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Measurements of the local dynamics on the surface of a fluid undergoing complicated 
motion allow prediction of the measured fractal dimension of an aggregate of passive, 
floating tracers. This realization of a strange attractor in physical space is a rare instance 
where there is a firm quantitative connection between the dimension of an experimentally 
observed fractal spatial pattern and the process producing it. 

Fractals are scale-invariant geometric ob- 
jects; any piece of a fractal, appropriately 
magnified, resembles the whole, at least 
statistically. Such geometric figures are 
characterized by a dimension which, unlike 
that of a familiar Euclidean figure, is gener- 
ally not an integer ( I ) .  Many physical 
processes have been shown to produce phe- 
nomena that. while not scale-invariant in 
an absolute mathematical sense, are self- 
similar over a very wide range of scales [for 
many examples, see ( 2 4 ) ) .  Such approxi- 
mate, or physical fractals are also character- 
ized by the noninteger dimension of the 
corresponding mathematical fractal. Exam- 
ples of physical fractals frequently discussed 
are clouds. coastlines. crack orofiles. elec- 
trical discharges, and 'aggrega;es forked by 
diffusion-limited processes. 

Although physical fractal spatial pat- 
terns are frequently observed, a quantita- 
tive connection between the measured nu- 
merical value of the fractal dimension and 
the underlying physics of the process has 
largely been lacking (5). This lack of con- 
nection, while not reducing the utility of 
fractals for phenomenological characteriza- 
tion, has led to skepticism about the ulti- 
mate meaningfulness of fractal descriptions 
in ohvsics (6-8). . , 

On the 'othkr hand, the mathematical 
fractals that appear as strange attractors of 
nonlinear systems have dimensions that are 
closely related to the dynamics of the sys- 
tem. The information dimension of a 
strange attractor can be predicted on the 
basis of the Lyapunov exponents of the 
system. (Roughly speaking, the information 
dimension is the fractal dimension of the 
highest density regions of the strange at- 
tractor; see Eq. 5 for a precise definition.) 
The Lyapunov exponents describe the 
tracking of typical neighboring trajectories, 

and are fundamental quantities that, for 
example, define whether or not a system is 
chaotic. However, the strange attractor of a 
chaotic svstem is an abstract geometric ob- - 
ject inhabiting the phase space of the system 
as opposed to the fractals of interest here, 
which inhabit the physical configuration 
space and can in principle be seen "by eye." 

We have develooed an ex~eriment that 
produces physical fractal spatial patterns on 
the surface of a moving fluid. By consider- 
ing the movement of passive tracers on the 
surface of the fluid as resulting from a 
random dynamical map, we identify the 
phase space of the dynamical system with 
the physical space of the fluid surface. We 
can measure Lvaounov exoonents for the , & 

map, and can predict the geometric fractal 
dimension exhibited by the aggregate of 
tracers. These results constitute (i) the ~, 

experimental realization of a strange attrac- 
tor in physical space, (ii) a rare quantitative 
connection between the dimension of a 
specific experimental fractal spatial pattern 
and the underlying physical process, and 
(iii) a demonstration that the theory of 
random maps is a useful model of compli- 
cated fluid motions. In particular, we quan- 
titatively relate the measured Lyapunov 
exponents of the particle trajectories to the 
dimension of the observed fractal spatial 
pattern. Thus, we establish the dynamical 
origin of the fractal pattern. We believe 
that similar processes may underlie many 
other naturally occurring fractal spatial pat- 
terns. If so, the observation of fractal prop- 
erties can provide insight into underlying 
physical processes, in addition to phenom- 
enological characterization. 

Theoretical backeround. In this set- - 
tion, we review aspects of dynamical sys- 
tems theory relevant to the determination 
of fractal dimensions. We will consider 
two-dimensional, discrete-time dynamical 
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denotes the time step. Two cases can be 
distinguished: the standard theory of dy- 
namical systems deals with the case where F 
is independent of n; and the theory of 
random maps, which deals with the case 
where for each value of n, the map F is 
chosen at random from a family of maps 
according to some rule. Further, we are 
interested in the situation where F is not 
area-preserving in the plane, and in partic- 
ular where the image of a tiny area typically 
shrinks on repeated applications of the sys- 
tem in Eq. 1: 

1 area(R,) 
a lim - In - 

n+- n [ area(Ro) ] < 0 (2) 

where R, is an initial small region at time 
zero, and R,, is the region it maps to at time 
n. The quantity a is referred to as the 
dissipation of the system, and should not be 
confused with the friction-induced damping 
of velocity in a viscous flow. 

