
Excitation and Decay of Correlated Atomic States 
A. R. P. Rau 

Doubly excited states of atoms and ions in which two electrons are excited from the ground 
configuration display strong radial and angular electron correlations. They are prototypical 
examples of quantum-mechanical systems with strong coupling. Two distinguishing char- 
acteristics of these states are: (i) their organization into successive families, with only weak 
coupling between families, and (ii) a hierarchical nature of this coupling, with states from 
one family decaying primarily to those in the next lowerfamily. Aview of the pair of electrons 
as a single entity, with the electron-electron repulsion between them divided into an 
adiabatic and a nonadiabatic piece, accounts for many of the dominant features. The 
stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part 
the excitation and decay between successive families. Similar considerations extend to 
three-electron atomic states, which group into five different classes. They are suggestive 
of composite models for quarks in elementary particle physics, which exhibit analogous 
groupings into families with a hierarchical arrangement of masses and electroweak decays. 

Recent  understanding of doubly and triply 
excited states of atoms is reviewed. New 
atomic developments highlight the occur- 
rence of different families of multiply excit- 
ed states, with decay between families 
weakened by a dynamical segregation of 
their wave functions into different regions 
of the full configuration space available to 
the electrons. Each family resides in the 
vicinity of one critical point of the system's 
potential. The resulting negligible overlap 
between the wave functions of distinct fam- 
ilies leads to "almost good" quantum num- 
bers (that is, those that appropriately de- 
scribe the system) for labeling them and to 
selection rules governing transitions be- 
tween them, all having a dynamical origin. 
Although not understood in their entirety, 
these features originate from the same basic 
(Coulomb) interaction that prevails be- 
tween every pair of particles in the atom. 
The origin of these features may also be of 
interest elsewhere, for example, in particle 
physics, where analogous questions on the 
number of quark flavors, their origin, and 
associated masses are entirely open. 

Excitation of a single, outer (valence) 
electron in a many-electron atom leads to a 
bound (Rydberg) state or to a continuum of 
ionized states with a residue left behind in its 
ground state. All these singly excited states, 
bound and continuum alike, may be regard- 
ed as a family of states built on the residue's 
ground state (N = I ) ,  that is, the first 
ionization threshold of the atom, with the 
additional electron attached to it either in a 
discrete or in a continuum energy level. 
Doubly excited states of atoms involve the 
simultaneous excitation of two outer elec- 
trons. As with singly excited states built on 
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N = 1, the doubly excited states can be 
organized into successive families built on 
excited states of the residue (N = 2, 3, . . .) 
with the second electron attached in a dis- 
crete or continuum energy level with respect 
to the corresponding Nth ionization thresh- 
old of the atom (1, 2). 

In higher doubly excited states, the in- 
creasing liberation of both electrons from " 
the dominant attractive Coulomb field of 
the rest of the atom (the "core") affords 
stronger correlations between the electrons. 
The structure, excitation, and decay of 
these three-body Coulomb systems (core + 
e + e)-and, indeed, even the appropriate 
basis and the very language for describing 
them-retain current interest as relevant 
evidence emerees from advanced exueri- " 

mentation (3, 4). Close analogies may be 
drawn between these atomic states and 
other few-particle phenomena in nuclear 
( 5 )  and particle physics. The existence of a 
hierarchy among the families of successive 
doubly excited states, and of a hierarchical 
coupling that governs excitation and decay 
among them, finds counterparts in the par- 
ticle physics hierarchy among the (three) 
families of quarks (6). Even the role played 
bv the strong and the electroweak interac- " 

tions for quarks parallels the atomic view of 
the Coulomb interaction between the three 
particles. A dominant part of this interac- 
tion describes the family structure of doubly 
excited states, and a weaker component 
governs the coupling between the families. 

In this article I highlight analogies that 
speak to the unity of physics through a report 
of recent experimental data on the doubly 
excited states of H-. the neeative ion of " 

hydrogen that is the prototypical two-elec- 
tron svstem. and of their imvlications. An 
experikentil echo of this unity is seen in the 
utilization of a high-energy beam of H-, at a 

laboratory [Los Alamos Meson Physics Facil- 
ity (LAMPF)] built for the study of elemen- 
tary particles, to produce the latest and most 
extensive data (3, 4) on doubly excited 
states in Hp. 

Families of Two-Electron States 

The simplest two-electron atomic systems, 
He and Hp ,  serve as the prototypes for the 
study of double excitation; theory and ex- 
periment on these systems have provided 
most of our information on two-electron 
states (2, 7). Just as the understanding of 
the H atom as the prototype of one-electron 
atoms extends to singly excited states in all 
atoms, a thorough understanding of He and 
H should transfer to doubly excited states 
in all atoms and molecules. 

All the singly excited states of He can be 
considered as a family of states associated 
with He+ (N = 1) and may be schemati- 
cally represented by 

The top entry represents the continuum 
states with the electron at infinitv with 
some kinetic energy; the bottom entry rep- 
resents the bound states. with n the urinci- 
pal quantum number of the excited elec- 
tron. The kinetic energy and the quantum 
number n are running indices so that each 
entry represents an infinite number of 
states. In spite of the infinity of states 
involved, their grouping into two, a top 
and a bottom entrv. is instructive in svell- , , 

ing out the essential difference between 
these two groups and in drawing analogies 
to families of states elsewhere in physics. [In 
addition to the enerw index, electrons also 

u ,  

carry orbital and spin angular momentum so 
that there is one family for each lS+ 'Ly 
symmetry, where {S, L, I} are the total spin, 
orbital, and combined angular momentum 
quantum numbers, and .rr is the parity of 
the full three-body system. In the absence 
of coupling to external fields, these are, of 
course, good quantum numbers. From now 
on, we will generally deal with a single 
2St1Ly set at a time.] 

