
Formation of an Fe(lll)-Tyrosinate Complex During titiny and it at a reduced rate. The 

Biomineralization of H-Subunit Ferritin formation of the H subunit-specific purple 
species was dioxygen-dependent. After the 
admission of air to anaerobic solutions of 

Geoffrey S. Waldo, Jinshu Ling, Joann Sanders-Loehr, H-subunit femtin (I r n ~  in subunits) and 

Elizabeth C. Theil* Fe(I1) (24 Fe atoms per molecule), color 
formation at 420 nm was biphasic (Fig. 3A). 

An iron(ll1)-tyrosinate complex was identified in ferritin by ultraviolet-visible and resonance The 550-nm absorption was maximal at 6 
Raman spectroscopies. Previously, a specific amino acid side chain coordinated to iron in min and then slowly decreased. 
ferritin was not known. Ferritin protein was overexpressed in Escherichia coli from com- The purple Fe-femtin complex gave a rich 
plementary DNA sequences of bullfrog red cell ferritin. The purple iron(ll1)-tyrosinate Raman spectrum upon excitation within the 
intermediate that formed during the first stages of iron uptake was replaced by the amber 550-nm absorption band (Fig. 3B). On the 
multinuclear iron(ll1)-0x0 complexes of fully mineralized ferritin. Only the H subunit formed basis of model studies and comparisons to 
detectable amounts of the iron(ll1)-tyrosinate complex, which may explain the faster rates previously reported Raman data of other Fe- 
of iron biomineralization in H- compared to L-type ferritin. Tyr complexes (12, 13), the principal Fe(II1)- 

phenolate Raman modes may be identified in 
the Fe-apofemtin Raman spectrum (Fig. 3B 
and Table 1). Raman spectra obtained at a 

Ferritin, a large, hollow protein encasing a tional structural differences between H- and series of excitation energies within the 550- 
mineral core of hydrated ferric oxide or ferric L-type ferritin subunits, previously unap- nm absorption envelope indicate that the 
phosphate, contains up to 4500 Fe atoms for preciated, may contribute to the observed intensities of the Fe-tyrosinate modes track 
use in such reactions as DNA synthesis, variations in function during Fe uptake. the 550-nm absorption band. This provides 
respiration, photosynthesis, and nitrogen We identified a purple Fe(II1)-tyrosinate strong evidence that the 550-nm peak in the 
fixation (1, 2). The spherical apoprotein is [Fe(III)-Tyr] complex early in the biominer- Fe-femtin complex arises from a Tyr + 

composed of 24 polypeptide subunits associ- alization of H-type ferritin. The distinctive Fe(II1) charge transfer band. 
ated by noncovalent interactions. High con- purple complex formed within seconds when Heterogeneity was observed in the 
servation of amino acid sequence in femtin Fe(I1) was added to bullfrog H-subunit fer- Fe(II1)-phenolate v- region of the Ra- 
from prokaryotes (3), plants, and animals ritin (0.5 mM in subunits) at low Fe loadings man spectrum of H-subunit ferritin (1288 
suggests an ancient progenitor form of fer- (148 Fe atoms per molecule) in the pres- and 1300 cm-', Fig. 3B). The splitting and 
ritin (1, 2, 4). Two ferritin subunits, H and ence of air. Within 5 min, at 48 Fe atoms relative intensities of the peaks were both 
L, occur in vertebrates (1, 2). per molecule, the purple color was replaced constant for different samples. The frequen- 

Specific Fe-amino acid complexes have by the amber color of mineralized femtin. cy of the v- mode is more sensitive to the 
not been identified in ferritin. Extended Under identical conditions, only the amber Tyr environment than that of either the 
x-ray absorption fine structure and Moss- color developed in bullfrog L-subunit fer- v- or 8C-H mode (Table 1). Two vco 
bauer spectroscopies have shown Fe(II1) 
bound to oxygen or nitrogen ligands in 
mononuclear and multinuclear forms (5, Fig. 1. (A) Ferritin sub- A 0.5 
6). N-vanadium complexes have been dem- units from bullfrog red 
onstrated (7). In ferritin, terbium (Tb) cell ferritin cDNA over- W-66 E 

c 0.4- 
bound to Glu, Asp, and His has been expressed in Esche- o 
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observed by x-ray diffraction; the site influ- 'jchia "Ii; assayed 

with SDSgel electro- ; 0.3- 
ences the rate of biomineralization (8). a, 

phoresis. Lane H, 
Bullfrog red cell H and L ferritins, over- H-subunit ferritin; lane f 0.2- -29 + expressed in Escherichia coli (9) (Fig. IA), L, L-subunit ferritin, o 

