applied to (iv) a Sephacryl-S300 HR column (320 ml) run with buffer B. The yield through steps iii and iv was >55%. (v) ATP-Sepharose (2 ml) (Phar-macia) run with buffer B containing Brij 35 (0.05%) and 2 mM MnCl₂. For elution, MnCl₂ was omitted from the buffer and 300 mM sodium acetate was added. Yield was 45%. (vi) Chromatography on Phenyl-Superose HR 5/5 as in step ii (60% yield). (vii) Rechromatography on ATP-Sepharose (1 ml) as in step v with a recovery of 30%. Final yield of adenylyl cyclase activity was 1%. The enzyme was assayed as described (3). For SDS-polyacrylamide gel electrophoresis, adenylyl cyclase eluting in 1 ml was precipitated with four volumes of methanolacetone (1:1). Upon storage at -20°C, approximately 50% of enzyme activity was lost per month. 13. E. Pfeuffer, S. Mollner, T. Pfeuffer, EMBO J. 4,

3675 (1985); M. D. Smigel, J. Biol. Chem. 261,

1976 (1986).

- B. E. Ehrlich, A. Finkelstein, M. Forte, C. Kung, Science 225, 427 (1984); G. Boheim et al., in Transport in Biomembranes: Model Systems and Reconstitution, R. Antolini, A. Gliozzi, A. Gorio, Eds. (Raven, New York, 1982), pp. 87–97.
- R. Berz, K. Janko, W. Boos, P. Läuger, Biochim. Biophys. Acta 551, 305 (1978); R. Benz, Annu. Rev. Microbiol, 42, 359 (1988). About 3 × 10¹⁰ molecules of purified porins per milliliter are needed to observe single channel events. The low efficiency of the bilayer system in reconstitution experiments is probably due to unspecific adsorption of the hydrophobic membrane proteins to teflon surfaces of the measuring cell (10 cm²). Calculating with a molecular size of 100 kD for the adenylyl cyclase, about 6 \times 10⁹ molecules (1 ng/ml) were required to cause channel formation in an identical cuvette. If the

adenylyl cyclase was diluted (0.1 ng/ml), no activity

- adding for base was builded (5.1 hg/ml); no dedriky was observed.
 16. D. G. Lowe et al., EMBO J. 8, 1377 (1989).
 17. R. Delgado, P. Hidalgo, F. Diaz, R. Latorre, P. Labarca, Proc. Natl. Acad. Sci. U.S.A. 88, 557 (1991).
- U. Schönefeld, A. W. Alfermann, J. E. Schultz, J. Protozool. 33, 222 (1986).
- 19. M. A. Delaage, D. Roux, H. L. Cailla, in Molecular Biology and Pharmacology of Cyclic Nucleotides, G. Falco and R. Paoletti, Eds. (Elsevier, Amsterdam, 1978), pp. 155–170.
- T. Sonneborn, Methods Cell Physiol. 4, 241 (1970).
- We thank C. Kung for the Paramecium mutants, C. Kung and H. Machemer for comments on the manu-script, and U. Kurz and C. Schönborn for help. Supported by the Deutsche Forschungsgemeinschaft.

3 July 1991; accepted 15 October 1991

The Son of sevenless Gene Product: A Putative Activator of Ras

LAURA BONFINI,* CHRIS A. KARLOVICH,* CHIRANJIB DASGUPTA, UTPAL BANERJEE[†]

The Son of sevenless (Sos) gene functions in signaling pathways initiated by the sevenless and epidermal growth factor receptor tyrosine kinases. The Sos gene has now been isolated and sequenced. Its product is a 1595-amino acid protein similar to the CDC25 protein in Saccharomyces cerevisiae, a guanine nucleotide exchange factor that activates Ras. These results imply a role for the ras pathway in Drosophila neuronal development.

