
ground-water tables, the paleoliquefaction 
record along the present coast is probably 
complete only for the last 2000 years, inter- 
mittent for the period 2000 to 5000 years 
ago, and may be extremely limited for earlier 
times. 
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A Water Storage Adaptation in the Maya Lowlands 

Prehispanic water management in the Maya Lowlands emphasized collection and 
storage rather than the canalization and diversion accentuated in highland Mexico. 
Reexamination of site maps of the ancient Maya city of Tikal, Guatemala, has revealed 
an important, overlooked factor in Maya centralization and urban settlement organi- 
zation. In a geographical zone affected by an extended dry season and away from 
permanent water sources, large, well-planned reservoirs provided resource control as 
well as political leverage. 

T HE SETTLEMENT PATTERN OF THE 

ancient Maya, a civilization identi- 
fied with a dispersed support popu- 

lation, continues to perplex Mesoamerican- 
ists (1, 2). Occupying central and northern 
Guatemala and adjacent areas of Mexico, 
Belize, and Honduras (Fig. l), southern 
Maya Lowland cities contrast with other 
great experiments in Mesoamerican urban 
statecraft-Monte A l b h  (3), Teotihuacin 
(4, 5), Tenochtitlln (5, 6). Although as 
advanced as these more nucleated and or- 
dered ancient settlements of highland Mex- 
ico, the lowland Maya urban aggregate dif- 
fered in population density and spatial 
organization. One condition separating 
these two settlement adaptations is the avail- 

V .  L. Scarborough, Department o f  Anthropology, Uni- 
versity o f  Cincinnati, C~ncinnati, OH 45221. 
G. G. Gallo in, Department o f  Anthropology, State 
University o t ~ e w  York, BuEalo, NY 14222. 

ability of water. 
Water availabilitv limits the location of 

permanent populations. In highland Mexi- 
co, rainfall is less annually abundant than in 
the southern Maya Lowlands, but perennial 
drainages and year-round springs allow the 
deliberate diversion of water to nearby set- 
tlements (5,  7). Although more precipita- 
tion may fall in the Maya area, little perma- 
nent external drainage exists (8). Water 
management in the Maya Lowlands empha- 
sized collection over diversion, source over 
allocation 

Most studies of water management in 
preindustrial states emphasize water alloca- 
;ion rather than water sources and their 
abundance (9). With the use of previously 
published contour maps, a study of large 
Classic Period Maya cities (A.D. 250 to 
900) was initiated, focusing on water sourc- 
es (10). Examination of the ancient reservoir 
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technology in the tropical wet-dry forests of 
the southern Maya Lowlands reveals that 
rainwater storage basins were the major 
source of wateF for many sites during a 
4-month dry season. The planning and 
placement necessary for the substantial res- 
ervoir construction at Tikal. Guatemala 
(1 I), the best documented large community 
in the Maya Lowlands, demonstrates the 
significance of collection and storage and 
suggests centralized water management. 
This centralization, evidenced by the size, 
location, and density of reservoirs within the 
spatial core of the city, also implies political 
and economic control by an elite, a previ- 
ously unexamined urban perspective. 

Fig. Map of the Maya area, showing the Three factors support this centralization 
location of Tikal and other sites mentioned in the hypothesis at Tikal: (i) a pronounced dry text. 

season, (ii) the construction of reservoirs as 
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Fig. 2. Main catchments. Map showing the central 9 km2 of Tikal(11). The six central shaded areas are 
rainwater collection catchments. The Tikal, Corriental, Perdido, and Bejucal catchments each drain into 
their respective bajo-margin reservoirs. The catchments shown are the largest by far at Tikal, though 
other smaller more localized catchments exist. Some of these are located within larger catchments, 
others outside. All catchments are derived from contour lines taken from the detailed Tikal maps as well 
as comments about and drawings and photographs of Tikal (1&12). 

sole water sources, and (iii) the resulting 
water control. Tikal has been carehlly sur- 
veyed and excavated during the last 40 years 
(1 1-13). Although one of the largest Classic 
Period cities, it is not unique in the southern 
Maya Lowlands in having neither rivers nor 
springs. Most Maya cities of Tikal's com- 
plexity, if not its size, are located on natural 
promontories away from permanent water 
sources ( 14). 

Climatic fluctuations have occurred dur- 
ing the last 2000 years (IS), but the present- 
day climate is a close analogue to Classic 
Period conditions. Together with monthly 
rainfall and evapotranspiration rates as well 
as seepage data, estimates have been made of 
the amount of water available to a consum- 
ing population during the dry season (Table 
1) (1 1). Precipitation rates today range from 
1350 to 2000 rnrn per year in the northcen- 
tral PetCn, Guatemala (10, 16, 17), with a 
4-month period of annual drought. 