Doubly excited states may be described 
similarly as families associated with excited 
states Het (N) of the ion: 
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Because He+, like H, has an infinite se- 
quence of Bohr energy levels, there is an 
infinity of families in Eq. 2. Indeed, because 
of additional degeneracies of the Bohr lev- 
els, this is a multiple infinity of families of 
doubly excited states. The successive ener- 
gies of He+ (N) above the ground-state 
He+(N = 1) of the ion (which itself lies 
24.6 eV above the ground state of the He 
atom) are given by the Bohr formula dr(13.6 
eV) (1 - 1/N2). Although this description 
in terms of families in Eqs. 1 and 2 seems 
straightforward, arising naturally from the 
canonical language of atomic physics which 
deals with individual electrons, it is flawed 
in principle and fails particularly tor the 
higher doubly excited states in Eq. 2. The 
Hamiltonian of a system of three particles 
with Coulomb interactions between each 
pair is nonseparable, rendering invalid the 
description in terms of individual electron 
quantum numbers. 

The electron-electron interaction e2/r12, 
where r12 is the interelectronic distance, 
makes the three-body Hamiltonian nonsep- 
arable. Only when it vanishes, or when its 
departure from the mean field of each elec- 
tron is weak, is it meaningful to use an 
individual electron descrivtion. Thus. the 
top entries in Eqs. 1 and 2, wherein the two 
electrons separate mutually to infinity, are 
indeed meaningful and mark asymptotic 
states accessible to experiment. But the 
bottom entries in Eq. 2, or even for that 
matter in Eq. 1, are only approximately 
valid because of the e2/rI2 potential. In- 
deed, this interaction mixes states of differ- 
ent families. The classification of these 
three-body states into families is inherently 
tied to the counline between families that is 

A " 

responsible for their excitation and decay. 
Even the very lowest doubly excited 

states in the first column of Eq. 2 exhibit a 

Fig. 1. States of the (H+ + , \ 

new decay mechanism not present for singly 
excited states in atoms. These doubly ex- 
cited states are degenerate in energy with 
the singly excited continuum in Eq. 1, 
more energy being necessary to excite both 
electrons than to ionize a single one. Be- 
cause of e2/r12, energy eigenstates are linear 
combinations of the two degenerate types, 
causing discrete states in He(N = 2, n) to 
decay into He+ (N = 1) + e(x) ,  a process 
called autoionization (8). Therefore, unlike 
the singly excited bound states in the bot- 
tom entry in Eq. 1, the states in the bottom 
entries in Eq. 2 represent only quasi-bound 
states, with finite autoionization lifetimes 
and energy widths. This physical process of 
autoionization decay (9) is inherent to the 
three-body system and to its "internal" 
Hamiltonian (specifically, its e2/r12 term) 
and exists even in the absence of coupling 
to the radiation field. Coupling to that field 
leads to additional radiative decays involv- 
ing changes in {S, L, J, .rr) to conform to 
dipole selection rules, whereas these quan- 
tum numbers remain unchanged in auto- 
ionization. 

Rewriting Eqs. 1 and 2 for the very 
similar system of H- and displaying also the 
possible transitions between families, I 
sketch schematically in Fig. 1 the realm of 
two-electron atomic physics. Dashed arrows 
represent electron ejection in autoioniza- 
tion, one electron dropping down to a more 
bound level and giving the energy thus 
gained to its partner, which is then able to 
escape to infinity. Wavy arrows represent 
photon emission from doubly excited states 
of H-  to lower doubly excited or to singly 
excited states. Photon emission is also pos- 
sible at fixed N and is represented by a 
dotted line in the figure. Each of the lower 
entries in Eqs. 1 or 2 represents infinitely 
many states; a state with higher energy can 

e + e) system organized 
into families associated 
with the H(N) states of (H+ 
+ e ) ,  N =  1 , 2 , 3 ,  . . . .  The 
top entry in each family 
represents an infinity of 
continuum states, the bot- 
tom entry an infin~ty of dis- 
crete energy levels. Dashed arrows show auto~onization decays, accompanied by ejection of an 
electron; wavy arrows and dotted lines show rad~ative decays. 

Fig. 2. The three families of quark- 
doublets with charged (------) and 
neutral (. . . . . .) current decays 
shown. Flavor-changing neutral 
currents (-) seem to be sup- 
pressed. 

radiatively decay to another with lower 
energy with, of course, attendant changes 
in {L, .J, T}. Reversing the arrows would 
describe excitation of doubly excited states, 
either by electron impact on H or by pho- 
toabsorption from the ground state of H p .  

One can make an instructive analogy 
w ~ t h  families of quarks and leptons and the 
standard model of electroweak interactions 
(1 0). Here we have three families of leptons 
and, correspondingly, three of quarks, gen- 
erally grouped into doublets as in Fig. 2. 
Leptons participate only in electroweak in- 
teractions, whereas the quarks have, in 
addition, the strong interaction. Indeed, 
this is rhe dominant interaction that deter- 
mines their masses and other gross struc- 
ture. Therefore, the physical doublets in- 
volve rhe so-called primed quarks d', s', 
and b' that are related to the unnrimed 
quarks through the ~ o b a ~ a s h i - ~ ' a s k a w a  
(KM) matrix [(I 1, 12); S43 and appendix 
111 of (1 O)]: 

where V,, are the weak charge-changing 
interaction elements between particles i 
and j, and the subscripts refer to the various 
quarks: u, up quark; d, down quark; t, top 
quark; b, bottom quark; c, charmed quark; 
and s, strange quark. This matrix has diag- 
onal elements = I  and small off-diagonal 
elements, reflecting the relative dominance 
of strong interactions over the others. But 
the off-diagonality is important, permitting 
decays not only within individual families 
but also between families, albeit weaker in 
strength. In Fig. 2, charged current decays 
are shown as dashed lines and neutral ones 
as dotted or wavy lines in analogy with Fig. 
1. In this analogy. between atomic and 
quark families, charged current decays cor- 
respond to autoionization (a negative elec- 
tron emitted) and neutral currents to radi- 
ative decays. Flavor-changing neutral cur- 
rents (wavy lines in Fig. 2) seem to be 
suppressed, the only neutral currents that 
have been observed being ones involving 
the same quark (dotted lines in Fig. 2). In 
the parallel atomic example in Fig. 1, au- 
toionization decays generally dominate (by 
several orders of magnitude) over radiative 
decays in light atoms. 