"N THE DEVELOPING DROSOPHILA EYE, a cluster of eight photoreceptor neurons develop autonomously in each facet or ommatidium (1, 2) with the central cell R8 being the first to express neuronal markers (3). R8 directly induces a neighboring cell to develop as the R7 neuron (4). This induction is mediated by the products of the bride of sevenless (boss) and sevenless (sev) genes (4-8). The boss gene product is a transmembrane protein that is localized to the R8 cell (5), and the sevenless gene encodes a tyrosine kinase receptor expressed on the membranes of many cells in the developing cluster (9, 10). Extensive genetic and molecular analysis of this system suggests that the boss protein on R8 binds to and activates the sevenless receptor on the R7 precursor cell, leading to its eventual differentiation into a neuron (5). In sev or boss mutants, R7 cells are missing from all facets of the eye.

Recent genetic analysis has shown that a gene called Son of sevenless (Sos) functions in

L. Bonfini, C. A. Karlovich, C. Dasgupta, Department of Biology, University of California, Los Angeles, CA 90024.

U. Banerjee, Department of Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90024.

a signal transduction pathway initiated by the sevenless receptor (11). This gene was first identified as a dominant mutant allele called Sos^{JC2}, which suppresses the sev^{E4} allele. This suppression is allele-specific, suggesting an interaction between the proteins encoded by these genes. Genetic analysis further demonstrated that SosJC2 product is necessary autonomously in the R7 cell for this cell to develop in a sev^{E4} background. The function of the Sos gene product is not limited to the development of the R7 cell; in weak loss of function alleles, other photoreceptor cells are missing, and complete loss of function leads to recessive lethality. The Sos gene also functions downstream of the Drosophila epidermal growth factor receptor

(11). We now describe the isolation and characterization of the Sos gene and show that it encodes the Drosophila homolog of CDC25, an activator of Ras in Saccharomyces cerevisiae.

The Sos gene maps to the 34D5 region of the second chromosome. This region has been saturated for mutations and a deficiency map has been reported (12). We have confirmed the mapping results (relevant loci and breakpoints are shown in Fig. 1A).

Starting with a clone in 35A, we initiated a chromosomal jump to 34D3 and followed it with a chromosomal walk in the region of the Sos gene. In all, about 150 kb of genomic fragments were cloned as cosmid and phage DNA. Genomic fragments were used in chromosomal in situ hybridization experiments to delimit the Sos region (see below). A molecular map of this region was constructed (Fig. 1B) and four transcription units were identified through cDNA clones isolated from a cDNA library from eye imaginal discs.

Molecular characterization of the many chromosomal rearrangements mapping to the region allowed us to discriminate between these cDNAs. Three deletions, Df(2L)b71ka, Df(2L)b84h1, and Df(2L)-ScoRV7, genetically uncover Sos and loci to its right (Fig. 1A). In situ hybridization

Table 1. Interaction of Dras-1 with Sos in flies homozygous for sev^{E4} . Df(3R)by62 and Df(3R)by10 overlap in the 85D11-F1 region and include the transcription unit for Dras-1 (20). One copy of either of these deletions eliminates the suppression of sev^{E4} by Sos^{IC2} . This is a specific effect in that over twenty deletions mapping outside the region [for example, Df(3R)D1BX12] have been tested in this assay and do not have any effect on the suppression. The ommatidia were screened by the optical technique called pseudopupil (6); n is the number of ommatidia screened. The boss¹ allele is a null allele at the boss locus.

Genotype	Ommatidia with R7 cells
	$\begin{array}{c} 0\% \ (n=2239) \\ 16\% \ (n=2392) \\ 0\% \ (n=2337) \\ 0\% \ (n=2175) \\ 0\% \ (n=2180) \\ 17\% \ (n=898) \end{array}$

^{*}These two authors have contributed equally to this roject and are listed in alphabetical order To whom all correspondence should be addressed.

A Genetic map of the Sos region

experiments showed that the breakpoints of Df(2L)b71ka (Fig. 2, A and B) and Df(2L)b84h1 (13) map to the same genomic fragments to the right of cDNA 7 and left

of cDNA 8 (Fig. 1B). Thus, these deficiencies, which are genetically Sos⁻, also delete cDNA 8. Similarly, the breakpoint of Df(2L)ScoRV7 was mapped to the coding