X 0.1- displayed the relative rates of polynuclear Sizes (in kilodaltons) 4 
Fe-complex formation typical for vertebrate of molecular mass 

O.o H and L ferritins; polynuclear Fe-complex markers (lane kD) are 
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formation is far more rapid in the H-subunit indicated on the right. 0 4 8 12 16 20 
-18 

class than in that of the L (1 0, 11) (Fig. The subunits were Pu- Time (min) 

1B). Two residues, G1u5' and His6' (Fig. rified after overexpres- 

2), have been shown by site-directed muta- Sio" which was 'On- 
trolled by the T, poly- genesis to be required for rapid polynuclear merase promoter and 

Fe-complex formation (ferroxidation) in T7 and H L k~ 
human H-subunit ferritin @)- red regulated by the Lac operator in E. coliBL21 (DE3) + pLysS (H subunit) or BL21 (DE3) (L subunit) 
cell L ferritin also contains the G1u5' and (22). The sequences PJD5F12 (H subunit) and PJD1 D8 (L subunit) (9) were inserted in the Nde I 
His6' residues (Fig. 2). Nevertheless, the site of a PET 3 vector; translation initiation began at the natural start sites of the ferritin sequences. 
bullfrog red cell L ferritin does not display Ferritin was recovered from the supernatant fraction of sonicated extracts after heating (70°C for 15 
the rapid color formation associated with min), centrifugation, precipitation from the supernatant by 80% NH4S04, and anion-exchange 

~ - ~ ~ b ~ ~ i ~  ferritins ( ~ i ~ .  1 ~ ) .  -l-hus, chromatography on a Mono Q column (Pharmacia). Gel filtration showed that both H- and L-ferritin 
subunits assembled as homopolymers into 24 mers of the natural size. The average yield of purified 
ferritin was -30 mg from 3 g of cell pellet (1 liter of cell culture). (B) Ultraviolet-visible spectroscopy 

G. S. Waldo and E. C. Theil, Departments of Biochem- 
istry and Physics, North Carolina State University, of bullfrog red cell ferritins during amber color formation (change in absorbance at 420 nm). 
Raleigh. NC 27695. Subunits of H ferritin (-) exhibited much faster kinetics of color formation than those of L ferritin 
J. Ling and J. Sanders-Loehr, Department of Chemical (- - - -). Fe(ll) was added as a freshly prepared solution of Fe(ll)S04 to H- or L-ferritin samples in 1 -mi 
and Biological Sciences. Oregon Graduate Institute, quartz cuvettes. Reactions were performed at an ambient temperature of 25°C with proteins in an 
Beaverton, OR 97006. air-saturated MOPS buffer, pH = 7.0, containing 0.45 M CI-; the Fe-to-protein ratio was 480, and the 
*To whom correspondence should be addressed. initial Fe(ll) concentration was 0.5 mM. The results are representative of two samples. 
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stretches suggest that the peaks are associ- 
ated w i th  two different Fe(II1)-Tyr moi- 
eties. A m i n o  acid sequence data for several 
fertitins (Fig. 2) reveal three conserved Tyr  
side chains (positions 25, 28, and 30). Bo th  
Tyr" and Tyr3" are conserved in al l  H and 
L vertebrate ferritins. On ly  TyrL5 i s  H 
subunit-specific, suggesting that TyrL5 
could be required for the formation of the 
Fe(II1)-Tyr complex. This residue appears 
to be positioned near the surface o f  the 
ferrit in protein coat (14) and may be the 

Table 1. Characteristic Raman frequencies (in cm-I) for ferric phenolates. Sources of data: 
FeJSALEN) (OC,H,-4-CH,) (32); beef spleen purple acid phosphatase (31); catechol 1,2-dioxyge- 
nase (12); protocatechuate 3,4-dioxygenase (12): ferritin intermediate, this report. SALEN = 1.2 
bls(salicylideneiminato) ethane. 