Reservoirs were constructed at Tikal to 
cope with this seasonal unavailability of 
water. Six maior reservoir catchment ireas 
or drainage divides drain the summit of this 
human-modified watershed and range in 
area from 9 to 62  ha (Fig. 2). The runoff 
from these surfaces easilv filled the associat- 
ed reservoirs. All sizable catchment areas 
eventually terminated in bajo-margin reser- 
voirs or natural aguadas (depressions near 
the edge of a bajo), ultimately leading into 
the flanking bajos (large, seasonally inundat- 
ed, internally drained swamps). 

Three reservoir types have been docu- 
mented within the catchment areas: (i) cen- 
tral precinct reservoirs, (ii) residential reser- 
voirs, and (iii) bajo-margin reservoirs (Table 
1). This typology, based principally on res- 
ervoir location but also on amount of water 
contained, reflects centralization. 

Central precinct reservoirs are located 
within the summit epicenter (13). The 
Causeway, Palace, Temple, Hidden, and a 
newly identified reservoir (behind the north 
end of the Maler Causeway) retain runoff 
from the largest and most completely paved 
reservoir catchment area. Also within the 
central ,precinct reservoir sphere is the 
Floodgate holding tank, a little understood 
feature draining into the larger Causeway 
Reservoir (Fig. 3). More than 900,000 m3 
of water could be collected from the entire 
catchment annually (based on 1500 rnrn of 
rainfall per year). These features were near 
the largest public architecture at the site and 
probably had a symbolic function in associ- 
ating elite authority with the elaborate dis- 
play of water control (18). The central pre- 
cinct reservoirs also appear to have stored 
major water reserves for the seasonal replen- 
ishment of the hajo-margin reservoirs (19) 
(Figs. 3 and 4). 
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Fig. 3. Perdido reservoir 
catchment system. Map 
showing a section of Tikal 
that includes a canal system 
designed to transport rain- 
water from the paved area in 
the upper right (central pre- 
cinct) to the hajo-margin 
Perdido Reservoir located at 
the bottom (11). Water 
stored in the reservoir is hy- 
pothesized to have kept the 
bajo-margin fields further 
south moist. The canal sys- 
tem is derived from struc- 
tures, contour lines, and 
quarry marks visible on the 
detailed Tikal maps (10) as 
well as from comments 
made by the preparers of the 
maps (11). Part of the cap- 
tured rainwater flowed 
north into the "Floodgate" 
(upper right), a recently 
ident~fied central precinct 
holding tank where water 
was held until it was needed 
in an area further east (10). 
This holding tank may have 
been used to keep debris out 
of the larger, more perma- 
nent Causeway Reservoir 
(not shown) in the central 
precinct. Three small but 
centrally located structures 
are positioned in the chan- 
nel leading into the Cause- 
way Reservoir on the north- 
em margins of the Tozzer 
Causeway. These structures 
are conjectured to have been 
pylons designed to support a 
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All central precinct reservoirs were 
formed behind well-defined causeways, 
which connected various portions of the 
city's core but also dammed water within the 
major catchment area (11). Controlled re- 
lease of water from elevated reservoirs to 
downslope flanks and adjacent hajo margins 
would have provided potable water as well 
as moisture for crops during the dry season. 
The precise manner by which water was 
released from the reservoirs is not yet 
known. Given the severely erosion-breached 
margins defining most reservoirs and the 
amount of water displaced by sedimentation 
at present, it is clear that today's nearly dry 
tanks once held much more water (10, 11). 

Residential reservoirs are located down- 
hill from the central precinct within the 
most densely populated wne  immediately 
outside the epicenter's public architecture, 
within what Puleston defined as central 
Tikal(l3). These features (Madeira, Inscrip- 
tions, and a newly defined reservoir behind 
the Mtndez Causeway) appear to be strictly 
for domestic use. In addition, pozas (small 
household reservoirs) have been identified 
(1 1). None of the above features appear to 
have been replenished from central precinct 
reservoirs during periods of drought. Nearly 
all sites in the Maya area have reservoirs of 
this type. 

Bajo-margin reservoirs are basins on the 
scalar order of the central precinct reser- 
voirs, but located away from dense popula- 
tion aggregates associated with central 
Tikal. Bejucal, Perdido, Corriental, and 
Tikal reservoirs are the termini of four of the 
major reservoir catchment areas. These re- 
ceptacles are positioned to receive most of 
the runoff issuing from the flanks of the 
promontory defining central Tikal. Given 
their size and placement, these basins are 
viewed as holding tanks for the allocation of 