Fig. 2. Mapping of deficiency breakpoints by chromosomal in situ hybridization and DNA blot analysis. Breakpoints of Df(2L)b71ka and Df(2L)DTD43 were mapped by in situ hybridization. The analysis of the deficiency and wild-type chromosomes was facilitated by the presence of associated inversions that cause asynapsis in this region. (A) Chromosomes from Df(2L)b71ka/+ flies probed with cDNA 7. Signals (arrows) are present on both wild-type and deficiency homologues. (B) Chromosomes from Df(2L)b71ka/+ flies probed with cDNA 8. A signal is present on the wild-type homologue (arrow). The corresponding region in the deleted homologue (arrowhead) does not have a signal. (C) Chromosomes from Df(2L)DTD43/+ flies probed with the 3' end of cDNA 8. Signals (arrows) are present on both wild-type and deficiency homologues. (D) Chromosomes from Df(2L)DTD43/+ flies probed with the 5.3-kb Eco RI fragment mapping to cDNA 2. A signal (arrow) is seen on the wild-type homologue only, indicating that this deficiency breaks to the left of this fragment. The arrowhead points to the deficiency chromosome, which lacks a signal. (E)

Fig. 1. Genetic and molecular maps of the Sos region. (A) Genetic map showing mutant loci and genetic breakpoints of chromosomal rearrangements. Only the left breakpoints of the deletions are relevant to this study and are shown. (B) Molecular map of the Sos region showing relative positions of cDNAs and rearrangement breakpoints. Df(2L)b84a4 was used to jump from 35A to 34D and its breakpoint served as the left-most limit for the walk. The breakpoints of the deficiencies were determined by chromosomal in situ hybridization and Southern blot analysis (see Fig. 2). Brackets at the tips of arrows showing breakpoints indicate the Eco RI fragments in the genome to which these breakpoints map. E, Eco RI; K, Kpn I; X, Xba I.

region of cDNA 8 by Southern (DNA) blot analysis (Fig. 2E). Because cDNA 7 is not included in any of these deletions, it is ruled out as a candidate for the Sos gene.

The deletions Df(2L)b81a2 and Df(2L)-DTD43 are genetically wild type for Sos but uncover loci immediately to the right of that gene. The breakpoint of Df(2L)b81a2 was mapped to a 2.8-kb Eco RI restriction fragment to the right of cDNA 8 but to the left of cDNAs 1 and 2 (Figs. 1B and 2F). Therefore, deletion Df(2L)b81a2 eliminates cDNAs 1 and 2. Because Df(2L)b81a2 is genetically wild type for Sos, cDNAs 1 and 2 do not encode Sos. These results are consistent with in situ hybridization experiments using Df(2L)DTD43 in which the breakpoint maps to the same genomic fragments as cDNA 1 (Figs. 1B, and 2, C and D). When taken together, the rearrangement breakpoints assign cDNA 8 to Sos.

A 15.1-kb Kpn I fragment containing the

Breakpoint of Df(2L)ScoRV7. Total genomic DNA was digested with Eco R1, transferred to a Zetaprobe blot, and probed with the 3.2-kb Eco RI genomic fragment mapping to cDNA 8. An 8-kb restriction fragment length polymorphism (RFLP) was seen with Df(2L)ScoRV7. The rest of the lines serve as controls for genetic background. Lane assignments are as follows: 1, CyO/Star; 2, zw^{E11} ; 3, Df(2L)ScoRV7/CyO; 4, Df(2L)b84h1/CyO; 5, Df(2L)b81a2/ SM5; 6, Df(2L)b83b22/SM5; 7, Df(2L)DTD43/CyO. CyO and SM5 are balancer chromosomes, zw^{E11} is a wild-type parental stock. Arrow marks the origin. (F) Breakpoint of Df(2L)b81a2. Total genomic DNA was digested with Eco R1. The 2.8-kb Eco R1 genomic fragment mapping to the right of cDNA 8 and left of cDNA 1 was used as a probe. Df(2L)b81a2 is the only one to show an RFLP. This is a complex breakpoint and gives rise to two new bands. The arrow in (E) marks the position of the origin. Lane assignments are as follows: 1, CyO/Star; 2, zw^{E11}; 3, Df(2L)8coRV7/CyO; 4, Df(2L)b84h1/CyO; 5, Df(2L)b81a2/SM5; 6, Df(2L)b83b22/SM5; 7, Df(2L)b85b2/SM5; and 8, Df(2L)DTD43/CyO.

