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Rate and Mechanism of Nonhomologous 
Recombination During a Single Cycle of 

Retroviral Replication 

Jiayou Zhang and Howard M. Temin* 
Oncogenes discovered in retroviruses such as Rous sarcoma virus were generated by 
transduction of cellular proto-oncogenes into the viral genome. Several different kinds of 
junctions between the viral and proto-oncogene sequences have been found in different 
viruses. Asystem of retrovirusvectors and a protocol that mimicked this transduction during 
a single cycle of retrovirus replication was developed. The transduction involved the 
formation of a chimeric viral-cellular RNA, strand switching of the reverse transcription 
growing point from an infectious retrovirus to the chimeric RNA, and often a subsequent 
deletion during the rest of viral DNA synthesis. A short region of sequence identity was 
frequently used for the strand switching. The rate of this process was about 0.1 to 1 percent 
of the rate of homologous retroviral recombination. 

Highly oncogenic retioviruses have incor- 
porated cellular proto-oncogene sequences 
between their long terminal repeats (LTRs). 
Most hypotheses for the origin of highly 
oncogenic retroviruses from cellular proto- 
oncogenes and replication-competent retro- 
viruses propose an initial formation of a 

McArdle Laboratory for Cancer Research, University 
of Wisconsin-Madison, Madison, WI 53706. 
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chimenc retrovirus-proto-oncogene RNA 
(1, 2). This chimeric RNA results either 
from transcription of DNA after a deletion 
that fuses 5' viral sequences to cellular se- 
quences or from readthrough transcription, 
which is often followed by abnormal splic- 
ing. An additional recombination step is 
then needed to add 3' viral sequences and to 
form a highly oncogenic retrovirus. The 3' 
viral-proto-oncogene junctions, when com- 
pared to the parental viral and proto-onco- 
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gene sequences, fall into three groups: those 
having no sequence identity, those having a 
short sequence identity, and those having an 
insertion (3). Nonhomologous retroviral re- 
combination has been studied by transfec- 
tion either of a truncated viral DNA, fol- 
lowed by infection with a replication-com- 
petent virus (4, 5), or of a replication- 
competent viral DNA with a selectable 
marker on its 3' end (6). These systems 
allowed more than one cycle of replication 
and did not allow unambiguous determina- 
tion of the structure and amount of the 
precursors to recombination (7). 

To determine the rate and mechanism of 
nonhomologous recombination during a sin- 
gle round of retroviral replication, we devel- 
oped a model system. Plasmid pJZ2 11 (Fig. 
1) (8), a vector derived from spleen necrosis 
virus (SNV) and Moloney murine leukemia 
virus (MLV) (9, lo), contains a deletion in 
the U3 region of its 3' SNV LTR and an 
Xho I restriction site linker in the deletion 
site. This vector also contains a truncated 
MLV vector between the two SNV LTRs, in 
the opposite transcriptional orientation to 
the SNV LTRs. In this truncated MLV 
vector, the hygromycin resistance gene 
(hygR) is expressed from an MLV LTR, and 
a herpes simplex virus thymidine kinase 
(TK) termination sequence replaces the 3' 
MLV LTR, which is completely deleted. 

DNA of pJZ2 11 was transfected into the 
SNV C3A2 helper cell line (containing the 
SNV gag-pol and enw genes) (I I) (Fig. 1). 
The cells were selected for hygromycin resis- 
tance (HygR), and the HygR cells were 
pooled (12) and designated step 1 cells. We 
used virus from step 1 cells to infect the 
MLV (xenotropic) helper cell line PG13 
(containing a gibbon ape leukemia virus 
envelope) (13, 14). Infected cells were se- 
lected for HygR, and individual clones were 
isolated and designated step 2 cells (15). 
The titers of virus from step 1 cells on PG13 
were low [about ten colony-forming units 
(CFU) per milliliter], as a result of the low 
susceptibility of mouse cells to infection by 
SNV (16). 

To test whether any virus capable of 
forming HygR colonies was produced by the 
step 2 cells, we used the supernatant medium 
(3 ml) from each step 2 cell clone to infect 
Dl7 cells (a dog osteosarcoma cell line) and 
the infected celk were selected for HygR. No 
HygR colonies were detected (1 7). Because 
of the U3 deletion in SNV, there is no 
transcription from the SNV 5' LTR after 
one round of replication (9). 