Fig. 4. Tikal reservoir catchment system. Map 
showing a section of Tikal that includes a catch- 
ment system designed to move water collected 
from the paved area on the left (west) to the 
hajo-margin Tikal Reservoir to the right (east) 
(11). The catchment system is known to have 
included clay-lined drainage ditches (16) which 
facilitated the transport of water from the paved 
uphill areas. The uphill portion on the left con- 
tains a number of central precinct reservoirs where 
water was held with the help of reinforced cause- 
ways. This water is thought to have been used for 
both direct consumption as well as the ultimate 
watering of fields beyond the Tikal Reservoir. 
Water could have been released through channels 
under the causeways, eventually reaching the 
Tikal Reservoir by means of the clay-lined ditches. 
There, water was held until needed for the bajo- 
margin fields. This elaborate system is suggested 
by the relative locations of causeways, the central 
precinct reservoirs, and the hajo-margin reservoirs 
(10). The contour lines suggested a general pat- 
tern of drainage consistent with this system. 
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Table 1. Reservoir and catchment dimensions. The table lists the critical dimensions of reservoirs 
and their catchments. Pozas are small, localized reservoirs associated with structures. Aguadas and 
other small reservoirs are not associated with structures. These latter two reservoir types compose a 
small fraction of the water available to Tikal and would be subject to early dry-season desiccation as 
a consequence of elevated evapotranspiration rates and their shallow depth. The second column 
shows the total number of reservoirs for each category. The third column shows the range of total 
reservoir capacity based on a low figure derived from extant capacity (1 1) and a high figure obtained 
from projected volumes (10). Ranges estimated for each reservoir in a category are summed. The 
fourth column gives the total surface area of the catchments in each category. Note that the bajo- 
margin reservoirs drain the Tikal, Corriental, Perdido, and Bejucal catchments, yet have a capacity of 
approximately half that of the central precinct reservoirs. This is a function of differing catchment 
seepage rates (1 1). Totals of annual rainwater accumulation collected by catchments in each category 
are based on 1500 mm per year of rainfall, adjusted by the amount of rain lost to seepage and 
multiplied by total catchment surface area. Seepage rates are determined independently for each 
catchment. AU figures are based on calculations done by Gallopin (10) using the detailed maps of 
Tikal (1 1). 

Reservoir type No. Reservoir Catchment Rainfall 
capacity (m3) area (ha) (m3/year) 

Central precinct 6 105,108-243,711 61.90 928,500 
Residential 3 42,647-133,921 56.37 603,324 
Bqio-margin 4 48,9561 72,149 125.63 1,379,322 
Pozas 47 8,581-12,867 37.96 379,508 
Aguada, other 15 1,4504,956 16.71 174,974 

water to agricultural fields, presumed-but 
not identified--on the borders of the bajos 
(19, 20). 

Elsewhere in the southern Maya Low- 
lands, large tracts of raised or drained fields 
have been recorded in similar settings (21, 
22). Sedimentation would have been great- 
est at the margins of the bajos, where steep- 
sided promontories graded into the gentle 
slope of a bajo, burying evidence of ancient 
fields. A millennium of accelerated infilling 
has occurred since Tikal flourished. Given 
the desiccation of bajos during the dry sea- 
son, water in bajo-margin reservoirs may 
have kept raised fields moist and productive 
throughout the year. The absence of house- 
hold groups around bajo-margin reservoirs 
may suggest that water entering them was 
polluted by passing through residential areas 
upslope. However, the recollection of the 
resource indicates a deliberate but subse- 
quent use. 

Other sites provide information on water 
collection and storage in the Maya area (22, 
23). Two promising sites in western Bellze 
are Caracol (24) and La Milpa (25), cities 
with large reservoirs away from permanent 
water sources and located at the summits of 
man-made watersheds. Western Belize, to- 
gether with northeastern Guatemala, was a 
seat of early state-level Maya development 
and florescence. 

Obviously, sites located near permanent 
sources of water or associated with large 
household chultunes (constricted orifice cis- 
terns) (26) were less influenced by the cen- 
tralizing forces affecting reservoir-depen- 
dent populations. However, in those areas 
of the southern Maya Lowlands without 
such water sources and with an abundant 
though seasonal rainfall, reservoir manage- 

ment may also have centralized population 
aggregates. 

Drennan has recently argued that labor- * - 
intensive agricultural practices precipitated 
dispersed settlement in Mesoamerica (1). 
~ur ther ,  he considers settlement compaction 
a normal condition and dispersion an anom- 
aly. Whether or not early canal irrigation 
schemes of highland Mexico were a less 
labor-intensive means of production than 
terrace or drained-field agriculture of the 
lowland Maya (8) ,  the diffeient strategies for 
controlling water coincide with the different 
settlement adaptations. Urbanism, a func- 
tion of many centralizing forces, is difficult 
to analyze in the Maya area because the 
settlement design is less nucleated than that 
of most early states. An early dependence on 
reservoirs and aguadas may have contributed 
to a dispersed population aggregate. 