It is intriguing to stretch this analogy 
even further in one regard. For the atomic 
families in Eqs. 1 and 2, both the top and 
bottom entries would indicate exact energy 
eigenstates if the e2/r12 interaction were 
switched off. Then the independent elec- 
tron quantum numbers such as N and n 
(and their individual angular momentum 
labels) would be good quantum numbers. 
When this interaction is turned on, these 
quantum numbers lose their validity. How- 
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ever, the upper entries in the families re- 
main physically meaningfill-identified, in 
fact, by an experimental arrangement that 
detects the electron at infinity together 
with the state of excitation of the residue- 
whereas the lower entries are now no longer 
eigenstates. The difference lies in that, for 
the top entries, the two electrons are sepa- 
rated to infinity where e21ri, vanishes, 
whereas for the bottom entries r I 2  is finite, 
thus invalidating the indevendent electron " 

labels. Bottom entries drawn from different 
families in Eq. 2 that share the same {S, L, 
J, T} but differ only in N and n are mixed by 
the electron-electron interaction with the 
result that the physical eigenstates are lin- 
ear combinations of various independent 
particle configurations. (Incidentally, only 
the nonseparable portion of the interaction 
is responsible for this mixing and therefore 
for the contrast between top and bottom 
entries.) Turning to the quark families, we 
see again that the top members are un- 
changed (this is a standard choice), only 
the bottom ones getting mixed as in Eq. 3 
upon the superposition of electroweak and 
strong interactions. The analogy may sug- 
gest a dynamical explanation in terms of an 
underlying substructure of quarks ("ur- 
quarks"?). Suppose, as in the atomic exam- 
ple of three charged particles, the quarks 
themselves are composites of three ur- 
quarks. A distinction can then be made 
between two types of composites of the 
three ur-quarks, depending on whether one 
 air of relative distances vanishes (recall an 
inversion in the nature of chromodynamics 
relative to electrodvnamics. that the inter- 
action vanishes when distances go to zero 
rather than to infinity). One type, with a 
pair of ur-quarks having zero separation, 
would correspond to the u, c, and t, while 
a second. in which all oairs are finitelv 
separated, to the d, s, and b. In the lan- 
guage of atomic physics, the switching on of 
interactions between the ur-quarks causes 
"configuration mixing" of the d, s, and b as 
given by the KM matrix in Eq. 3. 

Experimental Data on 
Doubly Excited Atoms 

This section gives a brief review of experi- 
ments on doubly excited states over the last 
20 years. It is designed to highlight those 
kev features of the data that will be vicked 
up in the next section to draw lessons on 
the family structure and on the hierarchical 
coupling between families of states of the 
three-body atomic system. 

Excitation by photons. The simple sketch 
in Fig. 1 of two-electron states also shows 
how they may be excited and observed in 
the laboratom. One method is ohotoab- 
sorption from the ground state of H-, or 
He, in an energy range below the detach- 

ment or ionization thresholds H(N) or 
Hef (N). Against the background of the 
absorption into the one-electron continu- 
um of the first family, structures appear in 
the absorption cross section at specific en- 
ergies marking the positions of doubly ex- 
cited states. The first doubly excited states 
in atoms were observed in this way in He 
(131, utilizing synchrotron light from elec- 
tron synchrotrons that provide photons of 
the requisite energy (=60 eV or 20 nm). 
States of 'PI0 symmetry of the N = 2 family 
in Eq. 2 were observed as a Rydberg se- 
quence of resonances converging to the 
Het(N = 2) limit, which lies 24.6 + 
54.4(1 - 114) = 65.4 eV above the ground 
state of He. Experiments with synchrotron 
light in many other atoms have since been 
designed to study such sequences of doubly 
excited states, typically with relatively 
small values of N (14). The most recent 
data (15) through N = 6 are shown in Fig. 
3. States of much larger N have not been 
observed. This is not because of any lack of 
photon energy in synchrotron sources but 
more a reflection of the weakness of excita- 
tion to such N as will be discussed. 

Lasers provide much higher resolution, 
and stepwise absorption of multiple laser 
photons has reached doubly excited states 
in more complex atoms, particularly in the 

Fig. 3. (A) He(N = 3, n), 
(B) He(N = 4, n), and (C) 
He(N = 5, n) and He(N = 

6, n) ' P o  doubly excited 
states seen in photoab- 
sorption with synchrotron 
light. Panels (A) and (B) 
include on the right a mag- 
nified high n region. [From 
(15) ,  with permission] 

alkaline earths such as barium. However, 
the lowest quasi-bound states within a fam- 
ily when N is large have remained out of 
reach. As typical examples, when N is 4 or 
5, the states observed can be attributed to 
principal quantum numbers n larger than 10 
for the second electron (1 61, or, when N is 
20, the values of n are 40 or larger (17). 
That is, the doubly excited states of high 
excitation that have been studied through 
multiple laser photoabsorption have a very 
unequal energy sharing between the two 
electrons. States in which the two electrons 
have comparable radial excitation, which 
are the lowest members of each column in 
Eq. 2 or in Fig. 1, have remained elusive to 
such laser experimental searches, the best 
results being those in (1 8). 

