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Antibody Catalysis of a Disfavored Chemical 
Transformation 

Kim D. Janda,* Charles G. Shevlin, Richard A. Lerner* 
Organic reactions are often limited by stereoelectronic constrains that appear along the 
reaction coordinate. An antibody has been generated that overcomes these constraints 
and catalyzes a highly disfavored chemical transformation. The antibody facilitates the 
difficult 6-endo-tet ring closure of an epoxy-alcohol to form a tetrahydropyran. The cata- 
lyzed process is in formal violation of what has become known as Baldwin's rules for 
ring-closure reactions. In addition to controlling the regiochemistry of the disfavored cy- 
clization reaction, these catalytic antibodies resolve enantiomeric substrates to afford a 
stereochemically pure product. The principles demonstrated in this study may be appli- 
cable to other disfavored chemical processes. 

T h e  outcome of chemical transformation 
de~ends on kinetic and thermodvnamic 
parameters. For reactions under kinetic 
control, where alternative products are pos- 
sible, the product distribution reflects the 
energy barriers that the reactants encounter 
along the reaction coordinate (I ) . A classic 
example is that of intramolecular cycliza- 
tion reactions where the formation of fa- 
vored and disfavored products can be un- 
derstood in terms of the stereoelectronic 
features of their respective transition states 
(2). Although the energy barriers for the 
favored and disfavored processes often differ 
by only a few kilocalories per mole, the 
outcome of the reaction is not easily 
changed because of an inability to specifi- 
callv mani~ulate the alternative reaction 
pathway or pathways. Catalytic antibodies, 
with their exquisite specificity and ability to 
provide up to 20 kcallmol of binding ener- 
gy, could be ideal "reagents" for altering the 
outcome of chemical transformations (3). 
In essence, the issue concerns the ability of 
a suitably programmed antibody molecule 
to intercede at or near the transition state 
to alter the energy balance in favor of the 
otherwise disfavored reaction pathway. 
Herein we demonstrate this principle by 
generating antibodies that catalyze a disfa- 
vored cyclization reaction. 

Ring-forming reactions are integral pro- 
cesses in organic chemistry (4-7). Conse- 
quently, a number of blueprints have been 
formulated to predict the outcome of such 
reactions (2, 8-1 1). These ring-closure 
guidelines apply to a variety of cyclization 
reactions and have been termed "Baldwin's 
rules" (2, 8). In general, favored cyclization 
pathways are those in which the length and 
nature of the linking chain enable the 
terminal atoms to achieve the proper geom- 
etry for reaction, whereas disfavored cases 
require severe distortion of bond angles. 
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Thus, for ring closures which proceed by 
nucleophilic substitution at sp3 centers, ste- 
reoelectronic constraints favor mainte- 
nance of a subtended angle of 180" between 
the three interacting atoms during the re- 
action pathway such that 3-7-exo-tet sys- 
tems are favored and 5-6-endo-tet are dis- 
favored (I I). 

We have studied the formation of 
0-heterocyclic rings. The tetrahydropyrans 
are of particular interest because they are 
components of many important natural 
products, and consequently a great deal of 
effort has gone into strategies for their 
synthesis (5-7, 12). One attractive synthet- 
ic strategy reduces to a regioselective 
6-endo-tet ring opening of an epoxide by an 
internal nucleophilic oxygen atom (Fig. 1). 
However, overwhelming experimental evi- 
dence shows that, in accord with Baldwin's 
rules, the 5-exo-tet mode of cyclization is 
the preferred pathway yielding the unwant- 
ed tetrahydrofuran system as the exclusive 

product (Fig. 1) (1 3). To catalyze the for- 
mation of the disfavored ~roduct 5. the 
catalytic antibody should anticipate the 
mechanism of epoxide ring opening and 
overcome the rotational entropy barrier and 
the strain necessary to bring the alcohol 
into a geometry that permits nucleophilic 
attack at the appropriate C-0 bond. 

The conceot on which we relied to 
achieve these goals is shown in Fig. 1, 
which de~icts a scenario for the acid-cata- 
lyzed cyclization of the epoxy-alcohol 1. 
The hapten was designed to induce appro- 
priately charged amino acid residues strate- 
gically placed adjacent to the epoxide unit 
to stabilize the C-0 bond as it proceeds to 
rupture (14). In this scheme, endo ring 
closure would proceed to produce the so- 
called disfavored heterocycle 5, through 
transition state 3, in which the developing 
charges in the region of carbon atom 6' 
would be stabilized by the catalyst. The 
alternative pathway of exo ring closure 
through transition state 2 to yield the 
smaller ring 4 would be less favored by the 
antibody. 