Fig. 3. Northern blot probed with Sos cDNA. Head (H) and body (B) polyadenylated RNA (10 μg each) was placed in the indicated lanes, transferred to a Zetaprobe blot, and probed with the Sos cDNA.

entire cDNA 8 (Fig. 1) was used in P-elementmediated transformation experiments (14) and was shown to rescue the lethal phenotype of the null allele Sos^{x122} . This formally proves that cDNA 8 corresponds to *Sos*.

On a Northern (RNA) blot (Fig. 3), the

A 811 IEHHLSVPND EITLLTLHPL ELARQLTLLE MESGPSGHAH TISYGGGIGL GTGGGGGGSGG 1 31 FEMYKNVKPS ELVGSPWTKK GIGIGGGGVA GLQDCDGYDF 841 DKEVKSPNLL SGSGSOGGGG ENYEERLAIM 871 KIMKHTTNVT RWIEKSITEA 61 TKCENAARWR GLFTPSLKKV LEOVHPRVTA 901 91 KEDALLYVEK LCLRLLAMLC AKPLPHSVQD QRAIEVMMVM LELNNFNGIL SIVAAMGTAS 931 VYRLRWTFQG LPERYRKFLE ECRELSDDHL 121 VEEKVNKSFP APIDOWALNE AKEVINSKKR 961 KKYQERLRSI NPPCVPFFGR YLTNILHLEE 151 KSVLPTEKVH TLLOKDVLOY KIDSSVSAFL 991 GNPDLLANTE 181 VAVLEYISAD ILKMAGDYVI KIAHCEITKE LINFSKRRKV AEIIGEIOOY ATSCPVPCHF 211 DIEVVMNADR VLMDMLNQSE 1021 QNOPYCLNEE STIROFFEOL DPFNGLSDKC 2**4**1 271 1051 MSDYLYNESL RIEPRGCKTV PRSASATYEE TVKELIHDEK QYQRDLHMII PKFPRKWPHI 1081 PLKSPGIKPR RVFREELVKI VSDPRELEPI RONOTNSSSK LSNSTSSVAA FSNIMDIYEV ASSIMDAPTA 301 TVTLLGSLED VIEMSQEQSA PCVGSCFEEL 1111 AAAASSTATS IATASAPSLH 331 AEAEEFDVYK **KYAYDVTSQA** SRDALNNLLS 1141 AAANAGSGTL AGEQSPQHNP HAFSVFAPVI 361 KPGASSLTTA GHGFRDAVKY YLPKLLLVPI 1171 TPERNTSSWS GTPOHTRTDO NNGEVSVPAP 391 1201 HLPKKPGAHV WANNNSTLAS CHAFVYFDYI KHLKDLSSSO DDIESFEOVO ASAMDVVFSP LPDSNPFASD 421 GLLHPLHCDL EKVMASLSKE RQVPVSGRVR 1231 ALPEHLPPQS TEAPPSPLPK 451 ROLAIERTRE LOMKVEHWED KDVGONCNEF 1261 LVVSPRHETG NRSPFHGRMO NSPTHSTAST 481 IREDSLSKLG SGKRIWSERK VFLFDGLMVL 1291 VTLTGMSTSG GEEFCAGGFY FNSAHQGQPG PMATNMEYRA 511 CKANTKKOTP SAGATAYDYR LKEKYEMBBV 1321 AVPTSPHVNV VPPPLPPRRK 1351 ERTESCADMA OKROAPDAPT 541 DINDRPDSDD LKNSFELAPR MOPPIVLTAK LPPRDGELSP 571 NAQHKHDWMA DLLMVITKSM LDRHLDSILQ 1381 PPIPPRLNHS TGISYLRQSH GKSKEFVGNS 601 DIERKHPLRM PSPEIYKFAV SLLLPNTSSI PDSGDNIVLE 1411 MIRRNSAIEK RAAATSQPNQ 631 ERESAGVPMI KGATLCKLIE RLTYHIYADP 1441 AAAGPISTTL VTVSQAVATD EVLPLPISPA 661 TEVRTELTTY 1471 RYFCSPOOLL OLLVERFNIP ASSSTTTSPL TPAMSPMSPN TPSHPVESTS TAGAGGMGGV GGDKEHKNSH 1501 SSYAHQLRMR 691 DPSLVYODTG 000000THPA IYSOHHOHHA THLPHHPHQH HSNPTOSRSS 721 REDWKRYRKE YVOPVOFRVL NVLRHWVDHH 1531 PKEFFPIATS 751 FYDFEKDPML LEKLLNFLEH VNGKSMRKWV 1561 LEGTPKLPPK PSLSANFYNN PDKGTMFLYP 781 DSVLKIVORK NEQEKSNKKI VYAYGHDPPP 1591 STNEE*