The longest sequence of comparably ex- 
cited states seen in photoabsorption is from 
a very recent study on H- at LAMPF (3, 
4). (In such particle physics laboratories, 
H- is often the initial charged species that 
is accelerated. Later, upon stripping of the 
two electrons, proton beams and subsidiary 
meson or neutrino beams are generated.) In 
a very innovative use of the relativistic 
beam of H- ( ~ 8 0 0  MeV) for atomic phys- 
ics studies, Howard Bryant and his col- 
leagues have studied various aspects of this 
atomic negative ion (1 9). The recent ex- 

I 5 8 , n 1 4 ,  I ,, I 1 
73.5 74.0 74.5 75.0 75.5 75.3 75.4 75.5 

75.5 78.0 78.5 77.0 77.5 
Photon energy (eV) 
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periment (3, 4) measured photodetachment 
by a laser photon through 'PI0 doubly 
excited states of the N = 6 and 7 families. 
Earlier experiments had already observed 
the N = 2 and 3 states. The required 
photon energy of =I4 eV was achieved by 
using the relativistic Doppler effect. The 
fourth harmonic of a yttrium-aluminum- 
garnet (YAG) laser with laboratory photon 
energy of -4 eV appears in the frame of the 
relativistically moving negative ion as high- 
er in energy by a factor of 3 to 4 depending 
on the angle between the laser and H- u 

beams. The maximum enhancement occurs 
bv shining the laser beam head-on at the - 
negative ion beam. By changing the angle 
in a controlled fashion. the effective ~ h o -  
ton energy can be tuned continuously ip to 
about 16 eV (otherwise inaccessible to tun- 
able laboratory laser sources), with resolu- 
tions that can surpass 10 meV. Figure 4 
shows the latest data for the N = 6 familv. 
Note again sequences of resonances, seen as 
fairlv narrow dios in the cross section. The 
experiment monitors the neutral, excited H 
atom in various stages of excitation, H(N). 
With reference to Fig. 1, states of, say, 
H-(N = 3, n) fornled on photoabsorption 
from the H- ground state (along path 6 
with reversed arrow) autoionize along paths 
2 or 3 to H(2) and H(1), respectively, and 
may therefore be observed in either of these 
channels by the H(N) detector. A crucial 
result of these and other experiments is that 
the states of a certain H-(N, n) are best 
observed in the H(N - 1) channel, sug- 
gesting that the decay between families 
proceeds preferentially to the next lower 
one (4). 

Excitation by charged particle impact. Dou- 
bly excited states have also been studied in 
electron collisions with atoms and ions. 
Consider (Fig. 1) elastic scattering of elec- 
trons from H in the ground state. At ener- - 
gies of -10 eV where these elastic scatter- 
ing states in the top of the first column are 
degenerate with H-(N = 2, n) states in the 
second column, such doubly excited states 
will be excited (along path 1 with reversed 
arrow) and subsequently de-excited (path 
1) back to the elastic channel. The doubly 
excited states appear as resonances in the 
elastic scattering cross section. The reso- 

w 

nances are sharp, reflecting the weakness of 
coupling. At higher energies, doubly excit- 
ed states of higher families will be observed 
similarly (excitation and de-excitation 
along path 3, for example). The higher 
states such as H-(N = 3, n) may be excited 
along path 3 and then decay not by path 3 
but by path 2 to an excited continuum. The 
doubly excited H-(N = 3, n) states can 
therefore also be observed in the inelastic 
scattering cross section, e + H(N = 1) - 
e + H(N = 2). Experiments with He being 
simpler than with atomic hydrogen, the 

very first observation of doubly excited 
states was in elastic e + He scattering (20). 
(Although these doubly excited states be- 
long to the three-electron He- system, only 
two electrons are excited in an appropriate 
energy range. The first excited state in He 
lies at 20.2 eV and the first ionization 
potential at 24.6 eV, so that for e + He 
collisions in the incident energy range from 
19 to 25 eV only two electrons are actively 
involved, the third remaining as a spectator 
in the ground state.) The most recent of 
such data (up to N = 9) have been ob- 
tained in inelastic scattering in this energy 
range (2 1). 

Doubly excited states can also be 
reached by impact of heavier charged par- 
ticles on atoms (22, 23). Indeed, such slow 
collisions between two atomic systems, 
both carrying a complement of electrons, 
may well be the preferred route to high 
doubly excited states. But, in view of the 
very large density of states, judicious detec- 
tion schemes may be necessary to sort out 
the resulting complex spectrum. 
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Excitation, Decay, and Structure of 
Two-Electron States 
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nances seen in the photo- 
detachment h~ + HH + 
H ( N =  5 )  + e.  [From (3 ) ,  
with permission] : 1 +v//*!f 
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Key features of the data on doubly excited 
states. The brief survey of experimental data 
in the previous section provides major clues 
to the nature of doubly excited states. First, 
the very observation that data on higher 
families are extremelv limited seems inno- 

O 13.8 13.85 13.9 13.95 14 

Photon energy (eV) 

cent but has an important implication. For 
all the effort over 25 years by various exper- 
imental groups and with the use of various 
techniques, long family sequences have 
only been observed in H- and He- and 
even then only up to N < 10. Considering 
that N could rise to a ,  and that all atoms 
and negative ions have such doubly excited 
states, this paucity of data is indeed remark- 
able. It points to the low probability for 
exciting such states starting from ground 

states of atoms and ions. A close corollarv is 
that the linewidth of these states is very 
narrow, particularly with increasing N. 
Even leaving aside certain almost stable 
states (24) with special selection rules for 
{S, L, J, IT}, nearly all doubly excited states 
are remarkably sharp and consequently 
long-lived, as seen in Figs. 3 and 4. Con- 
sidering how high in energy they lie, with 
even the lowest (N = 2, n = 2) state in Eq. 
2 or in Fig. 1 accessing infinitely many 
singlv excited states that lie lower in ener- - .  
gy, such long lifetimes are again remark- 
able. In an analogous situation, when the 
first charmonium bound states were exper- 
imentally observed, the particle physics 
communitv was astonished at the narrow- 
ness of thise levels at such high energies. 
This result was then attributed to a new 
quantum number, charm, and to its conser- 
vation. The corresponding situation with 
doubly excited states is explained on dy- 
namical grounds; clearly, three-body dy- 
namics leads to almost good quantum num- 
bers and astonishing selection rules (which 
render pathways such as 1, 2, and 3 in Fig. 
1 weak) without any obvious correspon- 
dence to an underlying symmetry. 

The weakness of excitation and the sta- 
bility against decay are, of course, closely 
related, having the same origin. As will be 
discussed below, the wave functions of 
many doubly excited states are concentrat- 
ed into limited regions of space, very differ- 
ent from those of the wave functions of 
most other states, particularly of singly ex- 
cited states. This implies small overlaps 
between single and double excitations. 