The N-oxide antigen 6a would appear to 
be an attractive candidate for the induction 
of an appropriate catalytic antibody in that 
it mimics the stereoelectronic features of 
the oxirane opening under acid conditions 
(Fie. 2 ) .  The use of a six-membered hetero- 
\ u ,  

cyclic antigen with formal charges would 
favor the induction of antibodies that 
would use their binding energy to organize 
the reaction geometry to prefer the forma- 
tion of the six-membered pyran ring 5 while 
allowing regiospecific induction of comple- 
mentary charges in the binding pocket of 
the antibody. The cationic nitrogen atom is 
expected to induce one or more amino acid 

Fig. 1. Plausible mechanisms of 5-exo-tet and 6-endo-tet cyclizations of trans epoxy-alcohol 1 to 
form tetrahydrofuran 4 and tetrahydropyran 5. Racemic product 4 is the "Baldwin" favored product 
from the uncatalyzed reaction. The antibody-catalyzed reaction provides a single enantiomer of 5. 
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Fig. 2. A possible transition state found in the 
formation of 5. Compounds 6a and 6b repre- 
sent the N-oxides that were used to induce 
monoclonal antibodies and inhibit the reaction, 
respectively. The synthesis of both compounds 
commences with the addition of pnitrophen- 
ethylbromide to piperdine, 45"C, 4 hours, 92%. 
This nitro adduct is then reduced with Pd/C, H,, 
methanol, 99%. Hapten 6a is obtained by the 
addition of glutaric anhydride, followed by oxi- 
dation of the piperdine moiety with 30% H,O, 
(the overall yield for the last two steps was 
80%). The inhibitor 6b was obtained in a similar 
way except that acetic anhydride was substi- 
tuted for glutaric anhydride. 

residues that stabilize the carbocation ap- 
pearing along the reaction coordinate, 
while the anionic oxygen atom may induce 
positively charged amino acids to assist in 
the acid-catalyzed ring opening of the ep- 
oxide. The main design feature in this 
system is the spatial organization of the 
controlling elements in the antibody and, 
although we anticipate acid-catalyzed open- 
ing of the oxirane, a base-catalyzed process 
such as deprotonation of the alcohol by an 
induced base in the antibody cavity would 
also be allowed. Finally, the charge differ- 
ences between 6 and 5 may alleviate prod- 
uct inhibition. 

The N-oxide 6a (Fig. 2) was coupled to 
keyhole limpet hemocyanin (KLH) , and 
the conjugate was used to immunize 129 
IX+ mice for production of monoclonal 
antibodies (1 5). Twenty-six monoclonal 
antibodies were shown by an enzyme-linked 
immunosorbent assay (ELISA) (1 6) to bind 
to 6 conjugated to bovine serum albumin 
(17). All 26 cell lines were cloned and 
injected separately into mice for production 
of ascites fluid. Antibody from each sample 
of ascites fluid was purified by salt precipi- 
tation, anion exchange, and affinity chro- 
matography (1 8). 

All 26 antibodies at a concentration of 
20 FM were screened initially against race- 
mic epoxy-alcohol l b  (synthesis shown in 

Fig. 3. Reagents and conditions for the synthesis of 1, 4, and 5: (a) Montmorillonite K 10, trimethyl 
orthoformate and hexane; (b) Hz, 10% Pd/C, and ethyl acetate; (c) HCI and CH,CN(aq); (d) 1 M 
vinyl-magnesium bromide-tetrahydrofuran (THF), -78" to 25"C, 6 hours; (e) triethyl orthoacetate 
and hexanoic acid, 140"C, 5 hours; (f) lithium aluminum hydride and THF, -78" to 25"C, 3 hours; 
and (g) dimethyldioxirane, 15 min (Me, methyl). Reagents and conditions for X = NHCOCH,: (h) 
Montmorillonite K 10, trimethyl orthoformate, and hexane; (i)  H,, 10% Pd/C, and ethyl acetate; Cj) 
acetic anhydride and pyridine; (k) HCI and CH,CN(aq); (1) 2.5 equivalents 1 M vinyl-magnesium 
b~omide-THF, -78" to 25"C, 4 hours ; (m) triethyl orthoacetate and hexanoic acid 14OoC, 5 hours; 
(n) 2 M lithium borohydride and THF, reflux 14 hours; (o)dimethyldioxirane, 15 min; (p) m-chloroper- 
benzoic acid and ethyl ether(aq), 0" to 25"C, 2 hours (Ac, acetyl); (q) acetic anhydride and pyridine, 
18 hours; (r) 30% HBr-acetic acid, 1 hour; (s) triphenyltin hydride, 2,2'-azobis(2-methylpropioni- 
trile), and benzene, reflux 8 hours; (t) lithium aluminum hydride and THF, -78" to 25"C, 45 min; and 
(u) HCL (catalyst) and CH,CN. 