В

Sos	912	ELNNFNGILSIVAAMGTASVYRLRWTFQGLPERYRKFLEECRELSDDH	1074
CDC25	1494	<pre> .:: . . :: :. :: : :.: .: .: . : ELNNFSSMTAIVSALYSSPIYRLKKTWDLVSTESKDLLKNLNNLMDSKRN</pre>	1543
Sos	960	LKKYQERLRSI.NPPCVPFFGRYLTNILHLEEGNPDLLAN.TELINFSKR	1122
CDC25	1544	FVKYRELLRSVTDVACVPFFGVYLSDLTFTFVGNPDFLHNSTNIINFSKR	1593
Sos	1008	RKVAEIIGEI 1132	
CDC25	1594	TKIANIVEEI 1603	

Fig. 4. Sequence analysis of Sos. (A) Conceptual translation product of the Sos cDNA. The complete Sos protein is predicted to have 1595 amino acids. (B) Comparison of Sos and CDC25 peptide sequence. The COOH-terminal region of CDC25 is aligned against the COOH-terminal end of Sos. Lines indicate identity and dots indicate similarity.

31 JANUARY 1992

Sos cDNA hybridized to a 5.6-kb band of RNA from adult head and body. Three other small bands were seen in RNA from the head. These arise from the 5' end of the gene and may result from alternative splicing. The Sos cDNA was hybridized to whole mount embryos and eye discs in situ. The Sos gene was widely expressed at low levels throughout the eye disc and the embryo (15).

The Sos cDNA was sequenced on both strands (GenBank accession number M83931) and the conceptual translation product is shown in Fig. 4A. The COOH-terminal end of protein encoded by Sos is similar to the catalytic domain of CDC25 of S. cerevisiae (Fig. 4B). The amino acid sequences of the most similar segment of the two proteins show 45% identity and 70% similarity. Motifs within this region that are conserved between the structurally similar yeast genes CDC25, SCD25, BUD5, and ste6 (16) are also conserved in the Drosophila sequence.

The product of the CDC25 gene in S. *cerevisiae* is required for the exchange of guanine nucleotides bound to Ras (17, 18).

The activation of Ras is caused by its conversion from a GDP-bound form to a GTPbound form. For both CDC25 and SCD25, the COOH-terminal end is necessary and sufficient for this activation (19). The strong similarity of sequences between Sos and CDC25 at the catalytic domain suggests that the Sos protein may activate Drosophila Ras in an analogous manner.

If the Sos protein is an activator of Ras, loss of function of the ras gene itself should show genetic interactions with mutations at the Sos locus. Point mutations in the ras genes are not available, but we demonstrated such an interaction with two overlapping deficiencies that uncover the Dras-1 locus of Drosophila (20). In a sev^{E4} background, one copy of the dominant allele Sos^{JC2} rescued R7 cells in 16% of all ommatidia (Table 1). The sev^{E4} allele may encode a weak tyrosine kinase and Sos^{JC2} , a hyperactive product (11). The assay used to determine *Dras* interactions is based on our finding that mutations in genes closely associated with sev in the pathway have a strong effect on the suppression of sev^{E4} by Sos^{JC2} . For example, introduction of one mutant copy of boss eliminates the suppression effect of Sos^{JC2}. One explanation of this result is that a partially active kinase encoded by the sev E4 allele is even weaker when the amount of boss, the ligand, is reduced and an overactive Sos^{JC2} protein can no longer compensate for the lower kinase activity. Loss of one mutant copy of Dras-1 entirely eliminates the suppression of sev^{E4} by Sos^{JC2} (Table 1). This provides additional support to the notion that the Sos protein interacts with Ras and implicates Ras in the developmental pathway of the R7 neuron.