An MLV vector (pLN) (1 0) containing a 
neo gene was transfected into the arnphotropic 
MLV PA317 helper cell line (Fig. 1) (18). 
The cells were selected for neomycin resis- 
tance (NeoR) , and the NeoR cells were pooled 
(1 9). We used virus (3.2 x lo4 CFU/ml) 
from the PA3 17 cells transfected with pLN to 

superinfect the step 2 cells containing JZ211, 
and the infected cells were selected for NeoR. 
Two clones of NeoR cells were isolated from 
each step 2 cell clone; these clones were 
designated step 3 cells. Each step 3 cell clone 
contained a single JZ2 11 provirus and a single 
LN provirus (20). 

The supernatant medium of each step 3 
clone was used to infect D 17 cells (the target 
cells) (2 1) and the infected cells were select- 
ed separately for HygR and for NeoR. The 
resulting resistant cells were designated step 
4 cells. H y 8  colonies form only when non- 
homologous recombination has occurred be- 
tween the JZ211 and LN genomes so that 
the hyg gene is between two LTRs (Fig. 1, 
step 4). The target cells do not contain viral 
gag-pol and env gene products for retrovirus 
replication, and no progeny virus was re- 
leased from them (22). Therefore, the vec- 
tor virus had undergone only one cycle of 
replication. The NeoR titers were about 
lo5-fold larger than the HygR titers, but all 
step 3 clones produced some virus capable of 
forming HygR colonies (Table 1). 

In order to evaluate the ratio of hyg RNA 
to neo RNA, we determined the amounts of 
hyg and neo RNAs in step 3 cells and virions 
using dot blot hybridization (23) (Table 2). 
In most of the pools of virions, the ratio of 
hyg RNA in virions to hyg RNA in cells 
(Table 2) was higher than the corresponding 
ratio for neo RNA (Table 2). Therefore, the 
packaging of viral RNA does not discrimi- 

nate against viral RNA without U3 and R 
(terminal repeat) sequences at the 3' end. 

The relative ratios of neo RNA to hyg 
RNA in step 3 viruses were determined 
(Tables 1 and 2), the ratios of virions con- 
taining heterodimeric RNA to the vir- 
ions resulting in a NeoR colony were calcu- 
lated (24), and the rate of nonhomologous 
recombination (overall rate of formation of 
HygR colonies) during a single retroviral 
replication cycle was determined (24) (Ta- 
ble 1). The overall rate of nonhomoloeous - 
recombination during a single retroviral rep- 
lication cycle is about 5 x 

The sequences of the junctions between 
JZ2 1 1 and LN in recombinant (Hy8) pro- 
viruses in step 4 cells were determined. 
DNA from 56 individual step 4 colonies was 
isolated. The DNA sequences at the hyg- 
MLV junctions were amplified with the 
polymerase chain reaction (PCR) with two 
primers: one primer was located upstream 
from the 3' end of the- hyg gene, and the 
other primer was located in the MLV U5 
region (Fig. 1) (25). Fifty-two of the 56 
genomic DNA samples were successfully am- 
plified. The sequences of 31 of these ampli- 
fied framents were determined. - 

The junction sequences between JZ2 11 
and LN can be divided into three groups. 
The largest group, designated the ppt-type 
(polypurine tract-type) .because these re- 
combinants contain sequences from LN up 
to just before the ppt sequence next to the 3' 

Fig. 1. Outline of an experimental AU3<wol) Hind ln ECO RI 
approach for the determination of 
the rate and mechanism of non- pJU11 

MLV MLV 
homologous recombination dur- L 

ing a single cycle of retroviral 
replication. Plasmid backbone 
sequences are not shown. The 
transcriptional orientations of SNV 
and MLV are shown by the long, 
thin arrows. The large, open ar- 
rowhead under the hyg gene rep- 
resents the location of the PCR 
primer Hyg 1658. The large ar- 
rowhead under the 3' LTR of pLN 
represents the location of the pCR 
primer MLV U5 709, Transfections 
are indicated as a test tube, and 
infections are indicated as a vir- 

ion. The different backgrounds 
represent the indicated cell lines. 
SV, late polyadenylation signal of 
simian virys 40; JI and E, encap- 
sidation sequences of MLV and 
SNV, The lines in the LTR repa- 
rate U3, R, and U5 regions. ................................................... 
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Table 1. Assay of step 3 clones on D l  7 cells. ND, not determined 

Clone HygR NeoR HygR/NeoR hyg/neo 
(CFU) ( lo5 CFU) (lo-5) (RNA)* 

Ratet 

0.3 1.5 x lo-5 
0.1 5.0 x 
0.4 7.0 x 
0.4 8.4 x 1 0 4  
0.8 5.3 x 1 0 - ~  
0.5 1.4 x 1 0 4  
ND 
ND 

Average 4.8 x lo -5  
*Viral neo and hyg RNAs from step 3 cells (Table 2) were analyzed as described (23). ?The. rate of 
nonhomologous recombination was determined as described (24). 