The relative stability of typical trajecto- 
ries described by Eq. 1 is measured in terms 
of two Lyapunov exponents, The largest 
Lyapunov exponent, A1, is the growth rate 
of a generic infinitesimal vector giving the 
displacement between two infinitesimally 
separated points x, and x, -+ 6&. For a 
typical such vector 6(, at an initial point x, 
(with infinitesimal length I16<oll), the largest 
Lyapunov exponent is defined as 

where the infinitesimal displacement vector 
at time step n, 65,,, is given by the equation 
of variations associated with the system 
(Eq. 1): 

The matrix DF(x) is the Jacobian deriva- 
tive of F evaluated at the point x. The 
smaller Lyapunov exponent, A2, is defined 
in terms of Eqs. 2 and 3 by 

Geometrically, the Lyapunov exponents 
can be intermeted as follows. Given an 
initial infinitesimal circle of radius 6r, for 
very large n the image of the circle under 
F(,) will be an ellipse of semimajor and 
semiminor axes of the order of Grexp(nk,) 
and 6rexp(nA2), respectively. 

A system is defined to be chaotic if A,  > 
0, in which case typical nearby trajectories 
will diverge from one another exponentially 
fast. However, if a < 0, a cloud of initial 
conditions iterated together under Ea. 1 - 
must eventually occupy a set of arbitrarily 
small area. Such a spatially distributed, 
zero-area set on which neighboring trajec- 
tories diverge from one another exponen- 
tially fast is referred to as a strange attractor; 
it is a fractal with dimension less than two 
(and hence, zero area). In the standard 
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case, where F is independent of n, the 
strange attractor is a fixed object in the 
phase space, and can be visualized by fol- 
lowing a single trajectory for a long time 
(this is the usual procedure for producing 
the familiar computer graphics of strange 
attractors). In the case of random maps 
such as we will consider here, however, the 
strange attractor changes shape and posi- 
tion in phase space from iteration to itera- 
tion, and can only be visualized by simul- 
taneously following a cohort of trajectories. 

A "natural probability measure" is sup- 
ported on the strange attractor. In the case 
of random maps, the natural measure of a 
region in phase space (on a given value of 
n) is defined as the proportion of initial 
conditions, originally distributed at random 
at time -m, that fall in the region in the 
limit m + + m . This natural measure is the 
basis for defining the information dimen- 
sion dl of the strange attractor. For a grid of 
boxes of side E covering the strange attrac- 
tor, let p, be the non-zero natural measure 
of the ith box. The information dimension 
of the attractor is then defined (9) to be 

where N(E) is the number of boxes of side E 

with non-zero measure. In practice, dl is 
usually estimated as the slope of a plot, over 
a range of small E, of the information sum 
in the numerator of Eq. 5 versus the loga- 
rithm of E. Note that because dl is defined 
in terms of the natural measure of different 
parts of the attractor, it is not particularly 
sensitive to miscounting or missing ex- - - 
tremely low probability boxes. For experi- 
mental purposes, this makes it superior to 
the usual box-counting dimension do, 
which considers all boxes, containing any 
amount of natural measure. eauallv. The 

, &  z 

relationship between various fractal dimen- 
sions is detailed in (1 0). . , 

A dynamical quantity, the Lyapunov 
dimension for the strange attractor of Eq. 1 
is given in terms of the Lyapunov expo- 
nents of Eqs. 3a and 4 by the Kaplan-Yorke 
formula (1 0, 1 1): 

A theorem due to Ledrappier and Young 
(12) states that for random maps, under 
very general conditions, d, = dl, and pro- 
vides a strong link between the important 
dynamical properties ~f the system, which 
can be viewed as the physics of the process, 
and the static geometric properties of the 
fractal produced by the system. 