Fig. 5. A model for cell fate determination in the R7 neuron. The boss protein from the R8 cell binds to the sevenless receptor on the R7 precursor. This results in the activation of Sos by the sevenless tyrosine kinase. Activated Sos then facilitates guanine nucleotide exchange and the consequent activation of Ras. A multistep cascade follows, leading to the adoption of a neuronal fate.

We propose the following model for the role of Sos in R7 development (Fig. 5). The Sos gene product may be activated by the tyrosine kinase encoded by sev. This facilitates the activation of Ras. Ras, in turn, acts upon as yet unidentified substrates and leads to a commitment to the R7 cell fate. A GAP-like molecule has not yet been found in this pathway but is proposed in this model by analogy to other Ras pathways. The data presented here do not rule out the possibility that sevenless also acts through a molecule other than Sos.

Previous work in mammalian systems suggests the Ras pathway might operate downstream of receptor tyrosine kinases. A dominant-negative ras gene, for example, was able to interfere with oncogenic transformation by several tyrosine kinase-encoding oncogenes (21). Furthermore, genetic analysis has demonstrated a function for Ras in Caenorhabditis elegans vulval development. A ras gene, let-60, has been shown to act downstream of a receptor tyrosine kinase encoded by the let-23 gene (22, 23). Results presented here implicate Ras in Drosophila neuronal development as well. Thus the Ras pathway may be a general component of many developmental systems.

RÉFERENCES AND NOTES

- 1. D. F. Ready, T. E. Hanson, S. Benzer, Dev. Biol. 53, 217 (1976). U. Banerjee and S. L. Zipursky, Neuron 4, 177 2.
- (1990). A. Tomlinson and D. F. Ready, Dev. Biol. 120, 366 3.
- (1987). 4. R. Reinke and S. L. Zipursky, Cell 55, 321 (1988). H. Krämer, R. L. Cagan, S. L. Zipursky, Nature 5.
- 352, 207 (1991). U. Banerjee, P. J. Renfranz, J. A. Pollock, S. Benzer, 6.
- Cell 49, 281 (1987). 7. D. D. L. Bowtell, M. A. Simon, G. M. Rubin, Genes
- Dev. 2, 620 (1988).
- B. C. Basler and E. Hafen, Cell 54, 299 (1988).
 U. Banerjee, P. J. Renfranz, D. R. Hinton, B. A. Rabin, S. Benzer, *ibid.* 51, 151 (1987). 9.
- A. Tomlinson, D. D. L. Bowtell, E. Hafen, G. M. 10. Rubin, ibid., p. 143.
- R. D. Rogge, C. A. Karlovich, U. Banerjee, ibid. 64, 11. 39 (1991)
- 12. M. Ashburner, Dros. Inf. Serv. 69, 1 (1991).
- 13. C. A. Karlovich and U. Banerjee, unpublished results.
- G. M. Rubin and A. C. Spradling, Science 218, 348 (1982); the w¹¹¹⁸ embryos were injected with the 15.1-kb Kpn I fragment (Fig. 1) cloned into a 15.1-kb Kpn 1 fragment (Fig. 1) cloned into a Casper-4 transformation vector. Adults from these injected embryos were crossed to w^{1118} , Sos^{x122} , sp/SM6a flies. Male w^{1118}/Y ; Sos^{x122} , Sos^{x122}/Y . homozygotes survived when their genomes contained one copy of the $P[w^+, Sos^+]$ insert.
- 15. F. Pignoni, L. Bonfini, U. Banerjee, unpublished observations.
- S. Powers, E. Gonzales, T. Christensen, J. Cubert, 16. D. Broek, Cell 65, 1225 (1991).
 17. D. Broek et al., ibid. 48, 789 (1987).
- S. Jones, M. L. Vignais, J. R. Broach, Mol. Cell. Biol. 11, 2641 (1991). 18.
- 19. F. Damak, E. Boy-Marcotte, D. Le-Roscouet, R. Guilbaud, M. Jacquet, ibid., p. 202.
- 20. F. S. Neuman-Silberberg, E. Schejter, M. Hoff-

mann, B.-Z. Shilo, Cell 37, 1027 (1984). L. A. Fieg and G. M. Cooper, Mol. Cell. Biol. 8,

3235 (1988). 22. M. Han, R. V. Aroian, P. W. Sternberg, Genetics

21.