Fig. 3), and formation of the tetrahy- 
drofuran 4b and tetrahydropyran 5b, (syn- 
theses shown in Fig. 3) products was mon- 
itored by normal-phase high-performance 
liquid chromatography (HPLC) (1 9). This 
assay provided a facile means for identifying 
antibody catalysis. However, gas chroma- 
tography conducted on a chiral-phase gas- 
liquid chromatography column was required 
to cleanly separate isomers 4b and 5b in 
order to confirm the formation of the de- 
sired 5b (20). 

In, the absence of antibody, only 4b was 
formed, in accordance with Baldwin's rules. 
In contrast, two of the 26 antibodies (17F6 
and 26D9) were regioselective catalysts for 
the formation of the anti-Baldwin product, 
5b. The enantioselectivity of product forma- 
tion was studied with a normal-phase HPLC 
column of chiral preparation (21). The 
enantiomers of l b  as well as those of 4b and 
5b were separable on the column (22). 
Antibody 26D9 was the most stereoselec- 
tive. It exclusively utilized only one of the 
two enantiomers of l b  and thereby produced 
only one of the enantiomers of 5b. 

The initial rate of ring closure catalyzed 
by antibody 26D9, when measured as a 

function of substrate l b  concentrations fol- 
lowed Michaelis-Menten kinetics (23). 
The Michaelis constant K,, the maximum 
rate V,,,, and the catalytic rate constant 
kc,, values were 356 FM, 4.6 x 1 0 ~ ~  M 
min-', and 0.91 min-', respectively. 
Comparison of k,,t/k,,,at was not possible 
because in the uncatalyzed reaction forma- 
tion of the six-membered ring 5b was neg- 
ligible under our assay conditions (8). The 
failure to form 5b in the absence of anti- 
body illustrates the potential of the catalyt- 
ic antibodv to facilitate an otherwise unde- 
tectable reaction. 

To determine the stereochemist~of the 
antibody-catalyzed reaction products, the 
antipodes of the starting epoxy-alcohols 
were prepared. The olefin was asymmetri- 
cally dihydroxylated by the method of 
Sharpless et al. (24) and subsequently con- 
verted to the enantiomerically pure epoxide 
(25). With both optically pure isomers in 
hand, it is now possible to determine the 
absolute stereochemical course of the cata- 
lyzed reaction. Antibody 26D9 used only the 
S, S epoxide as a substrate to catalyze forma- 
tion of the pyran ring which, as determined 
by nuclear magnetic resonance of the isolat- 
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ed product 5, has the S, R configuration. 
Thus, the antibody controls both the regio 
and stereochemistry of this reaction. 

Antigen inhibition and substrate speci­
ficity assays were undertaken to investigate 
binding affinity and substrate fidelity of 
26D9. The hapten 6b (Fig. 2) was a potent 
inhibitor of the reaction (26). Potent inhi­
bition by the immunogen been observed in 
other catalytic antibody systems (27). The 
overall specificity of 26D9 has yet to be 
examined in detail. However, our initial 
studies show that this antibody is rather 
indifferent to substitution at the 4-position 
of the phenyl ring in that epoxy-alcohols la 
and lc were also competent substrates. This 
binding promiscuity in the region where the 
hapten is linked to the carrier protein is 
similar to that seen with other catalytic 
antibodies (28) and presumably reflects an 
insensitivity of some antibodies to this re­
gion of the immunogen. 

Much of the potential of classical organic 
chemistry goes wanting but for the ability to 
selectively direct only a few kilocalories of 
energy. In this study, we have overcome this 
problem by using an antibody molecule to 
specifically address multiple parameters that 
appear along the reaction coordinate and 
thereby "reroute" a chemical reaction. 
These antibodies, which have no enzymatic 
or synthetic equivalents, catalyze a highly 
disfavored chemical process while also pro­
viding a chiral environment for the kinetic 
resolution and processing of stereochemi-
cally impure molecules. If these concepts 
and results can be generalized to other dis­
favored chemical processes, antibody cataly­
sis may offer the chemist an additional way 
to control the outcome of many reactions. 
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Transient Turing Structures in a 
Gradient-Free Closed System 

Istvan Lengyel, Sandor Kadar, Irving R. Epstein 
Transient, symmetry-breaking, spatial patterns were obtained in a closed, gradient-free, 
aqueous medium containing chlorine dioxide, iodine, malonic acid, and starch at 4" to 5°C. 
The conditions under which these Turing-type structures appear can be accurately pre- 
dicted from a simple mathematical model of the system. The patterns, which consist of 
spots, stripes, or both spots and stripes, require about 25 minutes to form and remain 
stationary for 10 to 30 minutes. 

