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The Inner Core Translational Triplet and the 
Density Near Earth's ~ e i t e r  

Four long records from superconducting gravimeters 
yield evidence of the triplet of translational oscillations of 
i-he solid inner core abLout its central position. Calcula- 
tions of core oscillation modes allow identification of the 
three translational resonances at periods of 3.5820 2 
0.0008, 3.7677 2 0.0006, and 4.015 + 0.001 hours by 
their rotational splitting. Each resonance is defined by 
approximately 20 successive spectral estimates. A new 
Earth model brings the computed periods into agreement 
with observation. It has a central density of 12.960 grams 
per cubic centimeter, inner core radius of 1221.1 kilom- 
eters, and a density jump at the inner core boundary of 
0.407 grams per cubic centimeter. 

THE EARTH'SSOLID INNER CORE (1) IS HELD IN ITS CEN-

tral position in the outer fluid core mainly by gravitational 
forces. The weakness of the equilibrium allows it to undergo 

a pendulum motion, the period of which is extremely sensitive to 
core density structure and inner core. radius. Geophysicists have 
searched for the motion's signature in gravimeter records since the 
suggestion of Slichter (2) that an 86-minute period seen in gravime- 
ter spectra following the great Chilean earthquake of 22 May 1960 
might be due to inner core translational oscillations. Slichter realized 
that such a short period would imply that the central density in the 
Earth is much greater than was acceptable, and he suggested a weak 
rigidity of the outer fluid core in an attempt to explain the dis- 
crepancy. Slichter also realized that Coriolis acceleration would split 
the oscillation into a triplet of periods, which he estimated were 
separated by 5 minutes each. Later studies (3-5) arrived at periods 
from 4 to 7 hours and rotational splitting as large as 0.4 to 0.5 
hours. No identification of the oscillations was made, even though 
gravimeters were operated throughout most of the 1970s at the 
South Pole where both the diurnal and semidiurnal tidal contribu- 
tions to vertical gravity are small (6). 

In this article, I present evidence of a detection and identification 
of the triplet of inner core translational oscillations and arrive at a 
new density model of the inner and outer cores on the basis of the 
observed periods. Recent instrumental and theoretical advances 
have made the detection and identification possible. First, the 
development and deployment of low-noise gravimeters based on the 
levitation of a niobium ball by the Meissner effect in the field of a 
superconducting magnet (7) allows the measurement of changes in 
gravity down to + 2  nanogals (2 x lop9 cm/s2) (8).Second, new 
methods of calculating the long period modes of oscillation of the 
Earth's core (9),with the use of a variational technique implemented 
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with local finite element support functions to overcome the conver- 
gence problems of conventional spherical harmonic expansions in 
the outer fluid core, allow definitive identification of the modes in 
the product spectrum of four long superconducting gravimeter 
records (10). ~, 

Gravimeter observations and spectra. Following the develop- 
ment of superconducting gravimeters in the 1970s, a number of 
European laboratories acquired instruments with a view to operat- 
ing them in an observatory environment to study long period tidal 
and other geodynamical signals. One of the earliest and longest 
records is that taken at Brussels (11) beginning 2 June 1982 and 
running to 14 October 1986. Much excitement in the core dynamics 
community was created by the suggestion (12-14) that core signals 
might be present in the spectrum of this record in the band between 
the diurnal and semidiurnal tides. This record has been augmented 
by a new series beginning 22 July 1987 and running to 30 
December 1989. Another record was collected at the Bad Homburg 
observatory near Frankfurt from 22 March 1986 to 27  December 
1988. A third installation near Strasbourg began operations in late 
1987 and has produced a record running from 1October 1987 to 
12 March 1991. 

