three of the cortical areas we have 
examined-the SMA, PMv, and primary 
motor cortex-project directly to the spinal 
cord (2  1 ) .  Thus, the pallidal projection to 
each of these motor areas may provide the 
basal ganglia with a direct route for influenc- 
ing the motor output of the spinal cord. The 
seoaration of oallidal outout into discrete 

pallidal channel directed to the primary 
motor cortex may be involved with the 
control oi movement parameters, such as 
direction and force ( 2 2 ) .  On the other hand, 
pallidal channels directed to premotor areas, 
such as the SMA and PMv, may be sepa- 
rately involved with higher order aspects of 
motor programming, such as the internal 
guidance of movement, movement sequenc- 
ing, and skill acquisition ( 2 3 ) .  
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