T h e  symmetry-breaking, stable, stationary 
structures predicted by Turing (1) in 1952 
to result from coupling diffusion with a set 
of appropriate chemical reactions have at- 
tracted considerable attention as a mecha- 
nism for morphogenesis, not only in biology 
(2, 3) but also in such diverse fields as 
astrophysics (4) and economics (5) .  The 
first unambiguous evidence of Turing struc- 
tures emerged only recently, 38 years after 
Turing's remarkable theoretical work, in 
experiments (6) on the chlorite-iodide- 
malonic acid (CIMA) reaction in an open 
gel reactor. These and subsequent experi- 
ments (7, 8) have used an experimental 
configuration in which different reactants 
are fed into the system from opposite ends 
of the reactor, producing concentration 
gradients. Turing's model (I) envisions a 
system without imposed gradients in which 
the key reactants are maintained at uniform 
concentrations throuehout the medium. In " 
fact, nearly all mathematical analysis of 
Turing structures is based on such a ~icture. - 
although for practical reasons all experi- 
ments to date have used imposed gradients. 
We report a set of experiments in which 
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Turing-type structures have been generated 
in a closed system without externally im- 
posed gradients. Because the system is 
closed, the patterns are necessarily tran- 
sient. 

Mechanistic investigation of the CIMA 
system (9) led to the discovery that chlo- 
rine dioxide (C102) and iodine (I,) play key 
roles in the dynamical behavior of this 
reaction and that Turing structures can also 
be obtained in a system containing these 
two species and malonic acid (MA) (10). 
The behavior is well described by a simple 
two-variable mathematical model (9). 
Analysis of this model and of more general 
models shows that it is possible to calculate 
the position and depth of quasi-two-dimen- 
sional Turing structures in the usual exper- 
imental configuration by taking into ac- 
count the gradient, thereby making the 
model parameters position-dependent (1 I). 
The success of this approach suggests that, 
just as one can treat imposed gradients by 
allowing the concentrations of "constant" 
reagents to vary in space, one should be 
able to predict the emergence of transient 
Turing structures in a gradient-free, closed 
system from knowledge of the concentra- 
tions at which a Turing instability occurs in 
a gradient-containing open system. 

In Fig. 1A we show for an open system 
the spatial dependence of the concentra- 
tions of the reactants, where x = 0 is the 
boundary at which C10, and MA enter the 
gel and I, enters at x = 1. The starch 

(Fisher, soluble) concentration is uniform 
throughout the gel. The range of Turing 
instability, which occurs whenever the 
functions of concentration K', H,, and H, 
are related by K' > H, > H, > 0 (12), is 
shown in Fig. 1B. Turing structures appear 
only in a narrow range along the spatial 
coordinate. Initial concentrations in this 
range should be capable of generating Tur- 
ing patterns in a batch reactor. In earlier 
open-system experiments, polyacrylamide 
gel was used to provide a convection-free 
medium. However, its presence is not es- 
sential. Agladze et al. (13) obtained Turing 
structures without gel in the presence of 
starch an open capillary tube reactor. 

In an open spatial reactor, Turing struc- 
tures in the CI0,-I,-MA reaction develop 
over several hours. During their develop- 
ment, their qualitative appearance (hexa- 
gons or stripes or both) does not change, 
but they move in the medium. Eventually, 
their motion stops, and they remain sta- 
tionary until the concentration of input 
reactants leaves the region of Turing behav- 
ior. Structures can develop more rapidly in 
a batch system, because it is not necessary 
to wait until a stationary concentration 
gradient is established. In a closed system, 
zero flux boundary conditions apply, be- 
cause there is no mass exchange at the 
boundaries. The structures, however, can- 
not be truly stationary, because the reac- 
tants are consumed. 

Several other factors are crucial for gen- 

Flg. 1. (A) Concentration gradients imposed 
by the boundary conditions and (6) the range 
of Turing instability in the presence of this 
gradient. [CIO,], = 1 x M, [I,], = 8 x 

M, [MA], = 1 x M, rate constants 
(9): kl = 6.2 x S-', k2 = 9.0 X 10' M-' 
S-', k3 = 9.2 x 10-5 S-l ,  h = 10-i4 M ~ ,  D~ = 
7.0 x cm2 s-', D, = 7.0 x cm2 S- l ,  
K'[S] = [SI3]/([1][I2]) = 6.0 x l o4  M-I at 4°C. 

SCIENCE VOL. 259 22 JANUARY 1993 