Another major feature of the experi- 
mental data is the hierarchical nature of the 
decay between families. When, for in- 
stance, both paths 2 and 3 (Fig. 1) are 
possible, the former transition is stronger. 
A similar observation has been made re- 
garding the quark families in Fig. 2. Thus, b 
-+ c transitions dominate over b + u, 
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experimental measurements suggesting 
IVubJ/IVCbI = 0.1 [(25), section IV B of 
(12)l. A full explanation for this hierarchi- 
cal nature of the coupling between families 
has not been provided in either system. 

Role of the electron-electron interaction. In 
the case of quarks, the weakness of the 
coupling between families is attributed di- 
rectly to the strengths of the basic interac- 
tions, electroweak interactions being inher- 
ently weaker than strong interactions. For 
the three-body atomic system, there is only 
one interaction between the two electrons, 
namely, the Coulomb interaction e2/r12. In 
its absence, the problem would be separable 
and each family in Eq. 2 or in Fig. 1 would 
be distinct, with no transitions between 
them. The e2/r12 interaction invalidates the 
independent or individual electron descrip- 
tion behind Fig. 1. In describing a doubly 
excited state of a given 2 S + 1 L ~  symmetry, 
all independent-electron configurations 
that share the same {S, L, 1, 7 )  are in 
principle mixed by e2/r12. 

Diagonalization of the e2/r12 matrix over 
all these configurations yields the energy 
eigenstates, but its dimension is multiply 
infinite because of the nature of Coulomb 
soectra. Conventional atomic structure cal- 
culations, carried out through one or an- 
other technique to describe this configura- 
tion mixing by retaining a large number of 
basis states. have urovided much useful 
information on the lower doubly excited 
states (26-28), particularly with judicious 
selections of basis states (29). Their defi- 
ciency lies on the practical side in becom- 
ing prohibitively cumbersome numerically, 
particularly as N is increased, because of the 
necessity to superpose an explosively large 
basis. Semiclassical quantization schemes 
based on trajectories calculated through 
classical mechanics have also been used but 
also only at relatively low N (30). We turn, 
therefore, to models that focus on two- 
electron basis functions from the start. 

Here again, an analogy with quark fam- 
ilies is instructive. The two features, the 
existence of families determined in the 
main by strong interactions and the weak 
couplings between them due to electroweak 
interactions, have a natural correspondence 
with the hierarchv of interaction strengths. 
In the atomic pioblem we have a single 
unified interaction e2/r12. To sift out the 
two features sketched in Fig. 1, we need to 
divide this interaction into two pieces, of 
which a dominant one (the separable part 
of e2/r12 in combination with the single 
electron-nucleus attraction) determines 
the family structure and a secondary (non- 
separable) one the excitations and decays 
between them. Note the ironv in contrast- 
ing the two fields, because the current quest 
in particle physics is in the opposite direc- 
tion, to put both strong and electroweak 

interactions and all the particles into a 
unified whole. 

The subdivision of e2/r12 into two pieces 
takes cues from molecular structure where 
an adiabatic separation is made between the 
more energetic electronic motion and a 
slower motion of the nuclei. A similar 
treatment of the full three-body atomic 
interaction, with an adiabatic separation of 
the radial size from the coordinates that 
describe radial and angular correlation, or- 
ganizes states into families in Fig. 1, where- 
as residual, nonadiabatic couplings between 
the size and the correlations account for 
their excitation and decay. 

A molecular orbital model. Two different 
procedures that exploit the molecular anal- 
ogy have been used in our current under- 
standing of doubly excited states. One, 
which has come later and has been pursued 
only very recently (3 1-33), is to make a 1: 1 
correspondence between the states of Hz+ 
and of H-, which differ in the relative 
masses of the pair of identically charged 
particles to the third one of opposite charge 
[see also (34)l. With r12 playing the role in 
H- that the internuclear coordinate R does 
in Hz+,  the familiar Born-Oppenhelmer 
potential curves U(R) have been translated 
into the H- system (33). In the adiabatic 
handling of this coordinate, the system 
separates in prolate spheroidal coordinates 
and three quantum numbers nh, n,, and m 
label the molecular orbitals, representing, 
respectively, the numbers of ellipsoidal, 
hyperboloidal, and azimuthal nodes of the 
wave function. Each molecular orbital's 
potential curve U(R) supports a family of 
bound and continuum states identified with 
the families in Fig. 1. In the "united atom" 
limit where R -+ 0, for H- these quantum 
numbers reduce to the spherical quantum 
numbers nem. In the "separated atom" 
limit of R + a, where one electron is far 
from H, they reduce instead to the parabol- 
ic quantum numbers that are relevant to 
the Stark effect in H, where the electric 
field originates from the far-away electron 
(35). 

The Born-Oppenheimer adiabatic sepa- 
ration for molecules of the internuclear 
coordinate R from the electronic coordinate 
r (with respect to the center-of-mass of the 
two protons in HZ+) is, of course, approx- 
imate, the full Hamiltonian not being ex- 
actly separable. There remain residual non- 
adiabatic couplings between the different 
molecular orbital potential curves, usually 
concentrated near curve crossings of two of 
these curves. These nonadiabatic couplings 
lead to molecular dissociation. In the trans- 
lation to H-, it is these nonadiabatic cou- 
plings that lead to autoionization decays in 
Fig. 1 (32). Even and odd values of n, 
correspond to even or odd wave functions 
under interchange of the two electrons. 
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The former, concentrated in a spatial con- 
figuration with the nucleus midway be- 
tween the electrons, characterizes doubly 
excited states with comwarable radial exci- 
tation of the electrons. Potential curve 
crossings involving such even n, show 
stronger couplings. Families with even or 
odd n, couple among themselves, and the 
decay of states with either symmetry occurs 
preferentially at the crossing to the next 
lower molecular orbital with n, smaller by 
2. Because the ground state of H- has n, = 
0, the dominant excitation of a single set of 
doubly excited resonances below each 
H(N) and the hierarchical nature of the . , 

decay between the two families find expla- 
nation in the symmetry with respect to the 
n, quantum number (36). 