Ideally, a worldwide distribution of instruments operated simul- 
taneously is desired in order to use phase information and to average 
out systematic errors that might be present in the observations. A 
proposal for such a network has recently been endorsed by the 
international community (15). In the circumstances at hand, it was 
decided to calculate spectral density estimates of all four records and 
to form a product spectral density to bring out common features. In 
order to optimize the trade-off between resolution and the stability 
of individual spectral esti~nates, a common 12,000-hour Parzen 
window with a 75 percent overlap of record segments was used. The 
first 36,000 hours of the original Brussels record were used as record 
one, giving nine overlapping segments with 12.5 equivalent degrees 
of freedom (16). Record two consisted of the first 30,000 hourly 
values at Strasbourg, producing seven overlapping segments with 
9.9 equivalent degrees of freedom. Record three was formed from 
the first 24,000 hours of the Bad Homburg data, giving five 
overlapping segments with 7.2 equivalent degrees of freedom. The 
fourth record was the first 21.000 hours of the new Brussels series. 
resulting in four overlapping segments with 5.9 equivalent degrees 
of freedom. Each of the individual spectral estimates for the four 
records is chi-square distributed, and the cumulative distribution 
function for th; product of the four estimates is a triply infinite 
integral whose numerical evaluation allows the determination of 
confidence intervals (17) (Fig. 1). 

Identification of the translational triplet. Regardless of the length 
and quality of the gravimeter observations, it is not possible to 
immediately associate the three resonances indicated by arrows in Fig. 
1with the translational triplet of the inner core. Other features of the 
spectrum are suggestive of resonances, and the extremely weak signal 
levels compared to noise discourage definitive conclusions. 
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Fig. 1. Product spectrum of the four superconducting gravimeter records 
described in the text. A sinusoid is shown fitted across the whole spectrum to 
provide a reference noise level. The locations of the resonances identified by 
their rotational splitting as the triplet of inner core translational oscillations 
are shown by the arrows. Statistically, the spectrum represents the equivalent 
of 24.3 years of independent hourly samples. Vertical bar shows 95 percent 
confidence interval (CI). 

Exploiting the expectation that all three oscillations should appear 
in the observations, I developed and applied stringent tests that 
claimed resonances must satisfy before they can be associated with 
the inner core translational triplet. These tests are based on the 
rotational splitting that the modes are known to have. 

Rotational splitting arises from the effect of Coriolis acceleration, 
which scales according to the ratio of the period to half the length 
of the sidereal day. Thus, if the three periods are calculated for a 
given Earth model, their values will be offset for other Earth models, 
and for correctly identified observed periods, in nearly the same 
proportions as those calculated for the given Earth model. 

Recent theoretical and numerical advances (9) allow the transla- 
tional eigenperiods and displacement fields, as well as those for other 
long-period oscillations of the fluid outer core, to be accurately 
calculated. The forms of the displacement fields are found to vary 
little with Earth model (Fig. 2), but the translational eigenperiods 
are highly model-dependent. 

For a widely accepted Earth model CORE11 of Widmer et al. (18) 
(Fig. 2), the period of the retrograde equatorial mode (T,) is 3.7195 
hours, that of the axial mode (T,,) is 3.5056 hours, and that of the 
prograde equatorial mode (T,) is 3.3432 hours. The period of the axial 
mode is offset by 0.02575 hours from T,, the mean of TRand T, (T, 
= 3.53135 hours), whereas TRand T, are offset from the mean by 
0.18815 hours. 

Below I fit resonances to the candidate spectrd features indicated 
by arrows in Fig. 1and obtain the observed values TR= 4.015 +-
0.001 hours, T, = 3.7677 r 0.0006 hours, and T, = 3.5820 +-
0.0008 hours. The offset of Tc from the mean of T, and T,, T, 
= 3.7985 hours, is 0.0308 hours. If the offsets follow the expected 
proportionality to those for Earth model CORE11, we would then 
expect: to find the observed retrograde resonance at 4.0235 hours 
and the prograde resonance at 3.5735 hours. The relative errors in 
the forecasts of the locations of the observed equatorial mode 
resonances are 0.21 and 0.24 percent, respectively. Although more 
generally based, this test is numerically equivalent to the known 
quadratic dependence of the eigenfrequencies on azimuthal number 
given by second-order perturbation theory ( 5 ) .  