Experimental system. Incompressible 
fluid flows are usually considered incapable 

of producing fractal concentrations of pas- 
sively convected tracers, because the in- 
compressibility condition on the fluid ve- 
locity, V.v = 0, prevents an initial volume 
of tracers convected with the fluid velocity 
v, from achieving a zero volume by follow- 
ing the flow (13-15). If, however, the 
tracers are particles floating on the fluid 
surface, they respond only to the fluid flow 
in the surface, and not to the flow normal 
to the surface. Denoting the fluid surface by 
z = 0, and the coordinates in the surface by 
(x,y), we see that the flow in the surface 
can be compressible even though V.v = 0. 
In particular, [du,ldx + dv,ld~]l,=~ = -du,l 
a~l,=, + 0, and a dissipative two-dimen- 
sional flow is possible. Recent theoretical 
work suggests that surface flows with com- 
plicated time dependence could be treated 
with the theory of random maps (1 6, 17). 
As a result, it has been argued (1 7) that in 
many diverse physical situations, particles 
floating on the surface of a fluid in irregular 
large-scale motion may assume a fractal 
distribution. 

Our apparatus for investigating this pos- 
sibility experimentally is shown schemati- 
cally in Fig. 1. The bulk flow is produced by 
pumping the working fluid (sucrose solution 
with specific gravity of about 1.2) over an 
annular sill, and recovering it from the 
center of the enclosed basin. With perfect 
symmetry, steady pumping producing a 
steady flow would lead to convergence of 
any passive tracer confined to the surface (a 
floater) at a point above the fluid recovery 
port. However, fluid instabilities produce 
recirculation cells on the surface of the 
fluid. Steady pumping producing a steady 
flow in reality would drive passive floaters 
onto one or more closed curves or fixed 
points [the Poincar6-Bendixon theorem 
precludes a steady two-dimensional vector 
field from producing a strange attractor 
(la)]. Instead, we pump the fluid in a 
sequence of equally energetic pulses (that 
is, for the same interval and at the same 
speed), allowing the fluid to come to rest 
between pulses. This iterative process takes 
each point in a two-dimensional region 
(the stationary fluid surface) and maps it 
onto another point on the same surface. 
Thus, the pumping action produces a phys- 
ical analog to the mathematical system of 
Ea. 1. The fluid instabilities and other 
perturbing factors make each pulse different 
in detail from all of the others. although - 
they are statistically identical. In particular, 
the axis of the nascent recirculation struc- 
ture changes randomly from iteration to 
iteration. Thus we treat the physical system 
as an approximation to the random map 
version of Eq. 1. We can control the 
pumping rate and interval, the viscosity of 
the working fluid (by controlling its tem- 
perature), and the height of the fluid sur- 

Lg-JJ--$--$Q :< 
UV lamps 

Fig. 1. Schematic of experimental setup. Su- 
crose solution flows upward in outer cylinder, 
across the annular sill and downward into re- 
covery basin. The experimental flow is pulsed, 
adding inertial effects to fluid instabilities. Opti- 
cal baffling prevents visible specular reflections 
of ultraviolet lamps from entering camera field 
of view. 

face above the sill. 
As a physical surrogate for a probability 

distribution of initial conditions, we use 
small fluorescent particles (4-p,m plastic 
spheres of specific gravity about 1.05; Duke 
Scientific 351 that are constrained to the 
fluid surface by a combination of buoyancy 
and surface tension. These are initiallv 
distributed approximately uniformly (and 
with a fractional coverage area of about 1 
percent) over the fluid surface. A sequence 
bf pumping pulses produces a complicated 
aggregate pattern of particles, which is vi- 
sualized by exciting the fluorescent dye in 
the spheres with ultraviolet light and imag- 
ing the distribution of particles with a 
charge-coupled device camera (Kodak 
KAF1400 CCD: 1317 x 1035 ~ixels  with 
12-bit intensity resolution; each pixel opti- 
cally subtends an approximately square area 
110 p,m on a side at the fluid surface). Tests 
with known quantities of particles distrib- 
uted uniformly confirm that the intensity of 
light measured in a given camera pixel is 
proportional to the number of particles on 
the optically subtended fluid surface. Nor- 
malizing the spatially integrated light inten- 
sity allows translation of the gray level in a 
pixel to a probability value. Typical large- 
time particle distributions for a particular 
set of flow parameters are shown in Fig. 2. 