A hyperspherical coordinate model for the 
two-electrun system. Although the above 
molecular orbital model has attractive fea- 
tures, there is no basic explanation for the 
adiabatic separation between the interelec- 
tronic coordinate and the, position of the 
nucleus with respect to their center of mass. 
In the Born-Oppenheimer treatment of 
molecules, adiabatic separation of nuclear 
and electronic motion is naturallv ex- 
plained by the small mass ratio of electrons 
to nuclei. No such immediate explanation 
in terms of a small parameter is available for 
doubly excited states of H-  or other atoms. 
We turn, therefore, to another model that 
has been explored now for 20 years (7, 37, 
38) without invoking from the start an 
analogy to molecular structure, but never- 
theless paralleling the molecular analog. 
This model also contains a division of the 
interaction into an adiabatic wiece that sets 
the family structure and a nonadiabatic 
coupling that leads to the weak decays 
between them. The two pieces are, howev- 
er, now associated, respectively, with 
strong correlations between the electrons 
and with the overall size of the three-body 
svstem. 

Instead of the position vectors r l  and r2 
of the two electrons with respect to the 
(infinitely) massive nucleus, joint or pair 
coordinates are introduced (39): 

a = arc tan (r2/rl), 

€ I l 2  = arc cos (?, . Fz) (4) 
In this "hyperspherical" coordinate system, 
the six coordinates of the full three-bodv 
system describe a six-dimensional hyper- 
sphere, whose radius R indexes the overall 
size of the system. The two "dynamical" 
angles, a and €Il,, out of the five angular 
coordinates (the other three being Euler 
angles that do not enter into the potential 
energy of the system) naturally describe 
radial and angular correlations, respective- 
ly, of the two electrons. A significant fea- 



ture of all two-electron state wave func- 
tions, whether calculated through conven- 
tional independent-particle configuration 
mixing or through the hyperspherical pro- 
cedure described below. is that thev divide 
into two classes (40). One concentrates 
about a = ~ 1 4 ,  which corresponds to equal 
radial excitation, the other about a = 0 or 
~ 1 2 ,  both concentrations sharpening with 
increasing excitation. The importance of 
the concentration at a 714 had actuallv 
been pointed out for two-electron continu- 
um functions near threshold, which govern 
the escape of two electrons from a positive 
ion (41). High doubly excited states with 
comparable excitation are natural adjuncts 
to the double escape on the discrete side. 

The two-electron Schrodinger equa- 
tion remains nonseparable in hyperspher- 
ical coordinates. Adiabatic se~aration of R 
from the angular coordinates a and 012 
successfully describes at least the lower 
families in Fig. 1. At each fixed R, the 
Schrodinger equation is solved to give 
eigenvalues U(R) and eigenfunctions +(R; 
a, O,,) that depend parametrically on the 
"slow" coordinate R (37, 38). As in the 
Born-Oppenheimer treatment of mole- 
cules, treating each U(R) as an indepen- 
dent potential well supporting a family of 
bound and continuum states amounts to 
an adiabatic approximation and provides 
the families in Fig. 1. 

In the adiabatic hyperspherical scheme, 
the adiabatic (nonadiabatic) decomposition 
of e21r12 to give family structure (excitation 
and decay between families) reflects a faster 
motion in the angles a and 012 relative to a 
slower motion in R. That is, radial and 
angular correlations between the electrons - 
develop faster than an overall size scaling of 
the three-body system. This is plausible on 
many grounds, particularly with increasing 
excitation, because the two slow electrons 
are then further removed from the core's 
attraction, allowing strong correlations to 
develo~ between them. However. no sim- 
ple parameter, such as the ratio of electron- 
ic to nuclear mass in the case of molecular 
spectra, is available to index the amount of 
nonadiabaticity in this description of e21r12 
for two-electron states. 

Figure 5 shows a series of 'Po potential 
curves for the H- system (42). One domi- 
nant potential well converges at large R to 
each H(N) state, depending asymptotically 
on the dipole potential of the e + H(N) 
system (43). Each well supports a sequence 
of bound states (44). The experimentally 
observed (3, 4) series of quasi-bound states 
in each family, such as the ones in Fig. 4 for 
W = 6, are well described by these calcu- 
lated dipole-bound states (42, 45). Only 
one dominant series is observed with wave 
functions symmetric under radial inter- 
change r, - r2 [which translates into a + 

( ~ 1 2 )  - a] and substantially concentrated 
at a = ~ / 4  (equal radial excitation). Just as 
with the similar discussion with respect to 
n, in the molecular orbital model, the 
excitation and decav between families seem 
to proceed mainly within this subclass of 
states. Along with the tight radial correla- 
tion implied by the concentration at r21r1 = 
1, these states also display a strong angular 
correlation with wave functions concen- 
trated at 012 = T. 

The point a = ~ 1 4 ,  012 = T is a saddle 
point of the potential in the three-body 
Coulomb system (7) and is the seat of the 
dominant class of states. The wave func- 
tions of this class overlap little with those 
of other-particularly singly excited- 
states. whose functions are concentrated 
in the potential valleys at a = 0 and 712. 
Small overlap with singly excited states 
(particularly with the ground state) makes 
for small excitations. The conclusion is 
immediate for direct ohotoabsorotion from 
the ground state. For slow electron im- 
pact, one might envisage excitation to the 
higher wells in Fig. 5 through the stepwise 
ladder ~rovided bv the lower wells. but 
this mechanism also becomes inefficient 
with increasing N (21). States in succes- 
sive wells are staggered in R, so that their 
overlap is again ordered hierarchically. (In 
molecular physics, these overlaps are 
termed Franck-Condon factors.) The non- 
adiabatic coupling between potential 
curves is only strong near their avoided 
crossings, which occur at larger R as N 
increases (Fig. 5). Given the Coulomb 