The small variation of the displacement field forms shown in Fig. 
2, over Earth models with widely different eigenperiods, permits the 
construction of an even more stringent test of whether the observed 
resonances can be associated with the translational triplet. Under 
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general conditions (9, lo), the period T of a core oscillation obeys 
the equation 

where Tois the period neglecting rotation, T, is the length of a 
sidereal day, and g is a dimensionless form factor representing a 
weighted average of the product .of the mmidional and azimuthal 
components of the displacement fields, compared to a weighted 
average of the squared magnitude of the WI displacement vector. 
The form factor obeys Igl I1and for a particular mode is nearly 
invariant with the Earth model. 

On the basis of the form factors of CORE11, three curves 
(branches of hyperbolas) can be constructed along which all possible 
translational periods must lie (Fig. 3). For example, the locations of 
the periods for an older model 1066A (19) are accurately predicted 
(Table 1).  Forecast locations for the observed periods with this 
identification test are 4.0166, 3.7687, and 3.5813 hours. The 

Azimuthal component Meridional projection 

Fig. 2. Displacement vector fields in the fluid outer core of the three 
translational modes of the solid inner core. The azimuthal components are 
shown in perspective. (A) Retrograde equatorial mode. (6)Axial mode. (C) 
Prograde quatorial mode. In each case the azimuthal component leads the 
meridional component by 90". 
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Table 1. Parameters of Eq. 1 for Earth models CORE11, 1066A, and the 
observed resonances (in hours). 

Model TR TC TP TO 8, 8c 8~ 

COREll 3.7195 3.5056 3.3432 3.5314 -0.3520 0.0496 -0.3713 
1066A 2.8247 2.7023 2.6035 2.7141 -0.3524 0.0384 -0.3670 
Observed 4.0150 3.7677 3.5820 3.7985 -0.3495 0.0513 -0.3700Axial mode 

Prograde quatorial mode 
A. CORE11 nances because of their geographic proximity, the fourth root of the Obsewed 
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1.00-

8
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product spectrum can be taken as an estimate of the overall power 
spectral density (Fig. 4). The resonance near 4 hours is complicated 
by the S6 solar heating tide resulting from the nonlinear response of 
the atmosphere to the daily cycle in solar insolation. This response 

Nonrotating period To(hours) 
has a peak period of exactly 4 hours. To allow for this complication, 

Fig. 3. Rotational splitting of translational triplet periods as a function of the 
period in the absence of rotation. The curves are branches of hyperbolas and 
are generated with the parameters of Earth model CORE11. Computed 
periods for Earth model 1066Aand the observed periods are both accurately 

two different resonances with the form of Eq. 2 were assumed for 
this case (Fig. 4C). For the isolated resonances illustrated in Fig. 4, 
A and B, the 20 spectral estimates closest to the peak frequency were 

forecast. Relative errors in predicting locations of the observed resonances 
are 0.040, 0.027, and 0.020 percent. 

respective relative errors are 0.040, 0.027, and 0.020 percent. 
Allowing for Toas an adjustable parameter, the probability of an 
equally good or better fit to the observed periods being obtained by 
chance is about one in 6 x lo6. 

Recovery of periods, amplitudes, and quality factors. On the 
assumption that each resonance is produced by a damped harmonic 
oscillator excited by approximately white noise, the power spectral 
density near the resonant frequency fo is given by 

where A is the peak amplitude and Af is the width along the 
frequency axis between the half-power points of the resonance. The 
quality factor Q is determined by the ratio fo/A$ Total power for a 
resonance with the form of Eq. 2 is found from its integral to be 
.rrA2Af/2, and the root-mean-square amplitude of the signal is the 
square root of total power. Comparison of an observed resonant 
frequencyfo withf,, the undamped, numerical value computed from 
an Earth model, requires the dispersion correction f, =fa (1  + 
1/8Q2). The correction turns out to be just negligible. 