Measurement of information dimen- 
sion. We measure the information dimen- 
sion of the particle distribution as follows. 
Using the pixel lattice imposed by the CCD 
camera as the €-grid discussed above. we 
calculate the infokation sum in Eq. 5 for a 
sequence of square box sizes: 1 ~ i x e l  x 1 
pixel, 2 pixels x 2 pixels, . . ., 128 pixels 
x 128 pixels. An estimate of the error in 
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Fig. 2. Radiometrically inferred distribution of tracer particles after experiment in detail at each iteration, but retain the same information dimension. Black 
has settled into steady-state behavior (A). (B) corresponds to iterations bar in (6) is 5 mm. False color scale indicates range of pi in Eq. 5 for E equal 
n = 25 and n = 35, respectively, in Fig. 5. The particle distributions differ to one pixel (-100 pm), running from 0 (black) to 1.2 x (blue). 

Fig. 3. Typical scaling of the information sum 
(numerator in Eq. 5) as box side length E is 
varied. The power-law relationship extending 
over two orders of magnitude justifies approxi- 
mating the particle aggregate as a fractal. The 
slope of the scaling line gives the fractal dimen- 
sion, d, = 1.73 0.03, which is statistically 
distinct from nearest integer (base-2 logarithms 
are used on both axes). These data correspond 
to the particle distribution shown in Fig. 2A. 

the information sum was obtained at each 
box size by using a subset of the entire 
image as the sampled measure, and random- 
ly shifting the origin of the grid to calculate 
new values of the information sum. The 
scatter in these values was used to estimate 
the error at the corresponding box size. 
This is probably an overestimate, because 
the image subsets had fewer boxes of a given 
size than the full image, and less averaging 
took place in the sum. The information 
dimension was estimated as the magnitude 
of the best-fit slope of a plot of information 
sum versus loge; the standard error in the 

slope parameter was taken as the uncertain- 
tv in the information dimension. 

The results of this analysis for the parti- 
cle distribution in Fig. 2A are shown in Fig. 
3. The information sum shows linear seal- 
ing over more than two orders of magnitude 
in grid size. The measured fractal dimension 
is 1.73 k 0.03. The statistically significant 
departure from the integer 2, together with 
the large scaling range, justifies the inter- 
pretation of the particle distribution as an 
approximate or physical fractal. The infor- 
mation dimension of the particle distribu- 
tion stabilizes within a few dozen iterates, 
although the individual particle distribu- 
tions are comuletelv different in detail. This 
in itself is evidence that the fractal dimen- 
sion contains dynamical information. 

We note that Fig. 2, which shows some 
light entering most camera pixels, seems to 
be at odds with our earlier statement that a 
strange attractor should have zero area. 
Several factors contribute to this observa- 
tion. First, the tracer particles approximat- 
ing the probability mass do take up finite 
area: we can onlv houe for self-similaritv , . 
over a range of length scales (all much 
longer than the particle size). Second, the 
finite resolution of the CCD camera pre- 
cludes any possibility of our data showing 
zero-area characteristics. Finally, it is pos- 
sible to have strange attractors with integral 
box-counting dimension (that is, they are 
area-filling) and smaller, non-integral infor- 
mation dimension (1 0). 

Approximation of Lyapunov expo- 
nents. Estimating Lyapunov exponents on 
chaotic attractors via computer evolution of 
a known mathematical system is usually 
done with the Jacobian matrix of the map 
F, evaluated along a typical trajectory. We 

have no practical way to measure the Jaco- 
bian in our exueriment. so we use an 
approximate method based on the geomet- 
ric interpretation of Lyapunov exponents 
discussed above. Starting with a particle- 
free surface at rest, we place small, circular 
distributions of particles on the fluid sur- 
face, image the surface, and pulse the flow 
once. The ~reviouslv circular distributions. 
now approximately elliptical, are imaged 
again (see Fig. 4). The single-step stretch- 
ing L:, and area reduction are mea- 
sured by comparing thresholded images of 
the circular distributions with the deformed 
distributions, using an image-processing 
program. The single-step stretching L z x  is 
defined as the ratio of the maximum linear 
dimension of the distorted cloud above 
threshold to the average diameter of the 
original circular distribution. The area re- 
duction I(') is defined as the ratio of the 
number -of pixels above threshold in the 
distorted cloud to the number of pixels 
above threshold in the original circular 
distribution. After imaging, the deformed 
distributions are removed with suction and 
replaced with new, circular distributions, 
and the process is repeated. 