Fig. 5. Lowest potentla1 curve In 'Po symmetry 
of H -  in the adiabatic hyperspherical model 
converging to each H(N) threshold shown as 
effective quantum numbers v = [-U(R)/13.6 
eV]-112 plotted against the square root of the 
hyperspherlcal radius R defined In Eq. 4 (a.u., 
atomlc unit);  v converges asymptotically to N. 
Positions of discrete energy eigenvalues in 
each potential are shown by horizontal lines. 
[From (42), wlth permission] 

scaling in IlR, these couplings become 
weaker, making the high N states difficult 
to access. These same features, namely, 
hierarchical ordering in the overlap be- 
tween the states in different wells and 
weak couplings, account for the preferen- 
tial decav of H-(N. n) states into the > ,  , 

continuum in the N - 1 potential well 
(45. 46). ~. , 

All the doubly excited state resonances 
observed in ex~eriments such as in Figs. 3 " 

and 4, or in the theoretical calculations of 
Fig. 5, can be capsuled into a single energy 
expression with two components (42). One 
component makes successive n levels with- 
in each family depend only on the relevant 
dipole strength. The second component 
orovides the link between families through 

u 

a pair-Rydberg formula for the lowest levels 
of each N (47). These lowest members of 
each family in Fig. 1 can be described 
without reference to any single-electron 
features (such as in the asymptotic descrip- 
tion of the hyperspherical potential 
curves). Throughout, the 'three-body sys- 
tem can be viewed as a whole, namely, as a 
pair (48) of electrons attached to the posi- 
tive core (called the "grandparent," name- 
lv. the bare H+ or He2+ in the two svstems , . 
we have considered), with pair coordinates 
and corresponding quantum numbers and a 
pair-Rydberg expression that has the dou- 
ble-ionization threshold as its limit (40). 
This picture organizes the states in a very 
different way from that of Fig. 1, whose 
families converge to single-ionization ("par- 
ent") limits. Its levels fit into a single 
descriotion with the full ootential taken 
into account, breakdown into families, and 
decays between them arising only upon 
consideration of single-electron asymptotic 
states H(N) + e(m) with the attendant 
splitting of the full ,interaction e21r12 into 
(dominant) adiabatic and (weak) nonadia- 
batic ~ieces. 

The unification of all two-electron states 
with finite R (and, therefore, finite r12) in a 
single pair picture is the counterpart of the 
grand unified theory of strong and elec- 
troweak interactions. Subdivisions into 
familv structures and couoling between 

& - 
them arise only upon departing from the 
unified view and upon splitting what is a 
unified whole into subgroups: strong (elec- 
troweak) or adiabatic (nonadiabatic) pieces 
of e2/r,,, respectively. The existence of 
classes of states, such as the valley and saddle 
states, with little mutual over la^, is also 
likely' to be of wide relevance to' few-body 
problems in physics, including the one for 
ur-auarks mentioned earlier and for three- 
electron atomic states to which we will turn 
in the next section. In fact, with increasing 
number of variables, saddles (of different 
"flavors") proliferate in the listing of extre- 
ma1 points of a many-dimensional space. 

SCIENCE VOL. 258 27 NOVEMBER 1992 



Table 1. The three kinds of critical points, their 
definition in terms of the values of a and 0,? 
along w~th the local variat~on [whether maxi- 

mum (maw.) or minimum (rnin)] of the potential 
around them, and the corresponding configu- 
rations for a posit~ve core and two electrons. 
The fourth column gives the specification in 
terms of the coordinates r,  and r2 of the two 
electrons with respect to the core. Parentheses 
in the last column represent a close cluster of 
two part~cles. 

a 
Critical Values Config- 

'12 point of r urat~on 

n/4, maw. 0, rnax Peak r = r +(ee) 
~ / 4 ,  maw. T ,  min Saddle r,  = -r2 e+e  
0, min Valley r,  = 0 (+e)e 

Three-Electron States and 
Quark Analogs 

As developed in the above section, the 
study of two-electron states in atoms points 
to the existence of two types of doubly 
excited states, valley and saddle. The cor- 
responding wave functions are concentrat- 
ed in the valleys and saddle of the total 
potential, which is the sum of the two 
Coulomb attractions between the core and 
the electrons and of the Coulomb repulsion 
between the electrons. In terms of the 
hyperspherical coordinates defined in Eq. 4, 
R is a scale factor common to all three 
terms. The significant structure of the po- 
tential lies, therefore, in the dependence at 
any fixed R on the two variables a and O,,. 
The values O,,  = 0, 2~ lead to maximum, 
and the value 012 = T to minimum, repul- 

e H+ (2e) 
A A Saddle , 

Saddle, 
.6 eV 

Saddle 

'5 eV Valley 

A2 

Fig. 6. Sketch of the relative energies of the six 
types of states listed in Table 2 for a system 
consisting of a proton and three electrons. Note 
two breaks in the energy scale corresponding 
to uncontrolled parameters A, and A,, which 
represent, respectively, the large positive re- 
pulsive energies when two or three electrons 
cluster together. 

13.6 eV 

Table 2. Similar to Table 1 but for a core plus three electrons. The first two columns define the nature 
of the critical points in terms of the local variation of the potential with respect to the two 
radial-correlation coordinates a, and a, and the three angles between the radial vectors of the 
electrons, 0,). The fourth column gives the definition in terms of the values of r , ,  r ,  and r,, which lie 
in a plane and with fixed R = (r12 + rZ2 + r32)i12. In the corresponding sketch of the configurations 
in the last column, parentheses enclose clusters of particles. See also Fig. 6. 

H (2e) Saddle, 

Critical 
point Values of I 

Config- 
urat~on 

rnax In both 
rnax in both 

rnax in both 

rnax in one, 
min in other 
max in one, 
min in other 
min in both 

max in all three Peak rl = r2 = r3 
max in one, Saddle, r,  = r2 = -r3 
min in two 

min in all three Saddle, r, = r2 = r3 
0 ,  = 120" 

max in one Saddle, r,= 0, r, = r, 

min in one Saddle, r, = O  r, = -r, 

Valley rl = 0 
r, = 0 

+ (eee) 
e+ (ee) 

sion. In the variable a ,  the potential exhib- 
its deep (infinite) minima at a = 0, ~ 1 2 ,  
corresponding to one or the other electron 
collapsing onto the core. The critical points 
of the potential can, therefore, be enumer- 
ated as in Table 1. Apart from the peak at 
a = ~ 1 4  and 012 = 0 (that is, r ,  = r2, such 
a coincident position of two electrons lead- 
ing to infinite repulsion) that does not 
support any stable states, the other two 
extremal points support the two classes of 
states that are observed. 