Since we expect the three European observatories to be exposed 
to nearly the same average signal for each of the three reso-

used in the least squares fit, whereas in the case of the double 
resonance shown fitted in Fig. 4C, the nearest 30 spectral estimates 
were used. In all three cases, peak frequencies were initially picked 
from the plots and amplitudes and Q's were recovered from the 
fitted resonances (Table 2). 

Model for the inner and outer cores. I chose Earth model 
COREl l  (18) as a starting model because the three translational 
periods for it are quite close to the observed values. Small adjust- 
ments to the density and its gradient in the inner and outer cores and 
to the inner core radius of this model suffice to bring the numerically 
computed translational periods into agreement with observation. 
The density adjustment in the inner core is expressed as 

and as 

in the outer core, where po is the COREl l  density, a is the inner 
core radius, b is the outer core radius and a,, p,, a2,and p, are 
fractional adjusting coefficients. In addition, a decrease in inner core 
radius of y is incorporated. Density values were either extrapolated 
or interpolated to the new inner core radius after the adjustments of 
Eqs. 3 and 4 were made. Because the velocity structure of CORE11 
is considered to be well determined, the same fractional adjustments 

Frequency (cycles per hour) 

Fig. 4. Fitted resonance (A) for the prograde equatorial inner core 
translational oscillation (T,), (6)the axial translational oscillation of the of the inner core (T,) and for the S ,  solar heating tide. Recovered 
inner core (T,), and (C) the retrograde equatorial translational oscillation parameters and uncertainties are given in Table 2. 
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Table 2. Recovered parameters from least squares fits of the resonances illustrated in Fig. 4, A, B, and C. The stated uncertainties are the formal 
standard errors of the linearized fitting procedure; cph, cycles per hour; rms, root mean square. 

Oscil- rms signal 
lation Period (hours) gal) 

*Solar heating tide. 

as given by Eqs. 3 and 4 were applied to the Lame elastic constants 
to preserve compressional and shear velocities. 

As well as matching the observed periods, the mass M and mean 
moment of inertia I of the inner and outer core system are preserved 
in the density adjustment. These are respectively 

and 

I made successive, locally linear adjustments by calculating partial 
derivatives of the five quantities M, I, and the three periods T,, T,, 
and T,  with respect to the five parameters defining the new Earth 
model, a,, P,, a,, P,, and y, and then solving for the requisite 
adjustments necessary to preserve M and I and to match the 
observed periods. several iterations of this procedure resulted in the 
new model 71BG (Table 3) for the inner and outer cores (Fig. 5). 
In comparison to CORE11,71BG has an inner core density reduced 
by 0.45 percent, an inner core density gradient decreased by 0.04 
percent, an inner core radius increased by 2.3 km, an outer core 
density decreased by 0.04 percent, and an outer core density 
gradient increased by 0.18 percent. The-newmodel has translational 
periods for the inner core of 3.5826, 3.7675, and 4.0164 hours, all 
within the estimated errors in determining the observed periods. 
Fractional departures of M and I for 71BG compared to COREl l  
are -3.2 x lop8 and -3.7 x lop8, respectivelv.

, L 

Implications for structure and properties of the core. Core 
density structure and inner core radius are tightly constrained by the 
three observed translational periods. ~ r o kthe partial derivatives 
listed in Table 3, the changes In the periods per unit percent change 
in the density structure are of the order of 0.5 hours, whereas the 
changes in the periods per kilometer change in inner core radius are 
approximately 0.0007 hours. Even for the largest (0.001 hours) of 
the estimated formal standard errors of the least-squares recovery of 

Table 3. Parameter values defining core model 71BG relative to model 
CORE11. The three inner core translational periods of 71BG are Tp = 
3.5826 hours (hr), Tc = 3.7675 hours, and T, = 4.0164 hours. Their 
partial derivatives with respect to the Earth model parameters are also 
listed below. N' is the square of the dimensionless VaisSa angular 
frequency (measured against twice the diurnal angular frequency of the 
Earth's rotation). A positive value of N' indicates a stably stratified outer 
core; a negative value, an unstable stratification. 