Ferric phenolate " F ~ - o  6 c - ~  vc -0 lic c lit-c 

Fe(SALEN) (OC,H,-4-CH,) 568 1168 1272 1501 1603 
Purple acid phosphatase 575 1164 1281 1497 1597 
Catechol 12-dioxygenase 1175 1289 1506 1604 
Protocatechuate 3,4-dioxygenase 1176 1265 1505 1605 
Ferritin intermediate 589 1167 1288 1502 1602 

1300 

Fig. 2. The H-subunit-specific Tyr and Tb (ferroxidase) ligands with 
partial amino acld sequences for several ferritins. Boxes. a, residues 
explicitly shown by site-directed mutagenesis to be required for 
ferroxidation activity by human H-subunit ferritin; b Tyr conserved in 
all vertebrate ferritins; c, Tyr specific to H-subunit ferritlns. Rows: 1, 
horse spleen L subunit (23), 2, human llver L subunit (24), 3, rat liver 
L subunlt (25); 4, rabbit liver L subunit (26); 5, tadpole red cell L 
subunlt ( 9 )  6, human liver H subunlt (24), 7, rat liver H subunlt (27), 
8, chicken red cell H subunit (28); and 9, tadpole red cell H subunit 
(9) Numbering of ferritln subunlt sequences 1s based on the horse 
spleen L subunit Abbrevlatlons for amino aclds are as in (29) 

-5 0 5 10 15 25 30 

Time (min) 

Fig. 3. (A) Kinetics of color formation for H-subunit bullfrog red cell ferritin 
wlth one Fe atom per subunit. Purple color due to Fe(lll)-Tyr (550-nm 
peak) ( -  - )  amber color of multinuclear Fe(lll)-0x0 specles (absorbance 
at 420 nm) (-). An arrow indicates the tlme of admlsslon of air. An 
anaerobic sample of H-subunlt ferrltin (1 mM in subunits) in MOPS buffer, 
pH = 7.0, containing 0.45 M CI-, was incubated with 1 mM Fe(ll) for 15 
mln under argon, then exposed to a flow of moistened alr at 25°C 
Illtraviolet-visible difference spectra were measured at 30-s intervals wlth 
a Hewlett-Packard HP 8452A diode array spectrophotometer interfaced 
wlth a m~crocomputer. We zeroed the spectrometer by uslng the sample 
just before the addition of the Fe(ll). The results are representative of flve 
independent experiments. (Inset) Illtrav~olet-vlslble difference spectrum 
of the H subunit-specific Fe-protein (purple) complex The spectrum was 
measured for the sample in (A) 6 mln after the admission of alr. (6) 
Resonance Raman spectrum of the H subunit-speciflc Fe-protein com- 
plex. Protein modes at 1002, 1450. and 1650 cm-' are marked P, and 
buffer modes at 81 0 and 1044 cm-' are marked B. An anaerobic sample 
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Frequency (cm'') 

of 0.17 mM H-subunit apoferrltin (4 mM in subunits) In MOPS buffer. pH 
= 7.0, containing 0.45 M Cl-, was Incubated wlth 4 mM Fe(ll) for 1 hour 
under argon. After the sample was exposed to alr for 5 mln, several 
allquots were removed and transferred to argon-purged capillary tubes, 
which were frozen In liquid nitrogen and flame-sealed. The Raman 
sample was thawed, maintained at =1O0C In a metal cold-finger 
submerged in an Ice bath (30), and subjected to 572-nm (50-m\;N) 
excitation from a Coherent 599-01 dye (rhodamine 6G) and lnnova 90-6 
argon laser pair The spectrum was measured at a 90" scattering 
geometry with a Dilor 2-24 Raman spectrometer at a resolution of 6 
cm- '  and a total exposure tlme of 2 5 hours and was subjected to a 
13-polnt smoothing. The results are representative of two samples. 
(Inset) Resonance Raman spectrum of Fe(lll)-Tyr In purple acid phos- 
phatase obtalned wlth 514-nm excitation. [Reprinted in part from (31), 
with permlsslon O American Chemical Society] 
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first site at which Fe binds on the path to 
oxidation and mineralization. The heteroge­
neity of the Fe(III)-tyrosinate vv_Q Raman 
modes could arise from different conformers 
involving Fe(III)-Tyr25. Alternatively, Tyr25 