Table 2. Relative amounts of hyg and neo ple, clone 44) contained an insertion of 2,6, 
RNAs in step 3 cells and virions (23). V, virus; and 30 bp between the 52211 and LN 
C, cell. sequences. The inserted sequences of 6 or 30 

bv from the last two clones are not vresent in 
~ Y Q  neo 

Clone 
v C VIC v C VIC 

LTR, comprised 17 of 31 step 4 clones 
analyzed. The junctions of ppt-type recom- 
binants consist of the following: (i) all 112 
bp from JZ211 after the hyg stop codon and a 
variable length (0 to 93) of pol~adenylate 
[poly(A)] sequence, followed by the whole 
sequence of the LN 3' LTR (Fig. 2A, pptl 
U3); (ii) some part of the hyg translated 
region up to a run of purines, followed by the 
MLV LTR (purine sequencelU3); or (iii) 
some part of the hyg translated region and an 
inserted sequence (not present in LN or 
JZ211) ending with a purine-rich stretch, 
followed by the MLV LTR (Fig. 2A, insert). 

The second group, designated the gener- 
al-type, comprised 10 of 31 step 4 clones 
analyzed. The junction of general-type re- 
combinants consists of different lengths of 
the 3' end of 52211 attached to different 
regions of the LN sequence upstream of the 
MLV 3' LTR and all of the 3' LTR. One of 
the ten general-type recombinants formed 
without the use of a short region of sequence 
identity (Fig. 2B, clone 7'). Six of ten 
general-type recombinants (Fig. 2B shows, 
as an example, clones 7 and 41) used a short 
region of sequence identity, 5 to 8 bp in 
length, between JZ211 downstream of hyg 
and in the 3' end of the neo sequence in LN 
(26). Two pairs of different clones (7,4 1 and 
21, 29) used the same short regions of 
sequence identity for recombination, which 
indicates that there are hotspots for recom- 
bination (27). Three of ten general-type 
recombinants (Fig. 2B shows, as an exam- 

LN orJZ211. 
The third group, designated the unde- 

fined-type, comprised 4 of 31 step 4 clones 
analyzed. The 5' end of these recombinants 
consisted of different lengths of the 3' end of 
JZ211 and a deleted LN 3' LTR. Two of the 
four undefined-type recombinants contained 
a short sequence (2 to 5 bp) inserted be- 
tween the JZ2 11 and LN sequences (Fig. 2C 
shows, as an example, clone 8'). One of the 
four undefined-type recombinants had 5 bp 
of sequence identity between 5221 1 down- 
stream of hyg and the LN 3' LTR (Fig. 2C, 
clone 20'). Clone 32 (Fig. 2C) contained all 
112 bp from JZ211 after the hyg stop codon 
and 221 bp downstream from the TK termi- 
nation sequence in 5221 1, followed by the 3' 
LTR of LN with the first 16 bp deleted (Fig. 
3B, undefined-type with insertion). This 
sequence indicated that clone 32 was a 
recombinant between LN and a readthrough 
transcript of JZ211. The position at the 
junction in the HygR provirus sequence that 
diverges from the LN sequences is called the 
leaving site. The leaving sites are indicated 
for each clone in Fig. 2, A through C, and 
are summarized in Fig. 2D. The LN leaving 
sites cluster in three short regions in the 3' 
half of the vector. 

The entire sequence insertion in clone 44 
(30. bp) is not in the GenBank-European 
Molecular Biology Laboratory libraries (28). 
However, the sequence insertion between 
52211 and LN in clones 10 (Fig. 2A) and 44 
(Fig. 2B) contained a 14-bp identity (under- 
lined in Fig. 2A). This 14-bp identity was 
found in the dih~drouridine arm of lysine 
and phenylalanine tRNA sequences. Clone 
10 and 44 step 4 cells were infected with 
viruses from different step 3 cells (step 3 cell 
lines, 5-1 and 5-2). However, these two step 
3 cell lines were developed from the same 
step 2 cells (step 2 cell line 5), which 
suggests that the 14-bp identity resulted from 
a readthrough transcript. 