During the Late Classic Period, however, 
the Maya significantly expanded central pre- 
cinct monumental architecture, resulting in 
quarries that may have become central pre- 
cinct reservoirs. These reservoirs in turn 
promoted a degree of centralization and 
urban compaction on an otherwise dis- 
persed settlement landscape. At Tikal, water 
management, allowed resource control and 
therefore political control by a central-pre- 
cinct elite. Reservoirs, which act as nodes in 
attracting population in seasonally water- 
scarce areas (27), are an underrecognized 
centralizing stimulus. 
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CAROTENOIDS ARE WIDELY DISTRIB-

uted in nature and serve a wide 
range of functions (1). They are 

especially important in photosynthetic sys
tems where they serve the dual functions of 
light harvesting and photoprotection (2). In 
addition to these important physiological 
roles of carotenoids, shifts in the absorption 
spectra of carotenoids have been widely used 
to measure transmembrane potentials and 
the electrogenicity of charge separation steps 
(3). Underlying the utility of these band 
shifts is quantitative information on the 
change in dipole moment, A|xA, and the 
change in polarizability, Aa, for these chro-
mophores in their specific protein environ
ment; to date, there is relatively little direct 
information on these essential properties. In 
the course of investigating the effects of 
applied electric fields on the absorption and 
emission spectra of bacteriochlorophyll a 
(BChl a) in photosynthetic antenna com
plexes (4), we examined the Stark effect 
spectrum in the region of the carotenoid 
absorption bands. Unusually large effects 
were observed, and these are shown to result 
from the interaction between the chro-
mophore and the organized environment in 
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(5, 6), electronic absorption and emission 
spectroscopy (7), BChl a Stark effect spec
troscopy (4), and energy transfer (8). This 
complex is the major pigment-bearing 
protein in the membranes of these orga
nisms. Diffraction-quality crystals of 
B800-850 from different bacteria have 
been prepared by several groups (9), but a 
structure is not yet available. The complex 
consists of BChl a and carotenoid chro
mophores in a 2:1 ratio (6), which are 
complexed with a pair of a-helical trans
membrane polypeptides (10). The chemical 
identity of the carotendids present depends 
on the growth conditions: under anaerobic 
growth conditions, the dominant caro
tenoid is spheroidene; under semiaerobic 
growth conditions, spheroidenone accu
mulates with the exact fraction present 
dependent on the level of 0 2 during cell 
growth (11). 
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It is generally agreed that the carotenoids 
in the B800-850 complex are all-trans (12) 
and that their transition dipole moments, 
which are roughly parallel to the long mo
lecular axis, lie approximately 45° to 50° 
away from the plane of the membrane (13). 
The carotenoids function both to transfer 
energy to the lower energy BChl a compo
nents and to quench potentially reactive and 
destructive BChl a triplet states, should they 
be formed (2, 8). 

Stark effect spectroscopy can provide di
rect information on A|xA, Act, and field-
dependent changes in oscillator strength 
(due to transition polarizability and hyper-
polarizability). If these effects are indepen
dent of each other, then for an immobilized 
isotropic sample, changes in dipole moment 
lead to band-broadening (second deriva
tive-shaped features in the Stark effect spec-

| trum), changes in polarizability lead to band 
shifts (first-derivative effects), and changes 
in oscillator strength produce zeroth and 
first-derivative effects (14). The apparatus 
for measurement of electric field effects and 
the determination of IAJJLAI and the angle £A 

between A|A A and the transition moment 
have been described (15). 

All Stark effect spectra were found to scale 
quadratically with the externally applied 
electric field as expected for an isotropic, 
immobilized sample. Derivatives of the ab
sorption spectra were obtained either direct
ly from the data (generally smoothed with a 
Savitsky-Golay moving window or Fourier 
filtering) or the data were fitted to a combi
nation of skewed Gaussian bands, followed 
by numerical differentiation. Contributions 
of zeroth, first, and second derivatives to the 

Large Protein-Induced Dipoles for a Symmetric 
Carotenoid in a Photosynthetic Antenna Complex 
DAVID S. GOTTFRIED, MARTIN A. STEFFEN, STEVEN G. BOXER 

Unusually large electric field effects have been measured for the absorption spectra of 
carotenoids (spheroidene) in the B800—850 light-harvesting complex from the pho
tosynthetic bacterium Rhodobacter sphaeroides. Quantitative analysis shows that the 
difference in the permanent dipole moment between the ground state and excited states 
in this protein complex is substantially larger than for pure spheroidene extracted from 
the protein. The results demonstrate the presence of a large perturbation on the 
electronic structure of this nearly symmetric carotenoid due to the organized environ
ment in the protein. This work also provides an explanation for the seemingly 
anomalous dependence of carotenoid band shifts on transmembrane potential and a 
generally useful approach for calibrating electric field—sensitive dyes that are widely 
used to probe potentials in biological systems. 

662 SCIENCE, VOL. 251 