- 126, 899 (1990). 23. G. J. Beitel, S. G. Clark, H. R. Horvitz, Nature 348, 503 (1990).
- 24. We thank the members of our laboratory for helpful suggestions, A. Pickup for the results in Table 1, R. Rogge for help with preparation of the manuscript, M. Ashburner and J. Roote for help in deletion mapping the locus, T. Davis for a clone from the Adh region, G. Rubin for a cDNA library, J. Tamkun for

a cosmid and a Lambda library, M. Paidhungat for help with RNA blots, F. Pignoni for help with tissue in situ hybridization, and B. Pringle and T. Wa-taneskyl for their help in sequencing. The DNA tailisity for that help in sequencing. The DAA sequencing was supported by USHSS grant RR6461 to W. Salser. This work was supported by a grant to U.B. (FDP USHHS 1 R01 EY08152-01A1) from the National Institutes of Health, a McKnight Schol-ars' award to U.B., an Alfred P. Sloan Foundation fellowship to U.B., and a genetics training grant (USPHS NRSA GM-07104) for C.A.K.

10 October 1991; accepted 9 December 1991

Linguistic Experience Alters Phonetic Perception in Infants by 6 Months of Age

PATRICIA K. KUHL,* KAREN A. WILLIAMS, FRANCISCO LACERDA, KENNETH N. STEVENS, BJÖRN LINDBLOM

Linguistic experience affects phonetic perception. However, the critical period during which experience affects perception and the mechanism responsible for these effects are unknown. This study of 6-month-old infants from two countries, the United States and Sweden, shows that exposure to a specific language in the first half year of life alters infants' phonetic perception.

T THE BEGINNING OF LIFE, HUMAN infants exhibit a similar pattern of phonetic perception regardless of the language environment in which they are born (1). They discern differences between the phonetic units of many different languages, including languages they have never heard, indicating that the perception of human speech is strongly influenced by innate factors. However, by adulthood, linguistic experience has had a profound effect on speech perception. Exposure to a specific language results in a reduction in the ability to perceive differences between speech sounds that do not differentiate between words in one's native language (2, 3). Adult native speakers of Japanese, for example, have great difficulty in discriminating between words containing English /r/ and /l/, phonetic segments that belong to the same underlying category in Japanese (2). Adults thus exhibit a pattern of phonetic perception that is specific to their native language, whereas infants initially demonstrate a pattern of phonetic perception that is universal. At what point in development does linguistic experience alter phonetic perception, and

B. Lindblom, Department of Linguistics, University of Texas at Austin, Austin, TX 78712.

what is the nature of the change brought about by experience with a particular language?

Previous studies suggested that the effects of linguistic experience on phonetic perception occur at about 1 year of age (3), coinciding with the age at which children begin to acquire word meanings (4). It was thus proposed that the change from a language-universal pattern of phonetic perception to one that is language-specific was brought about by the emergence of a milestone in the child's linguistic development, namely, the child's understanding that phonetic units are used contrastively to specify different word meanings (3).

We show here that by 6 months of age, well before the acquisition of language (4), infants' phonetic perception has been altered by exposure to a specific language. Infants in America and Sweden were tested with both native- and foreign-language vowel sounds. Infants from both countries exhibited a language-specific pattern of phonetic perception. Thus, linguistic experience alters phonetic perception at an unexpectedly early age, and this has implications for theories of speech perception and the development of language.

The present test focused on phonetic 'prototypes," speech sounds that are identified by adult speakers of a given language as ideal representatives of a given phonetic category. Experiments with adults have shown that phonetic prototypes function like "perceptual magnets" in speech perception (5). The magnet effect causes other

P. K. Kuhl, Department of Speech and Hearing Sciences, University of Washington (WJ-10), Seattle, WA 98195. K. A. Williams and F. Lacerda, Institute of Linguistics, Stockholm University, S-106 91 Stockholm, Sweden. K. N. Stevens, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02120 02139.

^{*}To whom correspondence should be addressed.