The stretching LE, is not exactly what 
is needed to estimate the largest Lyapunov 
exponent, because, on a given iterate, the 
direction of maximum stretching is not 
necessarily along the unstable manifold of 
the fiducial point at the center of the 
original particle distribution. We assume 
that on a given iterate the unstable mani- 
fold is oriented at random to the direction 
of maximum stretching. We estimate a 
single-step contribution Lf) to the overall 
n-iterate stretching L;, by taking a random- 
ly oriented radius of an ellipse of semimajor 
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axis L z ,  and semiminor axis J(')/L.L. Af- 
ter n iterations the largest Lyapunov expo- 
nent hl, the dissipation a and their respec- 
tive uncertainties are then estimated as 

n 

and 

where the d s  are the sample standard de- 
viations of the quantities in parentheses. 
This approximate procedure has been tested 
numerically on analytical maps with strange 
attractors of approximately the same infor- 

mation dimension as those produced exper- 
imentally [the Ikeda-Hammel-Jones-Ma- 
loney map (19)], and has been shown to 
produce good results. 

The Lyapunov dimension of the experi- 
mental attractor was estimated (with n = 
105 iterations) by substituting Eq. 4 into 
the Kaplan-Yorke formula (Eq. 6), with the 
experimental estimates of the largest Ly- 
apunov exponent and the dissipation given 
by Eqs. 7a and 8a. The uncertainty in the 
Lva~unov dimension was calculated with , . 
propagation of errors in the modified Kap- 
Ian-Yorke formula and the estimated uncer- 
tainties given by Eqs. 7b and 8b. 

Comparison of information and Ly- 
apunov dimensions. In Fig. 5, we show the 
dynamical evolution of the measured value 
of the information dimension of the fluo- 
rescent particle distribution for a typical set 
of flow parameters. The fractal dimension 
of the particle distribution starts at 2, as 

Fig. 4. Initial small, circular particle distributions (top row) are distorted (bottom row) after one 
interval of pumping (one iteration of the mapping in Eq. 1). Measurement of the distortion allows 
approximation of Lyapunov exponents for the system of Eq. 1, which is used to model the surface 
flow. Small bar in top left panel is 1 mm. 

expected for a smooth two-dimensional dis- 
tribution. After relatively few iterations the 
measured dl has dropped to a value less 
than, and statistically distinct from, the 
integer 2. The fractal dimension measure- 

Fig. 5. Measured information dimension of parti- 2.0 
cle aggregate at different time steps n in the 
random map model. Iterates from n = 2 to n = 14 
are not shown, because the particle distributions '"- 

for those times do not evidence good scaling 
properties characteristic of fractals; the fractal 1.8- 

- 
ment stabilizes around 1.73. Also shown in 
Fig. 5 is the confidence interval for the 
Lyapunov dimension (dL = 1.74 + 0.02) 
for the same flow parameters, calculated 
from the dynamics of the flow as discussed 
above. The consistency of these quantities 
supports the idea that the static geometry of 
the fractal contains information about the 
dynamics of the underlying process. 

Conclusion. We have shown that, at 

o d, (With fit ~IUI) 
---. I ~ c a l t i ~ ~ a I  

least under some circumstances, the fractal 
dimension of a physically observed object 
quantitatively reflects the physical process 
that produced it. This observation supports 
continued investigation of fractal charac- 
terizations in physics. Although our work 
provides no general prescription for obtain- 
ing predictions of fractal dimensions for 
arbitrary physical phenomena, the diversity 
of the phenomena in which fractal charac- 
terizations have been obtained argues 
against any such general prescription. How- 
ever, we can make the following observa- 
tion: our modeline has been at a relativelv 

approximation is not yet satisfied up to the reso- s -------------+--$-- 
lution of the experimental system for these values - 
of n. This is not inconsistent with the random map 
model, which applies to large values of n. Dotted ,, lines show the one standard deviation confidence 
interval for the Lyapunov dimension predicted 
from the local dynamics of the surface flow. 
Consistency with the asymptotic information di- 0 1 0 2 0 3 0 4 0 5 0 6 0  

mension supports the random map model of the n 

flow, and connects the measured fractal dimension with the physics of the formative process. 

- 
high level of abstraction, focusing on gener- 
ic local dynamics, rather than on, for ex- 
ample, the Navier Stokes equations them- 
selves. The success of this approach suggests 
that the connection between dimension 
and physics may require use of unconven- 
tional measures of the physical process, 
such as Lyapunov exponents. 
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