and another nearby Tyr, such as Tyr28 or 
Tyr30, might both be involved. Multiple 
vc~o R a m a n modes have been observed for 
protocatechuate 3,4-dioxygenase, which has 
two Tyr ligands per Fe (15, 16). Finally, an 
additional Fe (III)-Tyr moiety could cause 
heterogeneity in the Raman spectrum. Such 
a site could be Tyr133, which, although 
conserved in all known vertebrate H-subunit 
ferritins, is also in mouse L (17) and bullfrog 
red cell L (9) ferritin. It is close to the 
Tb+3-binding "ferroxidase" site in human 
H-subunit ferritin (14). Involvement of 
Tyr133 would require an environment unique 
to the H subunit because the L subunit does 
not form detectable amounts of the Fe (III) -
Tyr complex (18). 

The Fe (III)-Tyr complex appears to be a 
transient precursor of polynuclear cluster 
formation. Such a notion is supported by 
the observation that smaller numbers of Fe 
atoms per ferritin formed Fe (III)-Tyr com­
plexes with greater stability and a larger 
fraction of monomeric Fe(III) (19). On the 
basis of quantitation of the g' = 4-3 signal 
in the electron paramagnetic resonance 
(EPR) spectrum (19), ferritin with 24 Fe 
atoms per molecule contained 20 ± 4% 
monomeric Fe(III). If all the monomeric Fe 
was present as Fe (III)-Tyr, the molar ex­
tinction coefficient, e550 nm, is 1800 ± 400 
M _ 1 on a per-metal basis, which is within 
the range found for Fe (III)-Tyr proteins 
(1200 to 4000 M-1) (20). Finally, x-ray 
absorption near-edge structure (XANES) 
spectroscopy (19) showed that all of the Fe 
was present as Fe(III); therefore, the EPR-
silent Fe is likely to be multimeric Fe (III). 

Tyrosine as a ligand for Fe in ferritin has 
been little discussed. Previously, attention 
had been focused either on Glu residues con­
served in all subunit types or on the Glu58 and 
His61 residues, which have been considered to 
be H-subunit specific, at least in mammals (2, 
7, 8, 10). The presence of the Glu58 and His61 

residues in bullfrog red cell L-subunit ferritin 
demonstrates their lack of subunit specificity. 
Clearly, these residues alone are not sufficient 
to confer a rapid rate of mineralization on the 
protein (Figs. IB and 2). The H subunit-
specific Fe (III)-Tyr species (Fig. 3 A) may be a 
key to understanding the differences in the 
mineralization rate of ferritin protein formed 
from H or L sub units. 
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existence of hexatic phases. For practical 
applications, one must consider the struc­
ture and thermal behavior of the films on 
both macroscopic and microscopic scales; 
from a fundamental point of view it has not 
yet been possible to establish a link between 
the extent of the positional order in these 
systems and the presence of defects at the 
molecular level. For these investigations, 
atomic force microscopy (AFM) has recent­
ly been shown to be a powerful tool (5-9). 
In contrast to other techniques such as 
x-ray (10-12) and electron (13-15) diffrac-

Molecular Positional Order in Langmuir-Blodgett 
Films by Atomic Force Microscopy 

L. Bourdieu, O. Ronsin, D. Chatenay 
Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic 
and microscopic scales by atomic force microscopy. As prepared, the films exhibit a 
disordered hexagonal structure; molecularly resolved images in direct space establish 
a connection between the extent of the positional order and the presence of defects such 
as dislocations. Upon heating, the films reorganize into a more condensed state with a 
centered rectangular crystallographic arrangement; in this new state the films exhibit 
long-range positional order and unusual structural features, such as a height modulation 
of the arachidic acid molecules. 
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