To form a recombinant between JZ211 

and LN, the chimeric 02211 or HygR) and 
viral (LN or NeoR) RNAs must be co- 
packaged. After infection, the growing point 
of synthesis of the DNA complementary to 
viral RNA, minus-strand DNA, jumps from 
the viral RNA to the chimeric RNA (Fig. 
3A). The 5' end of U3 is a hotspot for this 
jump, but there are other hotspots as well 
(Fig. 2D). When the growing point leaves 
from the 5' end of U3 just before the ppt and 
jumps to the poly(A) sequence of the chi- 
meric RNA, a ppt recombinant results. 
When the growing point leaves from the 5' 
end of U3 just before the ppt and jumps to a 
purine-rich sequence [rather than the 
poly(A) sequence], a ppt recombinant with 
a purine sequence results. When the growing 
point leaves from the 5' end of U3 just 
before the ppt and jumps to a readthrough 
transcript of the chimeric RNA, an insertion 
results. When the reverse transcription 
growing point transcribes the whole 3' LTR, 
continues to the 3' neo sequence in LN, and 
then jumps to a sequence downstream of hyg 
in the chimeric RNA, usually at a short 
stretch of sequence identity, a general-type 
recombinant results [Fig. 3A, general- (and 
ppt-) type]. Undefined-type recombinants 
are formed as the result of a deletion that 
occurs during plus-strand DNA synthesis 
(Fig. 3A, undefined-type) . 

The insertions between 52211 and LN 
sequences were probably formed by read- 
through transcription and deletion after 
strand switching (29) (Fig. 3B) by the fol- 
lowing steps. (i) Readthrough transcription 
occurs to form a chimeric viral hyg RNA 
containing 3' sequences downstream from 
the TK termination sequence. (ii) The re- 
verse transcription growing point transcribes 
the 5' end of U3 just before the ppt (ppt- 
type with insertion) or transcribes the whole 
3' LTR and continues to the 3' neo sequence 
in LN (general-type with insertion). (iii) 
The growing point jumps to the readthrough 
transcript downstream of the hyg termina- 
tion sequence. (iv) Reverse transcription 
continues, with a deletion in the nonviral 
sequences. The deletion ~ r o b a b l ~  occurs 
during plus-strand DNA synthesis (3). The 
sequence downstream of the TK termination 
sequence found in clone 32 and the identity 
of some of the inserted sequences in clones 
10 and 44 demonstrate that the readthrough 
frequency was high enough to be detected in 
this system and that the source of the insert- 
ed sequence is readthrough followed by de- 
letion, rather than a third template (6). 

No ppt-type or undefined-type recombi- 
nants have been observed outside the labo- 
ratory. Formation of highly oncogenic retro- 
viruses requires that the virus express the 
oncogene and replicate as an infectious virus 
(30). To test if proviruses resulting from the 
three types of nonhomologous recombina- 
tion were capable of producing infectious 
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progeny, we cloned junctions of each of the 
three types of recombinants into a vector 
that consisted of two MLV LTRs derived 
from pLN and a hyg gene (pJZ206). The 
sequences between hyg and the 3' end of 
pJZ206 were replaced by the junction se- 
quences from the three types of nonhomol- 
ogous recombination. Only vectors with 3' 
sequences from general-type recombination 
produced infectious progeny efficiently (3 1 ) . 
However, the recombinants occurring in 
nature are the product of long-term growth 
of viruses and may not directly reflect the 
original recombination events. Selection is 
operating on the natural events but not on 
the single-cycle viruses characterized here. 
Therefore, ppt-type or undefined-type 
events might occur, with subsequent recom- 
bination or deletion steps leading to the 
viruses observed in nature. 

The overall rate of nonhomologous re- 
combination is 5 x per replication 
cycle (Table 1). This rate is similar to that 
measured in other experimental systems (4, 
5). Ten of 3 1 step 4 proviruses were general- 
type recombinants that were capable of pro- 
ducing infectious progeny. Thus, the rate of 
transduction during a single cycle of retrovi- 
rus replication to form an infectious hyg virus 
is 2 x (5 x x 10/31), or about 5 
x lo-' per base pair per cycle (32). The rate 
of homologous recombination is about 4 x 

per base pair per cycle (33). Thus, 
nonhomologous recombination occurs at ap- 
proximately 0.1 to 1% of the rate of homol- 
ogous recombination. 