If we turn to the three-electron system, 
Table 2 enumerates the similar but richer 
variety of critical points of the potential, 
which now consists of six Coulomb inter- 
actions and, correspondingly, five dynami- 
cal coordinates, a , ,  a 2 ,  O,,, O,,, and O,,. 
Detailed definition is unnecessary here [see 
section 10.7 of (7)] but suffice it to say that, 
besides the vallevs (two electrons close to 
the core) and ieak (all three electrons 
coincident). there are four woes of saddles. , , , & 

The table shows the physical configuration 
associated with each. In particular, the 
saddle point defined by the configuration in 
which the three electrons lie at vertices of 
an equilateral triangle with the core at the 
center is the seat of states that dominate 
near the threshold for three-electron escaDe 
from a positive charge [section 10.7.4 of 
(7)]. The different saddles lie at successively 
higher energies above the valley, and Fig. 6 
provides the relative energy positions of 
various classes of three-electron states. 

The above picture suggests a simple mod- 
el for quarks, accounting for their number 
and relative energies (masses). Imagine a 
substructure for these particles with each 
quark made up of a triplet of "ur-quarks," 
which are themselves spin-112 objects just as 
are the quarks [see also (6)]. We can envis- 
age painvise interactions (albeit different 
from Coulomb) between them as well as 

one-particle energies for each ur-quark 
(stemming, for instance, from a pressure 
inside a confining "bag"). 'In this way, a 
correspondence can be set up between the 
states formed by triplets of ur-quarks held 
inside a bag and the three-electron states in 
Fig. 6. The different flavors of quarks would 
be associated with concentration of the ur- 
quark wave function in the different saddles 
and valleys of a common unified potential, 
providing a dynamical origin for the flavor 
symmetry. The electroweak coupling be- 
tween different flavors would be seen as the 
weak residual remnant of the unified inter- 
action and thereby the counterpart of the 
nonadiabatic, nonseparable piece of e21r12 
that is responsible for transitions between 
the six different arrangements shown in Fig. 
6 for three-electron atoms. 

It is interesting that, in the atomic exam- 
ple, the relative energies can be fixed for the 
most part but for two "uncontrolled" param- 
eters A,  and A, representing the large repul- 
sion when either two or all three electrons 
coincide. As a result, one can accommodate 
in this ~icture the sixth and highest state - 
being arbitrarily higher in energy than the 
others with obvious implications for either a 
very heavy, or even nonexistent, top quark. 
Finally, in forming a spin-112 object from 
three fundamental spin-112 particles, one 
finds that there are two such doublets and 
they are independent. This opens the possi- 
bility of an even more dramatically unified 
model in which. starting from the same basic - 
ur-quarks, one of the doublets is identified 
with the quark and the other with the 
corresponding lepton family. 
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min/Cumm~ngs, Redwood City, CA, 1964), sec- 
tlon 2 21 In these latter problems, the pairing 
Interaction IS attractive and, therefore, a distin- 
guished state wlth the tightest correlatlon appears 
as the ground state of the system, separated by a 
f~nlte gap from the rest of the spectrum. In the 
case of doubly exclted states, the lnteractlon 
e2/r,, 1s repulsive and the tlghtest correlatlon 
appears Instead at the opposlte end of the spec- 
trum, namely, the double-~onization threshold, 
whlch l~es at the N -, a llmlt of Fig 1. The 
sequence formed by the lowest states of each 
famlly terminates at this lonlzatlon llmit In the 
so-called Wannier threshold state (7, 41) that 
describes the escape to infinity of a palr of elec- 
trons Rad~al and angular correlations are at their 
extreme in this Wannler state (40) 

49. Careful readlng of thls manuscript by J. Briggs 
and M, lnokuti is appreciated, and also a useful 
discussion wlth J. Rosner The current form of 
presentation also owes much to detailed sugges- 
tions and corrections by U Fano, and h ~ s  help is 
gratefully acknowledged. This work was support- 
ed by the Natlonal Sclence Foundation 

Managing Insect Resistance to 
Bacillus thuringiensis Toxi n s 

William H. McGaughey and Mark E. Whalon 
Bacillus thuringiensis (B.t.) 6-endotoxins provide an alternative to chemical insecticides for 
controlling many species of pest insects. Recent biotechnological developments offer the 
promise of even greater use of B.t. toxins in genetically transformed pest-resistant crops. 
However, the discovery that insects can adapt to these toxins raises concerns about the 
long-term usefulness of B.t. toxins. Several methods for managing the development of 
resistance to B.t. toxins have been suggested, but none of these approaches offer clear 
advantages in all situations. 

Insecticide resistance is a formidable com- 
plication of the use of chemical insecti- 
cides. Recently, several common species of 
pest insects have evolved resistance to Ba- 
cillus thuringiensis (B.t.) 6-endotoxins, indi- 
cating that biological pesticides can suffer 
the same fate. Although B.t. genes are 
currently used to transform plants in order 
to impart pest resistance in several major 
crops (1-3), the value of this approach 

could be seriously diminished by widespread 
development of resistance to B.t. toxins. 
Continued reliance on chemical insecti- 
cides might thus be necessary (4). 

B.t. in Pest Management 

Bacillus thuringensls is an aerobic, Gram- 
positive, spore-forming bacterium found 
commonly in the environment. It produces 
a number of insect toxins, the most distinc- 

W. H. McGaughey IS at the U.S. Gra~n Marketing tive of which are protein crystals formed 
Research Laboratory, Agricultural Research Servlce, during sporulation (5). These crystalline 
U S. Department of Agriculture, 151 5 College Avenue, protein inclusions, or 6-endotoxins, are the 
Manhattan, KS 66502. M. E. Whalon IS at the Depart- 
ment of Entomology and Pesticide Research Center, principal active ingredients in B.t. formu- 
M~chigan State Unlverslty, East Lansing, MI 48824. lations currently in use. The genes encod- 
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