Parameter p ~ T P / ~ P(hrlp) 

a, = 0.44607% -0.4890 
p, = -0.04185% -0.3645 
a, = -0.04476% -0.4781 
p, = 0.17797% -0.4780 
y = -2.312 km 8.3 X lo-" 
N' 7.8 X lo-' 

the three periods given in Table 2, the corresponding relative 
uncertainty in the density is only 2 x and in inner core radius 
it is 1.4 km. Of course the accuracy of the resolution of core density 
and inner core radius is undoubtedly much smaller, because the 
values of the recovered parameters shown in Table 3 are not 
completely independent, and the assumed simple forms of the 
density adjustments given by Eqs. 3 and 4 are too restrictive. A full 
reinversion of the complete Earth model data set (23) incorporating 
the newly discovered periods is required. 

Although from the confidence interval indicated in Fig. 1, indi-
vidual excursions of the spectral estimates are well within values 
expected for white noise, each resonance is clearly defined by many 
independent spectral estimates. Identification of the resonances as 
the translational triplet of the inner core is based on their peak 
periods being in strict accordance with known Coriolis splitting. 
Although it is possible that some other oscillation in the Earth 
system, subject to the same Coriolis splitting, produces the observed 
gravimetric signature, the slight adjustment of the good recent Earth 
model C O R E l l  required to bring the numerically calculated peri-
ods into agreement with the observed values suggests that the 
modes are correctly identified. Nonetheless, the extreme weakness of 
the detected signals argues caution in this conclusion, and confir-
mation from superconducting gravimeter sites with broader global 
distribution is required. 

The simple physical arrangement of a sphere oscillating in a fluid, 

12.01 ' ' ' ' ' ' I 
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Fig. 5. (A) Density pro- 20 I I I 

modelmodelCORE1171BG 
(dashed curve) and the E B 4files foradjusted 
(solid curve) for the inner m :!-\-core and boundary region. 

n-(B) The excess density of - -
71BG over that for 
CORE11 in the outer core 
is shown as the density dif- $ference. The inner core -density is reduced by 0.45 
percent, and the density djump at the boundary is -5 I I I I 
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presented by the inner core translational modes potentially provides 
an elegant method of directly measuring outer core viscosity. In 
particular, the axial mode seems little influenced by rotation and the 
presence of the outer core-mantle boundary (Figs. 2 and 3), and the 
classical formula (20) for the drag on a sphere oscillating with 
angular frequency u in an unbounded viscous fluid gives the 
approximate kinematic viscosity 

For the Q of the axial mode, the kinematic viscosity is 7.7 x lo7 
cm2/s. Similar values of this notoriously uncertain but geophysically 
important parameter are found from other direct measures of damp- 
ing (21). 

Ohmic dissipation arising from the presence of strong magnetic 
fields in the core is found to be slight at these short periods (22). 
Indeed, the skin depth for the translational modes is only about 0.1 
krn and the core behaves as a nearly perfect conductor with 
electromagnetic Q's in excess of lo1'. Strong magnetic fields might 
have a just detectable effect on the periods. Magnetic lines of force 
can be regarded as being under a tension ~  ~per unit area, where 2/ ~ 
B is the magnetic field strength and kO is the permeability of free 
space. Displacement against this tension in a field of 500 gauss 
would give a relative perturbation in the periods of about 0.07 
percent. The intriguing question of the exact nature of the interac- 
tion with the in situ magnetic field deserves further investigation. 
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