The formation of the 3' viral sequences of 
highly oncogenic retroviruses has been hy- 
pothesized to occur at the RNA level (6,34) 
or at the DNA level (5,35). We found three 
types of nonhomologous recombination: the 
ppt-type, the general-type, and the unde- 
fined-type. In some of the ppt-type recombi- 
nants, the recombination junction contains 
a poly(A) sequence. Therefore, the recom- 
bination probably occurred between RNAs 
during minus-strand DNA synthesis. 

In undefined-type recombination, after re- 
combination of the ppt- or general-type, a 
deletion occurs during plus-strand DNA syn- 
thesis (29). The rate of deletion is 2 x 
per base pair per cycle (29). We found four 
out of 31 recombinants of this type, which 
indicates a higher than expected rate of dele- 
tion. 

The leaving sites for general-type recom- 
bination from LN are clustered in three short 
regions in the 3' end of the LN vector (Fig. 
2D). The three short regions and the 5' end 
of the LTR seem to represent hotspots for 
the reverse transcription growing point to 
leave its template. The clustering of recom- 
bination in the 3' half of the LN vector may 
indicate that the two copies of viral RNA 
are packaged into a virion in parallel to form 
a dimer structure. Therefore, only when the 

reverse transcription growing point leaves 
the 3' end of LN and docks on the 3' end of 
52211 does it form a functional hyg gene. 

The 3' proto-oncogenevirus junctions in 
highly oncogenic retroviruses fall into three 
groups. The first group has no sequence iden- 
tity-for example, the Abelson murine leuke- 
mia virus (36). The second group has a short 
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Clone 48 1 1 1 1 1 1 ~ 1 1  - 
rail 
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Rearmbination with insertion (3) 
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region of sequence identity-for example, the 
3611 murine sarcoma virus (37). And the 
third group has an insertion-for example, 
the Fujinami sarcoma virus (38). The relative 
frequencies of these three types in highly 
oncogenic retroviruses were about the same as 
found here for the three types of general-type 
recombinants (39). 

Flg. 2. Nucleotide sequence of ppt-type (A), 
general-type (B), and undefined-type (C) junc- 
tions and the leaving sites of general-type re- 
combinants. The sequences in (A) through (C) 
were obtained by dideoxy nucleotide sequenc- 
ing from clones amplified by PCR on step 4 
cellular DNA with two primers. One primer was 
located near the 3' end of the hyg gene, and 
the other primer was located in the MLV U5 
region (Fig. 1). The upper sequences represent 
the sequence of LN, and the lower sequences 
represent the sequence of JZ211. The middle 
sequences represent the junction of the recom- 
binants. The lines between the sequences indi- 
cate identity. The numbers on the LN and 
JZ211 sequences represent the relative loca- 
tions of the iunctions with respect to these two 
viruses.   he first A at the 5' end of the 3' LTR is 
designated as nucleotide 1 in the LN vector, 
and the first G after the stop codon for the hyg 
gene is designated as nucleotide 1 in the 
JZ211 vector. The underlined sequences in 
clone 10 and 44 are identical. The dots in 
pptIU3 and in clone 32 represent identical 
sequences that are not shown. Clones 7', 8', 
and 20' resulted from recombination between 
JZ211 and an LN (LNa) with a slightly different 
LTR. Numbers in parentheses represent the 
number of clones analyzed in each group. (D) 
Summary of leaving sites in general-type (and 
ppt-type) recombinants. The bases of the ar- 
rows- represent the leaving sites from the LN 

Clone c . x c r L m  

32 C M M T M M m U W T W I  ............... C U m o O # ~  
vector: the numbers represent the clones. The 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1  
C M M T M M C O C m I O T  ............... CUmOGTAOXA 11111 

exact site for some clones is indicated in (A) 
I= US and (6). 

Fig. 3. Models of re- 
combination between A - LN Yinus-strand DNA 

JZ211 and LN without , -  syntheslsand , m- JZ211 template mltch mp 32211 
(A) or with (B) inser- 
tions. The structures of 
JZ211 and LN are as J \ Plus-strand DNA / 
described in Fig. 1. synthesis 
Thin lines represent 

I 
b A - - b  --*b 

RNA and thick lines v - -  
represent DNA. The 
horizontal arrows repre- 
sent minus- or plus- 

4 4 4 4 
strand DNA syntheses. -la-==dl-- 

The empty box in (6) in QanenC (and ppt-1 Unddn.d-rn Genml-W~ Undeflmbtyp. 
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wlth Insodon 

MLV sequences resulting from readthrough transcription. 
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